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Droop’s model was originally designed to describe the growth of unicellular phytoplankton species in chemostats but it is 
now commonly used for a variety of organisms in models of trophic interactions, ecosystem functioning, and evolution. 
Despite its ubiquitous use, Droop’s model is still limited by several simplifying assumptions. For example, the assumption 
of equal theoretical maximum growth rates for all nutrients is commonly used to describe growth limited by multiple 
nutrients. This assumption, however, is both biologically unrealistic and potentially misleading. We propose the alterna-
tive hypothesis of equal realized maximum growth rates for all nutrients. We support our hypothesis with empirical and 
theoretical arguments and discuss how it may improve our understanding of the biology of growth, while avoiding some 
of the pitfalls of the previous assumption.
Ecologists have developed a suite of tools to model the 
growth of populations, including Lotka–Volterra functions, 
which describe predation and competition, the logistic 
equation and Monod’s model, which describe the growth 
of populations, and Droop’s model. The latter model was 
originally derived to describe the growth of a unicellular 
phytoplankton species with varying nutrient quotas (Droop 
1974, 1975, Box 1) but it has also been used to model the 
growth of macroalgae (Pedersen and Borum 1996), bacte-
ria (Heldal et al. 1996), protists (Grover and Chrzanowski 
2006) and terrestrial plants (Ågren 1988, Sterner and Elser 
2002). More recently, Droop’s model has been used to  
investigate ecological interactions (Grover 1991, Andersen 
1997, Revilla and Weissing 2008), ecosystem functioning 
(Mongin et al. 2003, Ballantyne et al. 2008, Hall et al. 2008), 
and phytoplankton physiological evolution (Klausmeier  
et al. 2004, 2007). The widespread use of Droop’s model 
warrants a thorough investigation of its underlying assump-
tions, parameter estimations and biological interpretation.

One weakness in the use of Droop’s model in complex 
systems is that some variables and parameters lack clear 
biological interpretation and can only be derived experi-
mentally (Droop 1973). Several authors have attempted 
to provide mechanistic explanations of Droop’s model 
(Kooi and Kooijman 1994, Zonneveld 1996, Lemesle 
and Mailleret 2008) but these theoretical explanations are 
incongruent and often inaccessible to those who use Droop’s 
model with a more applied focus. What is more, the uncer-
tainty in the biological interpretation of the model has led 
to misuses and misconceptions (Turpin 1986, Droop 2003, 
Flynn 2008b).
Here, we address a common usage of the model that we 
view as unjustified: the assumption of a theoretical maxi-
mum growth rate common to all limiting nutrients when 
the growth of an organism with multiple potential limit-
ing nutrients is modeled. Although several researchers have 
argued that there is no theoretical basis for this assumption 
(Terry 1980, Turpin 1986), this assumption is still com-
monly made in current studies.

We investigate this assumption by first deriving an 
extended version of Droop’s model for growth limited by 
multiple nutrients. Then, we synthesize previous research 
that argues against the simplifying assumption of a single 
theoretical maximum growth rate common to all limit-
ing nutrients and present our main argument against this 
assumption: the dependence of critical ratios of nutrients on 
growth rate.

To solve this weakness in Droop’s model we propose a 
hypothesis that meets the simplicity requirements of ecolo-
gists who assume equal theoretical maximum growth rates, 
but that better fits data and has a theoretical basis and a clear 
biological interpretation, i.e. the realized, not theoretical, 
maximum growth rates should be equal in most populations 
limited by multiple nutrients.

Finally, we provide synthetic evidence in support of our 
proposed solution.

Droop’s model applied to multiple-nutrient  
limitation

The extension of Droop’s model from single- to multiple-
nutrient limitation is straightforward (Box 2). The only 
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Box 1

Droop’s model equations:
Population dynamics:
dX
dt

m X= −( )m

X: population density; µ: growth rate; m: mortality rate.

Growth rate control:

m m= −






1
q
q

min

q: internal quota of the limiting resource; qmin: minimum 
quota of the limiting resource; m–: theoretical maximum 
growth rate for q→+∞.

Resource internal quota dynamics:
dq
dt

r q= ( ) −ρ m

ρ: specific uptake rate of the limiting resource; r: exter-
nal concentration of the limiting resource.
complication resides in deciding how multiple resources 
influence realized growth rates. Generally, Liebig’s law of the 
minimum is used because models in which the growth rate 
is controlled solely by the most limiting resource often show 
a better fit to data than do multiplicative models (Droop 
1974, Rhee 1978, Kooijman 1998).

