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Abstract.—The branching patterns of molecular phylogenies are generally assumed to contain information on rates of
the underlying speciation and extinction processes. Simple birth–death models with constant, time-varying, or diversity-
dependent rates have been invoked to explain these patterns. They have one assumption in common: all lineages have the
same set of diversification rates at a given point in time. It seems likely, however, that there is variability in diversification
rates across subclades in a phylogenetic tree. This has inspired the construction of models that allow multiple rate regimes
across the phylogeny, with instantaneous shifts between these regimes. Several methods exist for calculating the likelihood
of a phylogeny under a specified mapping of diversification regimes and for performing inference on the most likely
diversification history that gave rise to a particular phylogenetic tree. Here, we show that the likelihood computation of
these methods is not correct. We provide a new framework to compute the likelihood correctly and show, with simulations of a
single shift, that the correct likelihood indeed leads to parameter estimates that are on average in much better agreement with
the generating parameters than the incorrect likelihood. Moreover, we show that our corrected likelihood can be extended to
multiple rate shifts in time-dependent and diversity-dependent models. We argue that identifying shifts in diversification
rates is a nontrivial model selection exercise where one has to choose whether shifts in now-extinct lineages are taken
into account or not. Hence, our framework also resolves the recent debate on such unobserved shifts. [Diversification;
macroevolution; phylogeny; speciation]

The literature abounds with examples of spectacular
radiations, where specific clades seem to have an
elevated diversification rate against a much slower
background rate of diversification (Liem 1973; Mitter
et al. 1988; Schluter 2000; Blount et al. 2008; Yoder et al.
2010). This phenomenon may occur due to increased
mutation rates (Hua and Bromham 2017) but may also
be caused by ecological opportunity (Simpson 1944,
1953; Wellborn and Langerhans 2015; Mahler et al. 2010
which may arise in three different ways: 1) antagonist
extinction; 2) availability of a new environment, either
due to dispersal to a new area or due to environmental
change driven; or 3) a key innovation that enables escape
from competition for niche space (Heard and Hauser
1995). The theoretical arena to study macroevolutionary
diversification is the framework of stochastic birth–
death models, where speciation is modeled as a birth
event and extinction as a death event. These birth–death
models allow for estimating speciation and extinction
rates from phylogenetic trees. Nee et al. (1994) provided
the mathematical tools to do so for the birth–death
model with constant or time-dependent speciation and
extinction rates. Their work has been the foundation
for biologically more complex models. One example
is the diversity-dependent birth–death model where
speciation and extinction rates are influenced by the
number of species in the same clade (Etienne et al. 2012).
Another set of examples are the trait-dependent birth–
death models, notably the State-dependent Speciation
and Extinction (SSE) models (e.g., BiSSE by Maddison
et al. (2007), QuaSSE by FitzJohn (2010), MuSSE by
FitzJohn (2012), HiSSE by Beaulieu and O’Meara (2016)

and SECSSE by Herrera-Alsina et al. (2018)). These
models allow for trait shifts over macroevolutionary time
and assign different diversification rate regimes to each
trait value.

