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A three-species food chain model is proposed with dynamically variable adaptive traits in
the intermediate consumer. We prove that its solutions are non-negative and bounded, and
we analyze the existence and stability of its equilibria. By applying Li and Muldowney’s [Li
MY, Muldowney J. On Bendixson’s criterion. J Differ Equ 1993;106:27–39] high-dimen-
sional Bendixson criterion, we show that the positive equilibrium is globally stable under
specific conditions. We support our analytical findings with numerical simulations.
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1. Introduction

Ecologists and mathematicians have often used food chains to describe the feeding relationships between species within
ecosystems (see [1–5,21,22,24]). The simplest and most classical food chain model is the two-dimensional predator-prey
Lotka–Volterra model, which was first introduced by the famous Italian mathematician Vito Volterra [1]. Recently there
has been considerable interest in predator-prey models, especially for systems of three-species (see [3,6,7,21–23]). Among
them is the resource-prey-predator model with a self-limiting term in the resource:
dx
dt
¼ x r 1� x

K

� �
� ay

h i
;

dy
dt
¼ yðc1ax� bz� d1Þ;

dz
dt
¼ zðc2by� d2Þ;

ð1:1Þ
where xðtÞ; yðtÞ and zðtÞ represent, respectively, the resource population, the prey population, and the predator population as
functions of time. The positive parameters r;K; a; b; c1; c2; d1 and d2 are interpreted as follows:

� r represents the intrinsic rate of natural increase of the resource in the absence of consumers;
� K represents its carrying capacity;
� a represents the consumption rate of the prey on the resource;
� b represents the predation rate of the predator on the prey;
� c1 represents the conversion efficiency of consumed resource into new prey;
� c2 represents the conversion efficiency of consumed prey into new predators;
� d1 represents the natural death rate of the prey;
� d2 represents the natural death rate of the predator.
. All rights reserved.
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Model (1.1) is based on the traditional assumption that all species interact with each other simply via changes in
population density. Such interactions are called density-mediated interactions. Mathematicians have already given a
comprehensive analysis of its local and global properties, including the existence, local stability and global stability of
its critical points, and the boundedness of the system (see [8,24]). But in recent years, biologists have showed theoret-
ically and empirically that in natural systems preys often display anti-predator responses, i.e., they alter their foraging
behavior on resources to reduce predation risk (for example, seeking refuge or becoming vigilant at the expense of feed-
ing). Altered foraging can result in an increased risk of starvation, and hence in a reduction in prey density (see [9,16,17]
and the references therein). These indirect effects of changes in species traits are called trait-mediated indirect effects.
Trait-mediated indirect effects have been shown to profoundly alter the dynamics of all trophic levels in food webs (see
[18]).

2. The model establishment

Based on the biological information we provided in the introduction, we assume that the two consumption rates a
and b are adaptive traits in model (1.1). These two traits are positively related to each other, such that prey increases
resource consumption (greater a) at the expense of a higher predation risk by carnivores (greater b), which implies
that herbivores can be caught more easily by carnivores when they are actively searching for and consuming food.
Here we assume that b ¼ ba2ðb > 0Þ, where the constant b measures the predation risk incurred by an individual prey
per unit foraging time per unit density of the predator. This simple relationship arises from the fact that the two pre-
dation rates are proportional to the amount of time that herbivores spend foraging, which implies that the herbivore
can only be caught by its predator when it is actively searching for food. Therefore we only need to model the dynam-
ics of a since the dynamics of b can be known through a due to the assumption b ¼ ba2. Applying Abrams’ [19] meth-
od and differentiating the fitness of species y with respect to the trait a, we obtain the following dynamical equation
for trait a:
da
dt
¼ nðc1x� 2bazÞ; ð2:1Þ
where the parameter n scales the rate at which the adaptive trait changes. Incorporating Eq. (2.1) into model (1.1), we obtain
model (2.2), which describes a food chain with a non-instantaneous dynamic trait. Dynamic traits are common in the eco-
evolutionary dynamics of community and ecosystems [20].
dx
dt
¼ x r 1� x

K

� �
� ay

h i
;

dy
dt
¼ yðc1ax� ba2z� d1Þ;

dz
dt
¼ zðc2ba2y� d2Þ;

da
dt
¼ nðc1x� 2bazÞ:

ð2:2Þ
The rest of our paper is organized as follows. In Section 3, we analyze the equilibria and their stability using a linear anal-
ysis; we also study the non-negativity and boundedness of model (2.2) with a non-instantaneous dynamic trait. In Section 4,
we study the global stability of model (2.2) using the high-dimensional Bendixson criterion.