According to this model, for a given growth rate µ, the 
limiting nutrient has a quota ql equal to:
q q
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where m–1 is the theoretical maximum growth rate for the 
limiting nutrient. In contrast, non-limiting nutrients have a 
quota qnl satisfying:
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Box 2

Droop’s model for a multiple-resource limited growth:
Population dynamics:
Same as Box 1.

Growth rate control:

m m m m= [ ] = −






Min
q

i i i
i
min

i

; 1
q

µi: potential growth rate if resource i were limiting; qi: 
resource i internal quota; qi

min : resource i minimum 
internal quota; m–i: theoretical maximum growth rate for 
resource i.

Resource internal quota dynamics:
dq
dt

r qi
i i i= ( ) −ρ m

ρi: specific uptake rate of resource i; ri: resource i external 
concentration.
otherwise they would be limiting resources as well.
Many authors make the additional assumption that:
for all potentially limiting resources (Legovic and Cruzado 
1997, Grover and Chrzanowski 2006, Klausmeier et al. 2007).

In the next section, we present empirical evidence that 
contradicts this simplifying assumption. Specifically, empiri-
cal data show that the critical ratios of nutrients (i.e. the 
ratios of nutrient quotas when growth is co-limited) depend 
on the growth rate, contrary to what is expected if the ‘theo-
retical’ maximum growth rates are equal.

Critical ratios do not support the assumption of 
equal theoretical maximum growth rates

The critical ratio corresponds to the unique combination of 
nutrient quotas that results in growth being co-limited by 
the various resources. We can calculate this ratio at a given 
growth rate, µ, by applying Eq. 1 to all the resources that co-
limit growth. For two resources, the critical ratio is:
we observe that the critical ratio is a hyperbolic func-
tion of the growth rate µ, with asymptotes m  m–i and 

q : q q
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. When m–i  m–j, the critical ratio is 

independent of the growth rate µ and the terms containing 
m in Eq. 3 cancel out. In this scenario, the critical ratio is

constant and equal to the ratio of minimum quotas (q
q

)i
min

j
min .

Most empirical studies, however, have demonstrated that µ 
does affect the critical ratio; there is a hyperbolic relation 
between the two variables (Terry 1980, Elrifi and Turpin 
1985, Terry et al. 1985). Therefore, empirical evidence rejects 
the assumption of equal theoretical maximum growth rates. 
This conclusion is not surprising given that the assumption 
of equal theoretical maximum growth rates is based neither 
on theoretical considerations nor on empirical data. 

In the next section, we develop a hypothesis that is bio-
logically more reasonable and describes maximum growth 
rates in a simple way. 

A more realistic hypothesis: equal realized  
maximum growth rates

The growth rate for infinitely large quotas of the limiting 
resource, m–, is never reached since cells have a finite retention 



Box 3

Derivation of the realized maximum growth rate:
Internal quota dynamics result from the balance between 
uptake and dilution by growth:
dq
dt

r q.= ( ) −ρ m

Uptake rate is generally a saturating function of the 
external resource, so that 
r(r)rmax

We use Droop’s equation for growth rate from Box 1  
to define the quota value qmax and a corresponding 
growth rate 

m mmax
min
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= −
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1
q
q  such that:

qmaxmmaxrmax.
Then, for any q . qmax, we have qm. qmaxmmaxrmax. 
r(r).
Consequently,
dq
dt

r q<0.= ( ) −ρ m

Thus, q decreases until it reaches, at most, the value of 
qmax. This proves that qmax and mmax act as upper boundar-
ies for q and m, respectively.

Box 4

Unicity of the upper boundary on growth rates for 
multiple-nutrient limitation:
Let us assume that there exist two nutrients i and j, 
among n available resources, such that m mi j

max max .≠
Then, let us first reorder nutrient indices such that 

the nutrient with the smallest mmax is labeled with the 
number 1 and so on: m m mi 2 n
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collecting all these inequalities together yields 
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On the other hand, we have by definition m1

max q1
max 5 

r1
max (Box 3).

So, mq1.r1
max.

Since r1(r1)r1
max, then r1(r1)r1

max, mq1.