Methods to detect clades with elevated diversification
rates without reference to traits or diversity have been
developed and are available in a number of software
programs. There are two types of approaches. The first
type maps the rate shifts on the tree and then asks
whether these rate shifts are statistically supported.
Implementations of this type include MEDUSA (Alfaro
et al. 2009), BAMM (Rabosky 2014), the Key Innovation
model in DDD (Etienne and Haegeman 2012), and the
split-SSE models in DIVERSITREE (FitzJohn 2010, 2012).
The second type does not map the shifts explicitly on
the phylogeny but assumes a multistate SSE model with
each state having its own speciation and extinction rates,
where the shifts in states (and hence in diversification
rates) are modeled dynamically. Implementations of
this type include the Lineage-Specific Birth–Death-Shift
(LSBDS) models in RevBayes (Hoehna et al. 2019),
the MultiState Birth–Death model (MSBD) in BEAST2
(Barido-Sottani et al. 2020), and ClaDS in RPANDA
(Maliet et al. 2019). LSBDS and MSBD assume that
lineages change to a different state along a branch,
while ClaDS assumes that the state shift occurs dur-
ing speciation. They are special cases of the SECSSE
(Herrera-Alsina et al. 2018) and MISSE (Caetano et al.
2018) frameworks—which combine features of MuSSE
(FitzJohn 2012), GeoSSE (Goldberg et al. 2011), ClaSSE
(Goldberg and Igic 2012) and HiSSE (Beaulieu and
O’Meara 2016)—applied to many concealed traits (and
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no examined traits). Here, we address implementations
of the first type, that is, with shifts in diversification rates
mapped on the phylogeny. These methods rely on the
same framework as the SSE models but without state-
dependence. We will refer to this framework as the D–E
framework with mapped rate shifts, from the names of
its core functions (D and E). However, here we show
that the D–E framework, while mathematically sound in
general (such as in applications to SSE models), cannot
be applied to models with mapped shifts in rates. We
demonstrate that it can lead to probabilities larger than
1. We propose a new, mathematically correct, analytical
likelihood formula based on the functions originally
introduced by Nee et al. (1994) for the constant-rate birth–
death model of diversification without rate shifts. Using
simulated data with a single shift, we show that our
new likelihood performs better in parameter estimation
than the incorrect likelihood. Furthermore, we extend
our mathematical reasoning to multiple shifts and time-
dependent and diversity-dependent models. Finally, we
show that model selection in this framework requires
making decisions on whether unobserved shifts (i.e.,
shifts on extinct lineages) are allowed or not.

METHODS

The D–E framework
The D–E framework uses two variables: D(t), the prob-

ability of observing the tipward part of the phylogeny at
a given lineage at a given time t in the phylogeny, and
E(t), the probability of a lineage alive at time t to have no
surviving descendants at the present. To compute the
likelihood of the entire phylogeny, one computes D(t)
and E(t) by integrating the following set of differential
equations, for every branch from tip to the first rootward
node:

Ḋ=−(�+�)D+2�DE (1)

Ė=�−(�+�)E+�E2 (2)

which has the following solution for initial conditions
D(0)=D0 and E(0)=E0,

D(t)=D0
(�−�)2e−(�−�)t

(�−�e−(�−�)t)2
(3)

E(t)= �−�e−(�−�)t

�−�e−(�−�)t
with �= �−�E0

1−E0
. (4)

At a node the two D(tnode)-values of the two daughter
branches are multiplied with one another and the
speciation rate to obtain the D(tnode) of the parent
branch. This value will then serve as the new initial
condition to further integrate the system back in time
to obtain D(t) at the next rootward node. This is then
continued until one reaches the crown or stem of the
phylogeny. The D(t) value at the stem or crown is the
likelihood of the phylogeny. For E(t) nothing changes at
the node, as this extinction probability is independent

of observed branching points. We refer to the original
papers by Alfaro et al. (2009) and Rabosky (2014), and to
Appendix A for more details. The likelihood computed
in this way is correct as long as the same rates are used for
all lineages (observed and extinct) at a particular time.
Below, we show that the likelihood is no longer correct
if there are lineage-specific rates.

The D–E framework applied to mapped rate shifts leads to
probabilities larger than 1

Rate shifts have been accommodated in the D–E
framework in the software packages mentioned in the
introduction (e.g., MEDUSA, BAMM, DDD) by using
different rates of speciation (�) and extinction (�) for the
lineage that undergoes a rate shift. There has been some
debate on the initial condition for the equation for E(t)
at the shift point that will be used for further rootward
integration of the equations. Rabosky et al. (2017)
proposed a “recompute” and a “pass-up” algorithm. The
first, “recompute,” recomputes the E(t) using the root-
ward rates, whereas “pass-up” uses as initial condition
at the time of the shift the E(t) already computed with the
shifted rates for the subclade experiencing the rate shift
from the present until the time of the rate shift. The “pass-
up” algorithm is incorrect because the extinction rate
that is needed in the computation of D(t) is computed for
lineages that will not shift. The “recompute” algorithm
is the correct one to compute the extinction rate, but we
show here that the D–E framework applied to mapped
shifts still suffers from another problem that yields an
incorrect likelihood.

We look at a simple example of a phylogeny with
only a single extant branch. This ensures that the D(t)
we obtain at the root is a real probability and not a
probability density due to the multiplication by � at
the nodes (formally the multiplication is with �dt for
an infinitesimal dt). We assume that at time tq a clade-
wide rate shift in diversification rates occurs: all lineages
present at that time undergo this shift. Subsequently, at
time ts another shift occurs involving only one branch,
which is the branch that we currently observe. Other
branches become extinct before the present.