3. Basic analysis results

Model (2.2) always has a positive equilibrium. The positive a-axis of (2.2) is an invariant singular line (each point
E0ð0;0;0; âÞ on the positive a- axis is an equilibrium of model (2.2)). A variational matrix analysis at the boundary equilib-
rium E0 shows that E0, is a saddle, and hence is always unstable. Thus, the singular line of model (2.2) is a repellor, and model
(2.2) is a uniformly persistent system.

Lemma 3.1. All solutions ðxðtÞ; yðtÞ; zðtÞ; aðtÞÞ of model (2.2) with initial value ðx0; y0; z0; a0Þ 2 R4;0
þ are non-negative.

The non-negativity of xðtÞ; yðtÞ and zðtÞ can be verified by the equations
xðtÞ ¼ x0 exp
Z t

0
r 1� xðsÞ

K

� �
� aðsÞyðsÞ

� �
ds

� 	
;

yðtÞ ¼ y0 exp
Z t

0
½c1aðsÞxðsÞ � ba2ðsÞzðsÞ � d1�ds

� 	
;

zðtÞ ¼ z0 exp
Z t

0
½c2ba2ðtÞyðtÞ � d2�ds

� 	
;

ð3:1Þ
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with x0; y0; z0 P 0. The non-negativity of aðtÞ can be easily deduced from the fourth equation of model (2.2). Also, if
xð0Þ ¼ x0 > 0, then xðtÞ > 0 for all t > 0. The same argument is valid for components yðtÞ; zðtÞ and aðtÞ. Hence, R4;0

þ , the interior
of R4

þ, is an invariant set for model (2.2). And the planes x–y, x–z and x–z are also invariant. Our next task is to study the
boundedness of the solutions of model (2.2).

To simplify the calculations, we apply the following transformations to model (2.2):
x! x
K
; y! c1Ky; z! bz; a! a

c1K
:

Model (2.2) then becomes
dx
dt
¼ x½rð1� xÞ � ay�;

dy
dt
¼ yðmax�ma2z� d1Þ;

dz
dt
¼ zðna2y� d2Þ;

da
dt
¼ nðx� 2azÞ;

ð3:2Þ
where the number of parameters is reduced from eight to six and the two non-dimensional parameters m and n can be de-
fined in terms of the original parameters:
m ¼ c2
1K2; n ¼ c1c2bK:
Due to the uniform persistence of model (3.2), there exists a time T such that xðtÞ; yðtÞ; zðtÞ; aðtÞ > ~cð0 < ~c < 1Þ for
t > T. From the first equation of model (3.2) and considering the non-negativity of components y and a, we have
dx=dt 6 rxð1� xÞ. The usual comparison theory [10] tells us that xðtÞ 6 1 as t !1. Denote S1 ¼ mnxþ nyþmz. Assum-
ing d1 6 d2,
dS1

dt
¼ �mnd1x� d1ny� d2mzþmnrx�mnrx2 þmnd1x 6 �d1S1 þmn½ðr þ d1Þx� rx2� 6 �d1S1 þ b1;
where
b1 ¼
mnðrþd1Þ2

4r ; if d1 < r;

mnd1; if d1 P r:

(
ð3:3Þ
Note that the values of d1 and d2 do not affect the boundedness of x; y and z. From the inequality above, we have
S1 6 S1ð0Þ expð�d1tÞ þ b1ð1� expð�d1tÞÞ
d1

:

Moreover, we have lim supt!1S1ðtÞ 6 b1=d1, which is independent of initial values and equivalent to
lim supt!1ðmnxðtÞ þ nyðtÞ þmzðtÞÞ 6 b1=d1. The variables x; y and z are thus ultimately bounded regardless of the value of
the dynamic trait a. Denote S2 ¼ xþ a. Then when t > T ,
dS2

dt
¼ rx� rx2 � axyþ nx� 2naz 6 rx� rx2 þ nxþ 2~cnx� 2~cnx� 2naz < �2~cnðxþ aÞ þ ðr þ nþ 2~cnÞx� rx2

6 �2~cnS2 þ b2;
where
b2 ¼
ðrþnþ2~cnÞ2

4r ; if nþ 2~cn < r;

nþ 2~cn; if nþ 2~cn P r:

(
ð3:4Þ
Define b3 ¼ 2~cn. From the inequality above, we conclude that
xðtÞ þ aðtÞ < ðx0 þ a0Þ expð�b3tÞ þ b2ð1� expð�b3tÞÞ
b3

:

Therefore, we have lim supt!1ðxðtÞ þ aðtÞÞ < b2=b3, which is also independent of initial values.