Thus, we conclude that dq
dt

(r ) q 0.1
1 1 1  ,ρ m

Then, q1 will decrease until it becomes the limiting 
resource and m is, at most, equal to m1

max.
capacity for any given resource. However, the maximum value 
of the growth rate, µmax, and the corresponding maximum 
quota, qmax, do represent a biological reality (see definition in 
Box 3). We therefore refer to m– as the theoretical maximum 
growth rate and µmax as the realized maximum growth rate.

Contrary to m–, which is a fitting parameter that is biologi-
cally unfeasible, µmax has a clear biological interpretation. µmax 
is the growth rate achieved when the availability of the limit-
ing resource is very high. It is the resource uptake machin-
ery, not resource availability per se, that limits growth. The 
number of active enzymes involved in the uptake process 
generally sets the maximum resource uptake rate. This num-
ber, in turn, depends on the rates of transcription, transla-
tion, translocation and activation of the genes involved  
in the uptake pathway. Ultimately, these rates are controlled 
by the regulation of the complex network of genes involved in 
the cell machinery. Hence, µmax is the expression of the cell 
machinery as it reaches its production limit, and is unrelated 
to the availability of the various resources. Consequently, we 
hypothesize that µmax is equal for all nutrients:

mi
max 5 mj

max 5 .... 5 mn
max

In the following section we provide a formal justification 
for this intuitive hypothesis. 

Arguments for the equality of realized maximum 
growth rates

(1) Unicity of the realized maximum growth rate
In Box 4, we prove that, if µmax is different for some nutri-
ents, only the smallest µmax can ever be reached effectively 
and all other µmax are de facto theoretical values that are 
unfeasible. Our proof is a simple extension of the proof that 
µmax is an upper boundary for a single limiting resource 
(Box 3). It shows that µ should stay below the smallest µmax, 
which represents a unique upper boundary for the realized 
growth rates.

(2) Economical design to match functional demand
Since only m1

max, the smallest µmax, can ever effectively be 
reached, for a cell to maintain a µi

max . m1
max it must invest 

in the maximum uptake rate of resource i without any gain 
in terms of increased growth rate. We invoke a principle 
similar to the concept of symmorphosis used in animal 
physiology to argue against such a possibility: organ-
isms should be designed economically, so that structural 
design matches functional demand (Weibel et al. 1991). 
The principle of symmorphosis states that the functional  
limits of a structure – a tissue or part of a tissue – involved 
in a physiological function cannot exceed the maximum 
rate of this function. It is based on the assumption that  
the larger a structure, the costlier its maintenance for the 
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organism. It was developed mainly from a careful evaluation 
of the process of respiration in vertebrates. For example, it 
is found that total muscle mitochondrial volume and O2 
circulation capacity are proportional to the maximal rate 
of O2 consumption (Weibel et al. 1991). The scope and 
limitations of the symmorphosis principle still remain to be 
fully investigated, but it should prove more fruitful when 
applied to dominant physiological functions that involve a 
sequence of structures, like respiration and growth, which 
concerns us here. A corollary of this principle is that cells 
should decrease their investment in the uptake machinery 
of resources that yield higher realized maximum growth 
rates than the smallest of them, until all realized maximum 
growth rates are equal: mi

max 5 mj
max 5 .... 5 mn

max.

(3) Empirical evidence from luxury uptake
Luxury uptake is the uptake of a non-limiting resource 
above the level required for growth. At a given growth rate, 
it can be described quantitatively by the ratio of the quota 
of the resource when it is not limiting to the quota when it 
is limiting:
R q
q
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If realized maximum growth rates are equal, all resources 

are limiting when µ ≈ µmax. Consequently, there should be no 
luxury uptake at this realized maximum growth rate, and R≈1 
for all resources. Most experiments that measure resource 
quotas at growth rates close to the realized maximum growth 
rate show no evidence of luxury uptake (Goldman et al. 
1979, Elrifi and Turpin 1985), thus providing circumstan-
tial empirical evidence for the assumption of equal realized 
maximum growth rates. Figure 3 and 6 in Elrifi and Turpin 
(1985) and Fig. 3 in Egli (1991) provide striking examples 
of luxury uptake declining with the dilution rate until it 
vanishes at µmax for a phytoplankton species and a bacte-
rial strain, respectively. More generally, it is widely known 
that the elemental and biochemical composition of organ-
isms is more constrained at high than at low growth rates  
(Herbert 1976, Vrede et al. 2004). This suggests that the 
uptake machineries of many resources reach their maximum 
ability simultaneously when growth rates approach their 
realized maximum, as assumed by the hypothesis of equal 
realized maximum growth rates for all resources.