To study the full process, we divide it into three
subprocesses (Fig. 1), each characterized by a set of
speciation and extinction rates (�r,�r):

• for subprocess M1: rates �M1 and �M1 ;

• for subprocess M2: rates �M2 and �M2 . These rates
do not only govern the diversification dynamics
occurring in the interval [tq,ts], but also the diver-
sification in the interval [ts,tp] for all the lineages
that do not undergo the lineage-specific rate shift
at ts (which is why the “pass-up” algorithm is
incorrect);

• for subprocess S: rates �S and �S.

We have used Mi and S to denote these subprocesses,
because the first two processes occur in the main (M)
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FIGURE 1. Example phylogeny leading to an incorrect likelihood in
the D–E framework. The phylogeny consists of a single branch from t0
to tp, with a lineage-specific rate shift at ts (indicated by a ×-mark). This
rate shift initiates subclade S not included in main clade M. In addition,
the rates in the main clade change at tq from (�M1 ,�M1 ) to (�M2 ,�M2 ).
Open circles indicate species that go extinct before the present and
therefore are invisible in the phylogeny. From Eq. (5) onwards, we
consider the limit of ts → tq.

clade that does not undergo a clade-specific shift, but
the last one occurs in the a subclade (S) after a shift in a
single lineage.

Adopting the D–E framework and the “recompute”
strategy an analytical formula for the likelihood can be
derived (Appendix A). In the limit of ts → tq, that is, when
the lineage-specific rate shift occurs immediately after
the clade-wide range shift, this solution can be written
in a compact way using the functions p and u from Nee
et al. (1994):

LDE = pM1 (t0,ts)(1−uM1 (t0,ts))pS(ts,tp)(1−uS(ts,tp))

(1−uM1 (t0,ts)(1−pM2 (ts,tp)))2 ,

(5)

where

pr(t1,t2)= �r −�r

�r −�r�r(t2 −t1)
(6)

ur(t1,t2)= �r(1−�r(t2 −t1))
�r −�r�r(t2 −t1)

with

�r(t)=e−(�r−�r)t (7)

with the subscript r referring to the rate regime (M1,
M2, or S).

Exploring likelihood (5)—which is a probability—
numerically for different values of �M1 and �M2 we
observe that it exceeds unity in a large part of parameter
space (left panel of Fig. 2), and hence must be incorrect.

We note that we need a clade-wide shift to get
probabilities larger than 1. The reason is that to maximize
the error in the likelihood, many species need to exist at
the time of the shift, which requires a high speciation
rate and a low extinction rate. However, in the sampled
phylogeny only one lineage remains, so all lineages but
one (namely the one that undergoes the shift) then need
to go extinct, which requires low speciation rate and
high extinction rate. This can only be achieved by having
rates change over time, and a clade-wide shift is the
simplest way of achieving that. This does not mean that

the problem does not occur unless there are clade-wide
shifts, but these clade-wide shifts are needed to obtain
probabilities larger than 1 which is a clear signal that
the likelihood calculation is incorrect. The likelihood
calculation remains incorrect when the probabilities are
smaller than 1.

Corrected likelihood—example
The D–E framework only prescribes how to compute

the likelihood, but it does not explicitly state the model
underlying this likelihood. What has been missing (as
pointed out by May and Moore 2016) in applications of
the D–E framework to mapped rate shifts, is a model for
these shifts. Here, we propose a simple stochastic model
for a lineage-specific rate shift, and we use it to yield the
right likelihood formula for the example shown in the
previous section (Fig. 1).

Our model runs from past to present. The simple
stochastic model for the rate shift we propose is that at
the rate shift time ts one of the extant species is chosen
at random to undergo the rate shift. To construct the
likelihood corresponding to this model, we use again
functions p (eq. (6)) and u (eq. (7)) from Nee et al.
(1994). We denote by n the number of extant species
immediately before the rate shift time. Then, the basic
elements of the likelihood are:

1. The single species present at the initial time t0
undergoes a diversification process with rates �M1
and �M1 . The probability PM1 (1,n;t0,ts) that it
has n descendant species immediately before the
rate shift time ts (i.e., the 1 in the probability
corresponds to the single species at t0 and the n
to the number of descendants at ts), is