Lemma 3.2. All solutions initiating in R4;0
þ are bounded, with an ultimate bound.

In order to find the local stability of the positive equilibrium of model (3.2) we have to calculate the Jacobian matrix J at
this equilibrium. The positive equilibrium for model (3.2) is E�ðx�; y�; z�; a�Þ, where
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x� ¼ 2d1nr
d2mþ 2d1nr

; y� ¼ d2m2nr2

ðd2mþ 2d1nrÞ2
;

z� ¼ d1mn2r2

ðd2mþ 2d1nrÞ2
; a� ¼ d2mþ 2d1nr

mnr
:

The Jacobian matrix of (3.2) at E� is
J ¼

�rx� �a�x� 0 �x�y�

ma�y� 0 �ma�2y� y�ðmx� � 2ma�z�Þ
0 na�2z� 0 2d2z�

a�

n 0 �2na� �2nz�

0
BBB@

1
CCCA;
whose characteristic equation is
k4 þ Ak3 þ Bk2 þ Ckþ D ¼ 0; ð3:5Þ
where
A ¼ 2d1nr2

d2mþ 2d1nr
þ 2d1mn2r2n

ðd2mþ 2d1nrÞ2
;

B ¼ 2d1d2mr
d2mþ 2d1nr

þ 2d1mn2r2nð2d2 þ rÞ
ðd2mþ 2d1nrÞ2

;

C ¼ 2d2
1d2nr2

d2mþ 2d1nr
þ 2d1d2mn2r2n

ðd2mþ 2d1nrÞ2
þ 4d2

1d2mn2r3nðmþ 2nrÞ
ðd2mþ 2d1nrÞ3

;

D ¼ 2d2
1d2mn2r3n

ðd2mþ 2d1nrÞ2
:

Notice that zero is not the root of (3.5). From the Routh–Hurwitz criteria [11], all the real parts of roots for (3.5) are neg-
ative if and only if
ABC � A2D > C2; ð3:6Þ
which is equivalent to
16d4
1d2n4r4 þ 8d3

1d2mn3r3ð4d2 þ nnÞ þ 4d2
1d2mn2r2½6md2

2 þ 3mnd2n

þ 2nrnðmþ 2nr þ n2nÞ� þ 2d1mnr½4d4
2m2 þ 3d3

2m2nnþ 2d2mn4rn3

2n3r3ðmþ 2nrÞn2 þ 4d2
2mnrðmþ 2nr þ n2nÞn� þm2½d5

2m2 þ d4
2m2nn

þ 2d2
2mn4rn3 þ 2n4r3ðmþ 2nrÞn3 þ 2d2n3r2ðmþ 2nrÞðr þ 2nnÞn2

þ 2d3
2mnrðmþ 2nr þ n2nÞn� > 0:

ð3:7Þ
Inequality (3.6) or (3.7) always holds for any positive parameters in (3.2), and thus the positive equilibrium E� is locally
stable.
4. Analysis of global stability

When the positive equilibrium E� is locally asymptotically stable, it is of interest to know its basin of attraction. In par-
ticular, we would like to know if its basin of attraction includes all the points in the feasible region, namely, if E� is globally
asymptotically stable. The difficulty associated with this problem is largely due to the lack of practical tools. The method of
Lyapunov functions is most commonly applied (see [10]). However, its application is often hindered by the fact that global
Lyapunov functions are difficult to construct and there is no general approach to construct them. Another method to prove
global stability is to use the higher Poincare–Bendixon theory (see [12]). This approach depends crucially on the fact that the
system studied is competitive. But model (2.2) or (3.2) is not a competitive system. Therefore, to investigate the global sta-
bility of the positive equilibrium E�, we now apply the high-dimensional Bendixson criterion of Li and Muldowney [13],
which we briefly summarize next.