Discussion

Several authors have argued against the validity of the 
assumption of equal theoretical maximum growth rates 
when applying Droop’s model to the growth of an organism 
with multiple potential limiting resources (Terry et al. 1985, 
Turpin 1986). Terry et al. (1985) showed that only when 
the ratios of the minimum to the maximum internal quotas 
(qmin/qmax) are equal for all nutrients can this equality hold. 
Both empirical data and theoretical considerations argue 
against the equality of the minimum-to-maximum quota 
ratios as a rule (Ågren 2004, Goldman and Mccarthy 1978). 
The assumption of equal theoretical maximum growth 
rates, however, is still commonly made. The reasons for its 
900
continuing use probably differ from one study to the other. 
However, they probably fall into two main categories:

1)	 A confusion between the theoretical and realized 
maximum growth rates. It is an unfortunate turn of 
events that the species chosen by Droop for his sem-
inal study (Droop 1973) had similar minimum-to- 
maximum internal quotas for the two resources 
chosen, i.e. around 3.5 for phosphorus and 4.5 
for silicon, yielding similar theoretical maximum 
growth rates for the two resources (Droop 1974, 
2003, Table 1). Based on these results, Droop him-
self did not clearly make the difference between 
the theoretical maximum growth rate of his model 
and the realized maximum growth rate that can 
be measured in chemostats or batch cultures. It 
is only after Burmaster (1979) established math-
ematically the equivalence between Monod’s and 
Droop’s models at steady state that Droop (1983) 
declared that “the difference is important and the 
two parameters should not be confused”. He even 
showed how the confusion between the two param-
eters could weaken the predictive value of his model 
(Droop 2003).

2)	 A search for mathematical and theoretical convenience. 
Many authors choose to use a unique, common 
theoretical maximum growth rates for all resources 
because it results in simpler calculations and deriva-
tions (Legovic and Cruzado 1997). They are prob-
ably encouraged to do so because few papers have 
investigated the consequences of this simplification 
on model predictions (but see Elrifi and Turpin 
1985, Turpin 1986). Most of the other mechanis-
tic investigations of Droop’s model either ignore the 
multiplicity of potential limiting resources (Kooi 
and Kooijman 1994, Lemesle and Mailleret 2008) 
or are mainly interested in the study of the relation 
between non-limiting internal quotas and growth 
rate (Zonneveld 1996, Flynn 2008a, 2008b). They 
do not address the specific issue of the relation 
between maximum growth rates under multiple-
nutrient limitation.

Thus, the assumption of equal theoretical maximum 
growth rates is often made out of convenience or confusion 
and does not bear any biological significance. In some cases, 
it can even lead to an inaccurate biological interpretation of 
important growth parameters. For example, this assumption 
yields critical ratios that are independent of the growth rate 
and equal to the ratios of minimum quotas. Consequently, 
some authors have over-interpreted the ecological and evo-
lutionary significance of minimum quotas and their ratios 
(Rhee and Gotham 1980, Klausmeier et al. 2008): if critical 
ratios vary with growth rates, minimum quotas do not rep-
resent the resources used in structures and machinery and 
their ratios are not optimal under all growth conditions, as 
is often assumed.

This inappropriate assumption is particularly likely 
to generate problems in models of complex interactions 
between multiple species. Droop’s equations are increas-
ingly used to model competition (Grover 1991, Hall et al.  



2008, Revilla and Weissing 2008) and trophic interactions 
(Andersen 1997, Mongin et al. 2003, Kuang et al. 2004). 
In such models, errors in the predicted growth, limitation 
and composition of single populations can propagate to 
affect the dynamics of other populations, which may result 
in faulty predictions at higher levels. For example, Turpin 
(1986) demonstrated that the coexistence of competing  
species critically depends on the order of the theoretical 
maximum growth rates of the limiting resources. Predictions 
about food web structure and resource fluxes from ecosys-
tem models based on Droop’s equations are also likely to be 
affected by this simplifying assumption.