PM1 (1,n;t0,ts)=pM1 (t0,ts)

(1−uM1 (t0,ts))uM1 (t0,ts)n−1. (8)

2. The data (the reconstructed tree of Fig. 1) impose
that the rate shifted species (governed by rates �S
and �S) survives until the present and has only one
descendant species. The probability PS(1,1;ts,tp)
of this event is

PS(1,1;ts,tp)=pS(ts,tp)
(
1−uS(ts,tp

)
. (9)

3. The other n−1 species extant at time ts are
governed by rates �M2 and �M2 and should become
extinct in the time interval [ts,tp]. The probability
PM2 (n−1,0;ts,tp) of this event is

PM2 (n−1,0;ts,tp)= (1−pM2 (ts,tp))n−1. (10)
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FIGURE 2. Comparison of uncorrected and corrected likelihood for the example of Figure 1. We computed the likelihoods as a function of
speciation rate �M1 and extinction rate �M2 and plotted the results as a heatmap in the (�M1 ,�M2 ) plane. The other parameters are kept constant
at �M1 =�M2 =�S =�S =0. Left panel: The likelihood LDE of the D–E framework is larger than one for a large part of parameter space (shades
of red) and can reach values that are several orders of magnitude above one. Right panel: The corrected likelihood Lcorr is always smaller than
one. We have used t0 =−10, tq = ts =−6, tp =0 in this numerical example.

Combining these elements we can write the corrected
likelihood

Lcorr =
∑
n>0

PM1 (1,n;t0,ts)PS(1,1;ts,tp)PM2 (n−1,0;ts,tp)

=
∑
n>0

pM1 (t0,ts)(1−uM1 (t0,ts))uM1 (t0,ts)n−1

×(1−pM2 (ts,tp))n−1pS(ts,tp)(1−uS(ts,tp)) (11)

which can be simplified to

Lcorr = pM1 (t0,ts)(1−uM1 (t0,ts))pS(ts,tp)(1−uS(ts,tp))
1−uM1 (t0,ts)(1−pM2 (ts,tp))

(12)

It is instructive to rewrite the likelihood LDE in a form
similar to eq. (11),

LDE =
∑

n
pM1 (t0,ts)(1−uM1 (t0,ts))uM1 (t0,ts)n−1

×n(1−pM2 (ts,tp))n−1pS(ts,tp)(1−uS(ts,tp))
(13)

showing that the difference with Lcorr resides in the
additional factor n in the summand of eq. (13). This factor
n is erroneous, given the explicit rate shift model we
consider here (see Appendix B for more details), and
it also causes the probabilities to exceed unity for some
parameter values (left panel of Fig. 2).

The corrected likelihood Lcorr solves the problem
with probabilities larger than 1. This can be seen from

eq. (12) by noting that
1−uM1 (t0,ts)

1−uM1 (t0,ts)(1−pM2 (ts,tp)) ≤1. We also

checked this numerically (right panel of Fig. 2).
We stress that defining a model for how the rate

shift occurs is crucial, which explains why SSE-based

approaches that model shifts dynamically (Barido-
Sottani et al. 2020; Hoehna et al. 2019; Maliet et al. 2019)
yield correct likelihoods. However, these models require
the introduction of (an arbitrary number of) states and
a rate shift parameter and are therefore arguably more
complex than the model we propose here.

Corrected likelihood—general case
The corrected likelihood Lcorr can be extended to

general trees, as we show in Appendix C. Suppose the
rate shift occurs in the jth lineage of the ks lineages
present at the rate shift time ts. Denote by Sj the subclade
including all descendants of the shifted lineage j, by Mj
the main clade excluding Sj, and by M< and M>

j the parts
of Mj before and after the rate shift, respectively (Fig. 3).
Furthermore, denote by I(T) the operation of breaking
the tree T sensu Nee et al. (1994) into separate branches
each of which we will index with i. Here T can be either
M<, M>

j , or Sj. Strictly, M>
j needs not be a single tree,

but may consist of several trees. For example, in the top-
left panel of Figure 3, M>

1 consists of three clades which
have stem age at ts: the clades that arise from lineages 2,
3, and 4.