Let D � Rn be an open set and function F : X#FðXÞ 2 Rn be C1 for X 2 D. Consider the differential equation
dX
dt
¼ FðXÞ: ð4:1Þ
As shown in [13], to derive a high-dimensional Bendixson criterion, it is sufficient to show that the second compound
equation
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dZ
dt
¼ @F ½2�

@X
ðXðt;X0ÞÞZðtÞ ð4:2Þ
with respect to a solution Xðt;X0Þ 2 D of system (4.1) is equi-uniformly asymptotically stable, namely, for each X0 2 D, sys-
tem (4.2) is uniformly asymptotically stable, and the exponential decay rate is uniform for X0 in each compact subset of D,
where D � Rn is an open connected set. Here @F=@X ½2� is the second additive compound matrix of the Jacobian matrix @F=@X.

It is a n
2

� �
� n

2

� �
matrix, and thus (4.2) is a linear system of dimension n

2


 �
(see [14,15] for details).

For a general 4� 4 matrix
A ¼

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

0
BBB@

1
CCCA;
its second additive compound matrix A½2� is
A½2� ¼

a11 þ a22 a23 a24 �a13 �a14 0
a32 a11 þ a33 a34 a12 0 �a14

a42 a43 a11 þ a44 0 a12 a13

�a31 a21 0 a22 þ a33 a34 �a24

�a41 0 a21 a43 a22 þ a44 a23

0 �a41 a31 �a42 a32 a33 þ a44

0
BBBBBBBB@

1
CCCCCCCCA
: ð4:3Þ
The equi-uniform asymptotic stability of (4.2) implies the exponential decay of the surface area of any compact two-
dimensional surface in D. If D is simply connected, this excludes the existence of any invariant simple closed rectifiable curve
in D, including periodic orbits.

Proposition 4.1 [13]. Let D � Rn be a simply connected region. Assume that the family of linear systems (4.2) is equi-uniformly
asymptotically stable. Then

(a) D contains no simple closed invariant curves, including periodic orbits, homoclinic orbits, heteroclinic cycles;
(b) each semi-orbit in D converges to a single equilibrium.

In particular, if D is positively invariant and contains a unique equilibrium X, then X is globally asymptotically stable in D.

The required uniform asymptotic stability of the family of linear systems (4.2) can be proved by constructing
a suitable Lyapunov function. For instance, (4.2) is equi-uniformly asymptotically stable if there exists a positive
definite function VðZÞ, such that dVðZÞ=dtjð4:2Þ is negative definite, and V and dV=dtjð4:2Þ are both independent of
X0.

In order to prove the global stability of the positive equilibrium in model (2.2) or (3.2), we first make the following
assumption.

(H) There exist positive numbers -; h; #;q and r such that
max c11 þ
c12-

h
þ c13-þ

c15-
q

;
c21h
- þ c22 þ c23hþ

c24h
#
þ c26h

r
;

c32

h
þ c33 þ

c35

q
;

c42#

h
þ c44 þ

c45#

q
þ c46#

r
;

�
c51q
- þ c53qþ

c54q
#
þ c55 þ

c56q
r

;
c62r

h
þ c65r

q
þ c66

	
< 0:
For model (3.2), denote X ¼ ðx; y; z; aÞT and
FðXÞ ¼ ðx½rð1� xÞ � ay�; yðmax�ma2z� d1Þ; zðna2y� d2Þ; nðx� 2azÞÞT :
We then have
@F
@X
¼

r � 2rx� ay �ax 0 �xy

may max�ma2z� d1 �ma2y mxy� 2mayz

0 na2z na2y� d2 2nayz

n 0 �2na �2nz

0
BBB@

1
CCCA;
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and we assume that
@F ½2�

@X
¼

b11 b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

b31 b32 b33 b34 b35 b36

b41 b42 b43 b44 b45 b46

b51 b52 b53 b54 b55 b56

b61 b62 b63 b64 b65 b66

0
BBBBBBBB@

1
CCCCCCCCA
:

By (4.3), we obtain that
b11 ¼ r � d1 � 2rx� ayþmax�ma2z; b12 ¼ �ma2y; b13 ¼ mxy� 2mayz; b14 ¼ 0;

b15 ¼ xy; b16 ¼ 0; b21 ¼ na2z; b22 ¼ r � d2 � 2rx� ayþ na2y; b23 ¼ 2nayz;
b24 ¼ �ax; b25 ¼ 0; b26 ¼ xy; b31 ¼ 0; b32 ¼ �2na; b33 ¼ r � 2rx� ay� 2nz;