Nonetheless, we recognize the need for simple equa-
tions that provide a realistic representation of upper limits 
on growth rate. For this purpose, we used theoretical and 
empirical evidence to propose a derivation of Droop’s equa-
tions that assumes that the realized maximum growth rates, 
instead of the theoretical maximum growth rates, are equal. 
Experimental manipulations of phytoplankton growth show 
little or no luxury uptake of resources at the highest growth 
rates (Droop 1974, Goldman and Peavey 1979, Elrifi and 
Turpin 1985), therefore supporting the hypothesis of equal 
realized maximum growth rates. We also used an evolution-
ary argument based on economical design similar to the 
symmorphosis principle (Weibel et al.1991) to argue that 
the maximum capacity of the uptake machinery should not 
be oversized for a given resource. These arguments advocate 
for the inclusion of equal realized maximum growth rates 
in the standard set of equations describing Droop’s model 
under multiple-nutrient limitation.

Consequences for competition

Our assumption of equal realized maximum growth rates 
can provide new insights into the coexistence of competing 
species. Under this assumption, the R* values of the various 
resources are proportional, so that all co-limitation points in 
the resource plane fall on a straight line as the growth rate 
changes (see Box 5 and Tilman 1980 for an introduction to 
R* values, resource planes and resource competition theory 
in general). Thus, this hypothesis leads to a stronger con-
straint on species’ resource use and competitive ability (com-
Box 5

Effect of equal realized maximum growth rates  
on R* values:
At equilibrium, Droop’s model with Michaelis-Menten 
uptake can be rewritten as:

m m m
m


Min[ r

K r
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q
Ki
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i i
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i
max i

Ki: half-saturation constant for resource i uptake rate.
Let us define Ri

* as the external concentration of the lim-
iting resource i at equilibrium:

R Ki i
i
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i
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* m m
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If we assume that m i
maxmj

max...mmax, it is straightfor-
ward to show that: Ri

*: Rj
*Ki

*: Kj
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pare (A) and (B) in Fig. 1). For example, the measurement of 
Monod’s half saturation constants for the various resources 
is sufficient to predict the exact position of the co-limitation 
points of a given species (Fig. 1A). Overall, fewer parameters 
may be required to predict the outcome of competition for 
limiting resources.

Figure 1 shows that the patterns of co-limitation differ 
between models that assume equal theoretical maximum 
growth rates and our model that assumes equal realized 
maximum growth rates. But are these differences significant 
enough to worry about them? To answer this question, we 
compared the predictions of the two types of models in the 
case of two species competing for two essential resources. 
We used the same set of parameter values to estimate either 
the theoretical or the realized maximum growth rates in 
the two models (see Appendix 1 for details). In agreement 
with Fig. 1, our version of the model results in straight co-
limitation lines for the two species (Fig. 2A). The two lines 
start from the origin of the resource plane, but do not cross 
elsewhere. In the version of the model with equal theoreti-
cal maximum growth rates, the two co-limitation lines are 
curvilinear (Fig. 2B). We chose the parameter values so 
that these lines intersect in the positive quadrant. Numeri-
cal simulations show that these two different configurations 
result in a significant difference in the outcome of competi-
tion between the two species. In our model version, species 
1 excludes the other species for all values of the dilution rate 
D below the washout rate (Fig. 2C). In the second version, 
however, there is a dilution rate above which the outcome of 
competition is reversed, i.e. species 2 competitively excludes 
species 1 (Fig. 2D). Below this threshold dilution rate, the 
equilibrium densities of the two species are very similar to 
those of our model version. This observation highlights the 
fact that a small difference between two models in part of 
the parameter space does not preclude significant differences 
in another part. Since the same set of source parameters 
were used for both models, this example shows that a slight 
change in the assumptions underlying the estimation of 
derived parameters can lead to drastic change in the outcome 
of a model. Admittedly, we chose the source parameters to 
highlight the difference between the two models. But our  
objective here is simply to show that our new assumption  
of equal realized maximum growth rates can indeed result 
Figure 1. Growth isoclines (plain lines) as a function of growth 
rate µ. In (A), mi

max 5 mj
max; co-limitation points are located on a 

straight line (dashed line) that includes the point (Ki
m, Kj

m). In (B) 
mi

max  mj
max; co-limitation points are on a curved line that cannot 

be determined precisely without knowing the exact values of both 
mi

max and mj
max.
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in predictions that are significantly different from the usual 
assumption of equal theoretical maximum growth rates.