The likelihood that the rate shift occurs in branch j of
the main clade, at time ts, and that it is observed, that is,
that the rate shift is visible in the observed tree,

Lobs,j
corr =

( ∞∑
m1=0

···
∞∑

mks=0

1
ks +∑

i∈I(M<)mi

×
∏

i∈I(M<)

(mi +1)pM(ti,ts)(1−uM(ti,ts))uM

(ti,ts)mi (1−pM(ts,tp))mi
)

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/70/2/389/5866755 by guest on 16 February 2021



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[14:44 15/1/2021 Sysbio-OP-SYSB200051.tex] Page: 393 389–407

2021 LAUDANNO ET AL.—LIKELIHOOD FOR SINGLE-SPECIES SHIFTED TREE 393

FIGURE 3. Definition of subtrees used in likelihood formula (14). We consider a phylogeny with ks =4 lineages at the rate shift time ts. Top-left
panel: Suppose the rate shift occurs in the first lineage (j=1). The subtree S1 is the subclade containing all the descendant species of the shifted
lineage (in red). The corresponding main clade is M1, which we decompose in a part M< before the shift (in green) and a part M>

1 after the
shift (in blue). Other panels: If the rate shift occurs in another branch (j=2,3,4), the corresponding main and subclade are different (subtrees Sj
and M>

j ).

×
( ∏

i∈I(M>
j )

pM(ti,tp)(1−uM(ti,tp)
)

×
( ∏

i∈I(Sj)

pS(ti,tp)(1−uS(ti,tp))
)
, (14)

where ks denotes the number of observed lineages in
the phylogeny at time ts and the summation index mi
denotes the number of species that come from branch i
in I(M<).

Conditional likelihoods
Likelihoods of diversification models are often con-

ditioned on the existence of the phylogeny, that is, the
survival of the two crown lineages (Nee et al. 1994),
but also other conditionings have been discussed in the
literature (Stadler 2012). Here, we discuss the standard
conditioning on crown lineage survival (Pc,0) and two
additional conditional probabilities. The two additional
ones still require that the two crown lineages survive to
the present, but we additionally require that the lineage
with the rate shift survives to the present with (Pc,2)
or without (Pc,1) requiring that there is at least one
other unshifted surviving lineage of the same crown
lineage. To describe these conditional probabilities we
need to introduce some notation. We denote by ML and
MR, the two distinct subprocesses arising from left and
right crown species, respectively. We assume that MR
undergoes the rate shift at ts. With S, we denote the
process arising from the shifted species, as before.

For the standard conditioning on the survival of the
two crown lineages, we require ML to survive from the
crown to the present, and MR from the crown to the shift,
and either MR or S to survive from the shift to the present.
The conditional probability is given by

Pc,0 =2
∑

nL,nR>0

pM(t0,ts)(1−uM(t0,ts))uM(t0,ts)nL−1

×pM(t0,ts)(1−uM(t0,ts))uM(t0,ts)nR−1

× nR

nR +nL

(
1−(1−pM(ts,tp))nL

)[
pS(ts,tp)

+(1−pS(ts,tp))
(
1−(1−pM(ts,tp))nR−1)], (15)

where the factor of two arises from the symmetry of
the system: swapping ML with MR yields a tree that is
indistinguishable from the original one.

For the first new conditioning, we require ML to
survive from the crown to the present, MR to survive
from the crown to the shift, and S to survive from the
shift to the present, but MR is not required to survive to
the present. The conditional probability Pc,1 is therefore
given by

Pc,1 =2
∑

nL,nR>0

pM(t0,ts)(1−uM(t0,ts))uM(t0,ts)nL−1

×pM(t0,ts)(1−uM(t0,ts))uM(t0,ts)nR−1
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TABLE 1. Parameter settings used in the simulations. For each
parameter setting we simulated 1000 trees. To simulate the subclades
parameters �S =0.6 and �S =0.1 have been used; we did not vary
them as they do not influence the inference outcome. We did not
use conditioning Pc,0 because the simulations were conditioned on
survival of the shited subclade.
Parameter Values

�M 0.2, 0.3, 0.4, 0.5
�M 0, 0.05, 0.1, 0.15
t0 −10
ts −4, −7
Pc Pc,1, Pc,2

× nR

nR +nL

(
1−(1−pM(ts,tp))nL

)

×pS(ts,tp) (16)

As a second new conditioning, we require the survival
to the present of both left and right crown species
descendants in clade M, as well as the survival of clade
S. Its probability, Pc,2, is given by

Pc,2 =2
∑

nL,nR>0

pM(t0,ts)(1−uM(t0,ts))uM(t0,ts)nL−1

×pM(t0,ts)(1−uM(t0,ts))uM(t0,ts)nR−1

× nR

nR +nL

(
1−(1−pM(ts,tp))nL

)

×(
1−(1−pM(ts,tp)

)nR−1)pS(ts,tp) (17)

The observed tree satisfies the different conditionings.
Hence, the conditional likelihood is obtained simply
by dividing the likelihood (14) by either Pc,0, Pc,1,
or Pc,2.