b34 ¼ 0; b35 ¼ �ax; b36 ¼ 0; b41 ¼ 0; b42 ¼ may; b43 ¼ 0;

b44 ¼ �d1 � d2 þmax�ma2zþ na2y; b45 ¼ 2nayz; b46 ¼ �mxyþ 2mayz;

b51 ¼ �n; b52 ¼ 0; b53 ¼ may; b54 ¼ �2na; b55 ¼ �d1 þmax�ma2z� 2nz;

b56 ¼ �ma2y; b61 ¼ 0; b62 ¼ �n; b63 ¼ 0; b64 ¼ 0; b65 ¼ na2z; b66 ¼ �d2 þ na2y� 2nz:
The second compound system
_z1

_z2

_z3

_z4

_z5

_z6

0
BBBBBBBB@

1
CCCCCCCCA
¼ @F ½2�

@X

z1

z2

z3

z4

z5

z6

0
BBBBBBBB@

1
CCCCCCCCA
then becomes
_z1 ¼ ðr � d1 � 2rx� ayþmax�ma2zÞz1 �ma2yz2 þ ðmxy� 2mayzÞz3 þ xyz5;

_z2 ¼ na2zz1 þ ðr � d2 � 2rx� ayþ na2yÞz2 þ 2nayzz3 � axz4 þ xyz6;

_z3 ¼ �2naz2 þ ðr � 2rx� ay� 2nzÞz3 � axz5;

_z4 ¼ mayz2 þ ð�d1 � d2 þmax�ma2zþ na2yÞz4 þ 2nayzz5 þ ð�mxyþ 2mayzÞz6;

_z5 ¼ �nz1 þmayz3 � 2naz4 þ ð�d1 þmax�ma2z� 2nzÞz5 �ma2yz6;

_z6 ¼ �nz2 þ na2zz5 þ ð�d2 þ na2y� 2nzÞz6;

ð4:5Þ
where XðtÞ ¼ ðxðtÞ; yðtÞ; zðtÞ; aðtÞÞT is an arbitrary solution of model (3.2) with X0ðtÞ ¼ ðx0ðtÞ; y0ðtÞ; z0ðtÞ; a0ðtÞÞT 2 R4;0
þ . Set
WðZÞ ¼maxf-jz1j; hjz2j; jz3j; #jz4j;qjz5j;rjz6jg:
Direct calculations lead to the following inequalities:
dþ

dt
-jz1j 6 c11-jz1j þ

c12-
h

hjz2j þ c13-jz3j þ
c15-
q

qjz5j;

dþ

dt
hjz2j 6

c21h
- -jz1j þ c22hjz2j þ c23hjz3j þ

c24h
#

#jz4j þ
c26h
r

rjz6j;

dþ

dt
jz3j 6

c32

h
hjz2j þ c33jz3j þ

c35

q
qjz5j;

dþ

dt
#jz4j 6

c42#

h
hjz2j þ c44#jz4j þ

c45#

q
qjz5j þ

c46#

r
rjz6j;

dþ

dt
qjz5j 6

c51q
- -jz1j þ c53qjz3j þ

c54q
#

#jz4j þ c55qjz5j þ
c56q
r

rjz6j;

dþ

dt
rjz6j 6

c62r
h

hjz2j þ
c65r
q

qjz5j þ c66rjz6j;

ð4:6Þ
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in which dþ=dt denotes the right-hand derivative and
c11 ¼ r � d1 � 2r~c � ~c2 þmð1þ 2~cÞ2

16~c2 ; c12 ¼ �m~c3; c13 ¼
m2ðd1 þ rÞ2

4d1r
;

c15 ¼
mðd1 þ rÞ2

4d1r
; c21 ¼

n2ðd1 þ rÞ2ð1þ 2~cÞ4

45~c4d1r
; c22 ¼ r � d2 � 2r~c þmnðd1 þ rÞ2ð1þ 2~cÞ4

45~c4d1r
;

c23 ¼
mn2ðd1 þ rÞ4ð1þ 2~cÞ2

128~c2d2
1r2

; c24 ¼ �~c2; c26 ¼
mðd1 þ rÞ2

4d1r
; c32 ¼ �2n~c;