Alternative formulations to Droop’s model

From the very first attempts to fit Droop’s model to empiri-
cal data, it became clear that the Michaelis–Menten func-
tion was not sufficient to adequately describe the uptake  
of resources by organisms (Droop 1974, Tilman and  
Kilham 1976). In particular, it was found early on that  
the maximum uptake rate of a nutrient is a function of 
its internal quota (Rhee 1973). Since then, numerous 
alternative formulations to the Michaelis–Menten func-
tion have been used to describe uptake rates (Morel 1987, 
Thingstad 1987, Aksnes and Egge 1991, Klausmeier et al. 
2007, Smith et al. 2009). Can these alternative formula-
tions affect our proofs and arguments? To answer this 
question, we studied two of the most common uptake 
rate formulations that include effects from internal quo-
tas, i.e. Morel’s (Morel 1987) and Thingstad’s (Thingstad 
1987). We checked that our proof of the unicity of the 
realized maximum growth rate (Box 4) still holds under 
these alternative formulations (Appendix 2). Our argu-
ments based on economical design and empirical evidence 
for the decrease in luxury uptake with the growth rate do 
not depend on the precise formulation of the uptake rate. 
We found that the smallest realized maximum growth 
rate is also a unique upper boundary on realized growth 
rates when Morel’s or Thingstad’s formulations are used  
902
for uptake rates (Appendix 2). More generally, a closer look 
at the logical steps of the proofs in Box 4 and Appendix 2 
indicates that only three conditions are required to show 
that the smallest of all realized maximum growth rates 
serves as a unique upper boundary for the growth rate 
under multiple-nutrient limitation:

(1)	� The uptake rates must be bounded (in mathemati-
cal terms, there exists ri

max
 such that r(ri)  ri

max , 
for all resources ri).

(2)	� There must be a one-to-one positive relation 
between the growth rate and the limiting nutri-
ent internal quota (a condition fulfilled by Droop’s 

	 equation m  m (1 q
q

min
)) .

(3)	� The resources should be essential (in particular, their 
effects on growth rate should not be additive).

These three conditions are likely to be met by most, if not all, 
of the models that realistically describe growth as affected by 
multiple essential, non-substitutable resources.

Empirical relevance of our model

Numerous empirical measurements confirm, or at least  
do not contradict our assumption of equal realized maxi-
mum growth rates. Droop (Droop 1974) measured the 
growth limitation of the phytoplankton species Pavlova 
Figure 2. A chemostat model of two species (X1 and X2) competing for two resources (r1 and r2). (A) and (B) show the co-limitation point 
in the resource plane as a function of the dilution rate D. (C) and (D) show the equilibrium densities of the two species as a function of the 
dilution rate D for the two species. In (A) and (C), it is assumed that the realized maximum growth rates are equal for the two species. In 
(B) and (D), it is assumed that the theoretical maximum growth rates are equal. Species 1 is in black and species 2 in grey.



(Monochrysis) lutheri by phosphorus and vitamin B12. He 
found that the realized maximum growth rates for the 
two resources were reasonably close to each other (Droop 
2003, Table 1). Panikov and Pirt (1978) found very similar  
realized maximum growth rates, around 0.2 day–1, for  
Chlorella vulgaris limited by either N or P. Ahlgren (1985) 
used the cyanobacteria Oscillatoria (Planktothrix) agardhii 
and nitrogen and phosphorus as resources. His estimates of 
the two realized maximum growth rates were also reason-
ably similar (Droop 2003, Table1). Elrifi and Turpin’s (1985) 
work on Selenastrum minutum yielded almost identical real-
ized maximum growth rates for the two limiting resources 
phosphorus and nitrogen. Borchardt (1994) found similar 
maximum photosynthetic rates (around 100 mg O2 g1 
dry weight–1 h–1) for Spirogyra fluviatilis grown under either 
nitrogen or phosphorus limitation. The realized maximum 
growth rates of two Ceratium species grown with either 
nitrate or phosphorus limitation were also very close (Baek 
et al. 2008).