Performance of the corrected likelihood in parameter
estimation

We tested numerically the performance of the correc-
ted likelihood formula versus the incorrect likelihood
resulting from applying the D–E framework to mapped
rate shifts for parameter estimation on phylogenies
simulated under a constant-rate birth–death model with
a single shift for various values of the generating
parameters and two conditionings (Table 1). We did
not use conditioning probability Pc,0, because to be
useful the simulations required the subclade to survive;
using Pc,0 would have introduced biases unrelated to the
quality of the estimation method.

We simulated 1000 trees for each parameter setting.
We then maximized the likelihood for each tree to infer
the best parameter values for �M, �M, �S, and �S. We
find that the corrected likelihood produces less biased
parameter estimates than the likelihood resulting from
applying the D–E framework to mapped rate shifts
(Fig. 4).

Extending the corrected likelihood Lcorr to time-dependent
and diversity-dependent diversification rates

When the diversification rates depend on time, the
basic structure presented in the previous section still
holds. However, according to Nee et al. (1994), the core
functions (6) and (7) have to be replaced with

pr(t1,t2)=
(

1+
∫ t2

t1

�r(s)e�r(t1,s)ds
)−1

, (18)

ur(t1,t2)=1−pr(t1,t2)e�r(t1,t2), (19)

where

�r(t1,t2)=
∫ t2

t1

(�r(s)−�r(s))ds. (20)

The corrected likelihood can also be extended to
diversity-dependent rates. To do so, we make use of
the general framework first introduced in Etienne et al.
(2012), which was later used to study the specific case of
a single lineage rate shift due to the introduction of a key
innovation (Etienne and Haegeman 2012. The correction
comes down to a division by the number of lineages at
the shift time (see Appendix E for details), and has been
implemented in version 4.3 of the DDD package (Etienne
and Haegeman 2020).

Extending the corrected likelihood Lcorr to multiple shifts
The extension of the corrected likelihood (14) to the

case with multiple shifts is relatively straightforward.
Although the formulas become increasingly cumber-
some, the correction is based on the same idea as in the
single-shift case. To account correctly for the choice of the
species undergoing the rate shift at the rate shift time, we
have to divide by the number of species in which the rate
shift can occur. In Appendix C, we explicitly work out
the correction for the case of two rate shifts occurring in
the main clade, leading to the likelihood formula (C11).

The conditioning probabilities (15)–(17) can be also
extended to the multiple-shifts case. To keep the com-
putations manageable, we consider only the simplest
extension. We require that already shifted subclades
cannot undergo another shift, that is, shifts only happen
in the main clade. Note that this need not be a strong
restriction, because most applications involve large trees
with a handful of shifts. In addition, as in conditioning
probability Pc,2, we require that there are surviving
species in both crown clades and in all shifted subclades.
The corresponding conditional likelihood can be easily
evaluated within the diversity-dependent framework
of Etienne et al. (2012), and has been implemented in
version 4.3 of the DDD package (Etienne and Haegeman
2020).

Detecting rate shifts in phylogenetic trees
The corrected likelihood (14) can be used to ask

whether a given lineage underwent a rate shift at the
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FIGURE 4. Comparison of the parameter estimates of the main clade diversification parameters �M and �M inferred by the corrected
likelihood versus the D–E likelihood. The boxplots show, for various parameter settings displayed on the x-axis, the distributions of the error

ratios
|�est,corr

M −�true
M |

|�est,DE
M −�true

M | and
|�est,corr

M −�true
M |

|�est,DE
M −�true

M | , where �
est,corr
M , �est,DE

M , �est,corr
M , and �

est,DE
M were obtained via likelihood maximization and �true

M and �true
M

are the known true values used to simulate the trees. Boxplots below 1 imply that the corrected likelihood is closer to the true generating value
than the D–E likelihood. Parameter values are given in Table 1; the results for shift times ts =−4 and ts =−7 are shown in the same boxplot. For
each unique parameter setting, 1000 trees were simulated and hence 1000 parameter sets estimated for each likelihood. The two different colors
represent the two parameters, while the two panels represent different conditionings (Pc,1 and Pc,2, see eqs. (16) and (17)).

designated shift time ts. To do so, we must compare the
likelihood (14) with a version of (14) where the rates of the
main clade M and the subclade S are the same. That is, we
compare a model where the rates actually change at the
shift time with a model where the rates remain the same
at the shift time (which we will refer to as a dummy shift).