c33 ¼ r � 2r~c � 2n~c; c35 ¼ �~c2; c42 ¼
m2ðd1 þ rÞ2ð1þ 2~cÞ2

64~c2d1r
;

c44 ¼ �d1 � d2 þ
mð1þ 2~cÞ2

16~c2 þmnðd1 þ rÞ2ð1þ 2~cÞ4

45~c4d1r
; c45 ¼

mn2ðd1 þ rÞ4ð1þ 2~cÞ2

128~c2d2
1r2

;

c46 ¼ �m~c2 þm2nðd1 þ rÞ4ð1þ 2~cÞ2

128~c2d2
1r2

; c51 ¼ �n; c53 ¼
m2ðd1 þ rÞ2ð1þ 2~cÞ2

64~c2d1r
;

c54 ¼ �2n~c; c55 ¼ �d1 þ
mð1þ 2~cÞ2

16~c2 � 2n~c; c56 ¼ �m~c3; c62 ¼ �n;

c65 ¼
n2ðd1 þ rÞ2ð1þ 2~cÞ4

45~c4d1r
; c66 ¼ �d2 þ

mnðd1 þ rÞ2ð1þ 2~cÞ4

45~c4d1r
� 2n~c:

ð4:7Þ
Therefore,
dþ

dt
WðZðtÞÞ 6 wWðZðtÞÞ;
with
w ¼ max c11 þ
c12-

h
þ c13-þ

c15-
q

;
c21h
- þ c22 þ c23hþ

c24h
#
þ c26h

r
;

c32

h
þ c33 þ

c35

q
;

c42#

h
þ c44 þ

c45#

q
þ c46#

r
;

�
c51q
- þ c53qþ

c54q
#
þ c55 þ

c56q
r

;
c62r

h
þ c65r

q
þ c66

	
:

Thus, under hypothesis (H), and by the boundedness of solution of model (3.2), there exists a positive constant s such that
w 6 �s < 0, and thus
WðZðtÞÞ 6WðZðsÞÞ expð�sðt � sÞÞ; t P s > 0:
This establishes the equi-uniform asymptotic stability of the second compound system (4.5), and hence the positive equi-
librium E� of model (3.2) is globally stable following from Proposition 4.1. We summarize the above analysis in the following
theorem.
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Fig. 1. Numerical simulations of the dynamics of species x; y and z in model (2.2) or (3.2) showing global stability.
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Theorem 4.2. If hypothesis (H) is satisfied, then model (2.2) or (3.2) has no non-trivial periodic solutions. Furthermore, the
positive equilibrium E� is globally stable in R4;0

þ .

Based on the local stability analysis in Section 3 and Theorem 4.2, we next carry out numerical simulations of the dynam-
ics of species x; y and z (see Fig. 1) to illustrate its global stability through an example. We use the following parameter values
in the original model (2.2): r ¼ 2;K ¼ 4; c1 ¼ c2 ¼ b ¼ 1=2; d1 ¼ 1; d2 ¼ 5; n ¼ 14 (we also take ~c ¼ 1=4). From the non-dimen-
sional transformation in Section 3 we know that m ¼ 1; n ¼ 1=2. We also know that the positive equilibrium E� is locally sta-
ble from Section 3. We then substitute the above parameter values into (4.7), and obtain
c11 ¼ 2:1875; c12 ¼ �0:0156; c13 ¼ 1:1250; c15 ¼ 1:1250; c21 ¼ 1:4238; c22 ¼ �1:1524;
c23 ¼ 1:4238; c24 ¼ �0:0625; c26 ¼ 1:1250; c32 ¼ �8:1667; c33 ¼ �6:2500; c35 ¼ �0:0625;
c42 ¼ 2:5312; c44 ¼ �0:9024; c45 ¼ 1:4238; c46 ¼ 2:7851; c51 ¼ �14; c53 ¼ 2:5312;
c54 ¼ �7; c55 ¼ �5:75; c56 ¼ �0:0156; c62 ¼ �14; c65 ¼ 1:4238; c66 ¼ �9:1524:
The positive numbers - ¼ 1:0000; h ¼ 0:0030; # ¼ 0:0001;q ¼ 1:0000 and r ¼ 1:0000 are such that
maxf�1:8841;�1:1404;�2728:5458;�0:0583;�74669:9011;�4674:3953g < 0:
Therefore the positive equilibrium E� is globally stable (see Fig. 1).
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