There are, however, a few significant exceptions to this 
rule. Tilman and Kilham (1976) measured the growth rates of 
two diatom species under phosphorus and silicon limitation. 
The results for the first species, Asterionella formosa, were in 
line with our model of equal realized maximum growth rates, 
with a unique value around 0.9 day–1. However, the second 
species, Cyclotella meneghiniana, had a realized maximum 
growth rate around 0.8 day-1 under phosphorus limitation 
and 1.3 day–1 under silicon limitation. More than twenty 
years later, for the same species Cyclotella meneghiniana, but 
at a different temperature, Shafik et al. (1997) found realized 
maximum growth rates of 1.6 day–1 and 0.95 day–1 for phos-
phorus- and silicon-limited growth, respectively. A summary 
table of realized maximum growth rates in Tilman et al. (1982, 
Table 1) shows that other diatom species present the same pat-
tern of different realized maximum growth rates between P  
and Si-limited growths measured in the same conditions. 
These results seem to contradict not only our proposed 
model of equal realized maximum growth rates but also most 
of the common, simple models of growth under multiple-
nutrient limitation. This suggests that diatoms might require 
more complicated models. Silicon differ from other essential 
resources because its metabolic pool in cells is very low. In 
fact, it is mainly needed as a structural component and can 
be reclaimed from frustula if needed (Davis et al. 1978). 

Our assumption of equal realized maximum growth rates 
is appropriate for essential, non-substitutable resources. We 
do not expect this assumption to hold for non-essential, 
substitutable resources. Two substitutable resources are not 
necessarily equally efficient nutritionally (e.g. two organic 
carbon substrates with very different oxidative levels); they 
do not necessarily follow the same metabolic pathways to 
assimilation and may thus incur different metabolic costs for 
the organism ingesting them (e.g. phosphate and dissolved 
organic phosphorus that require the production of phos-
phatases). Hence, they are likely to result in different realized 
maximum growth rates. For example, the work of DeNobel  
et al. (1997) shows that the realized maximum growth  
rate of Aphanizomenon flos-aquae is much smaller when this 
species has to fix N2 instead of taking up ammonium to meet 
its nitrogen requirements.
Our second argument for the equality of realized maxi-
mum growth rates relies on the evolutionary optimization of 
relative investments in the uptake machineries of different  
resources. Evolutionary optimization is a process that  
normally occurs on evolutionary timescales, much longer 
than the population timescale of the species. Therefore, we 
do not expect the realized maximum growth rates to be 
equal if a species is confronted with a new or unfamiliar 
substrate, or if growth conditions are very different from 
the conditions under which the species evolved beforehand. 
As a side note, providing a species with a new substrate  
and monitoring the changes in the uptake and growth 
parameters of the other essential resources could be a way 
to test our theory.

Finally, many microorganisms live in highly variable and 
complex environments. The optimization of their growth 
and resource uptake may not necessarily be key to their 
success. If the maintenance of an oversized uptake machin-
ery for a resource helps them to better survive some harsh  
selective condition (e.g. freezing or dessication), then a  
difference in their realized maximum growth rates could 
be selected for.

In conclusion, we presented theoretical and empirical 
evidence that the assumption of equal theoretical maximum 
growth rates in Droop’s model under multiple resource 
limitation is inadequate, and that the assumption of equal 
realized maximum growth rates is a promising alternative. 
Our new assumption would result in a more correct and 
biologically realistic application of Droop’s equations to 
model multiple-nutrient limited growth and avoid some 
conceptual pitfalls that arise from assuming equal theoreti-
cal maximum growth rates. Even though there most proba-
bly exist cases where our assumption is not valid, our model 
should provide a useful conceptual framework to under-
stand the mechanisms responsible for this departure from 
economical design, and as a starting point to investigate 
the seemingly vast diversity of growth and uptake patterns 
that are found in organisms that live on the same essential, 
elementary resources.
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Appendix 1

Alternate two-species competition models for two 
essential resources, with equal theoretical maximum 
growth rates or equal realized maximum growth 
rates

The two models are similar for the most part. They differ 
only in the method used to estimate the derived parameters:

Differential equations

Species 1:
ρ ρij ij
j

j ij

r
r K

=
+

max
Species 2:
m ρ
ρ
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12
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.. , .24 1 112K =

m ρ
ρ

22 22 22 22 21

12

1 1 1 2 28 2 45 1 95
2

= = = = =
=

, . , . , . , . ,min max min

max

q K q
.. , .09 0 2621K =

s1 5 10, s2 5 4

m m m
ρ
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Xi: density of species i; µi: growth rate of species i; qij: species 
i internal quota of resource j; D: dilution rate of the chemo-
stat; rij: uptake rate of resource j by species i; rj: external 
concentration of resource j. 
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Resource 2:
sj: concentration of resource j in supply.

Functions

Growth rate:
qij
min : species i minimum quota of resource j; m ij : species i 

theoretical maximum growth rate on resource j.

Uptake rate:
ρij
max : species i maximum uptake rate of resource j; Kij: spe-

cies i half-saturation constant for resource j.

Parameters

Source parameters:
Species 1:
Species 2:
Resources:
Derived parameters:
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Numerical simulations:

Initial conditions:
X1(0) 5 2, q11(0) 5 2.75, q12(0) 5 3, X2(0) 5 2, q21(0)

	5 3.75, q22(0) 5 2.75, r1(0) 5 2, r2(0) 5 2

Numerical integration:
Simulations of the two versions of the model (shown in  
Fig. 2) were run using the simulation software Berkeley 
Madonna (ver. 8.3.22) using a Runge-Kutta 4 method with 
a time step of 0.05.

Appendix 2

Droop models with alternative formulations  
for the uptake rate

Equations for the growth rate, population and internal quota 
dynamics are not different from the equations presented in 
Box 2:

dX
dt

m X m −( )

m m m m  Min
q
qi i i
i
min

i

[ ] 



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; 1

dq
dt

r qi
i i i ρ m( )
X: population density; µ: growth rate; m: mortality rate; µi: 
potential growth rate if resource i were limiting; qi: resource  
i internal quota; qi

min : resource i minimum quota; m– i: theo-
retical maximum growth rate for resource i; ρi: specific uptake 
rate of resource i; ri: resource i external concentration.

The difference resides in the formulation of the uptake 
rate function ρi.

Morel’s function (Morel 1987)

In this model, the maximum uptake rate ρi
max  is a linearly 

decreasing function of the internal quota qi. Thus, it varies 
906
between an upper boundary ρi
highmax,  (when qi 5 qi

min) and a 
lower boundary ρi

lowmax,  (when qi 5 qi
max) in such a fashion:
Using this formulation, we aim to prove that, if some 
resources have different m i

max, only the smallest m i
max

 can ever 
effectively be reached and all the other m i

max s are de facto 
theoretical values that are unfeasible:

Let us first reorder the resource indices such that the 
resource with the smallest m i

max  is labeled with the number 
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If there exists a time t in the dynamics of the popula-
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 (if resource 1 is not the limiting resource). 
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inequalities together:
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more simply q q1 1. max.

Since both m m. 1
max and q q1 1. max , then m mq q1 1 1. max max .

On the other hand, we have m ρ1 1 1
max max max,q low  (See Morel 

1987 for an explanation).
So, m ρq low

1 1. max, .
Now, because of the negative linear monotonic relation 
between the maximum uptake rate ρi

max  and the internal 
quota q , q qi 1 1. max  means that ρ ρi

lowmax max, ., 1  Obviously, 
we also have ρ ρ1 r1 1( )  max .
Thus, collecting these inequalities together yields:
ρ ρ m1 r q1 1 1( )  ,max

So, we conclude that 
dq
dt

r q 0.1
1ρ m( ) ,

Then, q1 will decrease until r1 becomes the limiting 
resource and µ is, at most, equal to m1

max .
Hence, given realistic initial conditions (i.e. m m, 1

max .), m 
should stay below m1

max , and m1
max  represents a unique upper 

boundary for the realized growth rate.

Thingstad’s function (Thingstad 1987)

ρ ρi i i
high i

max
i

i
max

i
min

i

i i

r
q q

q q
r

r K
( ) 








 
max,

In fact, this formulation is simply a special case of Morel’s 
function in which ρi

lowmax, . 0
Although it is only a special case of Morel’s, the demon
stration of the unicity of the upper boundary for  
growth rates is slightly different from the previous  
demonstration:
The main difference lies in that at q qi i

max
i , .maxρ 0  

There is thus no uptake possible at qi
max .  Then, qi

max  and its  
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associated growth rate m i
max  become theoretical, non-

reachable values, similarly to m i .
There still exists an upper boundary on growth rates limited 
by a resource that can be found by setting ρ mi i iqmax .

By replacing ρi
max  with its expression ρi

high i i

i i

q q
q q

max,
max

max min




 and 

mi with its expression m mi i
i

i

q
q

 1
min





 and solving for the 

equation, one gets explicit expressions for these boundary 
parameters:
Once these new boundary parameters are defined, the same 
demonstration as with Morel’s function can be made, but 
using   qi

max
i i, ,max maxm ρ  instead of qi

max
i, maxm  and ρi

max,low .
907