It is important to note that this dummy-shift likelihood
is different from Nee et al.’s likelihood. This can be
understood by observing that the former likelihood
depends on the predetermined lineage in which the
rate shift possibly occurred, while the latter does not

distinguish between lineages but treats all lineages
equally. To recover Nee et al.’s likelihood as the reference
case in the model comparison, we should ask whether
the data contain evidence for a rate shift at a specified
time ts without specifying the rate shift lineage. To
address this question, we have to account for two
possibilities: either the rate shift occurred in one of the
observed lineages of the phylogeny, or it occurred in a
lineage present at time ts, but that has become extinct
after ts. We refer to these two cases as observed and
unobserved rate shifts, respectively. The likelihood of an
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observed rate shift is simply obtained by summing Lobs,j
corr

across all branches present at time ts,

Lobs
corr =

∑
j∈I(M<)

Lobs,j
corr (21)

The likelihood of an unobserved rate shift is given by

Lunobs
corr =

( ∞∑
m1=0

···
∞∑

mks=0

∑
i∈I(M<)mi

ks +∑
i∈I(M<)mi

×
∏

i∈I(M<)

(mi +1)pM(ti,ts)(1−uM(ti,ts))uM

(ti,ts)mi (1−pM(ts,tp))mi
)

×
( ∏

i∈I(M>
j )

pM(ti,tp)(1−uM(ti,tp)
) 1−pS(ts,tp)

1−pM(ts,tp)

(22)

The likelihoods for observed and unobserved shifts can
be added to yield a (generalized) likelihood for a model
with a rate shift, on any lineage in the phylogeny that
was alive at ts:

Lgen
corr =Lobs

corr +Lunobs
corr . (23)

If we take the same rates for main clade M and subclade
S (i.e., a dummy shift), we get (see Appendix D)

lim
�S→�M
�S→�M

Lgen
corr =LNee, (24)

where LNee is the likelihood for a phylogeny produced
under a constant-rate birth–death model without con-
sidering rate shifts, as provided by Nee et al. (1994).
This shows that the generalized rate shift likelihood
can be compared with the standard likelihood without
rate shifts, if we do not specify a priori the lineage
in which the rate shift might occur. Note that no
such construction is possible when applying the D–E
framework to mapped rate shifts, as this systematically
overestimates the rate shift likelihood.

DISCUSSION

We have shown that several methods developed for
detecting shifts in diversification rates at particular
points in phylogenies are based on an incorrect likeli-
hood that could even yield probabilities larger than 1.
Our new likelihood formulas—which even apply when
diversification rates are time-dependent or diversity-
dependent—can be used to correct these methods. This
was already been done for the KI model in version 4.1 of
the DDD package (Etienne and Haegeman 2020), which
involved only a few lines of code (division by the number
of species). For a single shift, DDD allows conditioning
in three different ways, corresponding to the diversity-
dependent extensions of Eqs. (15)–(17). For multiple
shifts, only the last conditioning is feasible, under the

additional assumption that shifts can only occur in the
main clade. We noticed that the results for two different
conditionings were similar for a single shift, so we are
confident that this restriction is not very severe. For
multiple shifts, the DDD package only contains the
likelihood calculation, not a function to do likelihood
optimization. This could be done by integrating this
likelihood calculation with BAMM, MEDUSA, or related
multishift methods.

Our framework has identified four ways to ask
questions on rate shifts at a given shift time. One can ask
whether a rate shift occurred in a particular observed
lineage in the phylogeny at the shift time, whether it
occurred in any observed lineage present at the shift
time, whether it occurred in any unobserved lineage
present at the shift time, or whether it occurred at all at
the given shift time (either in an observed or unobserved
lineage). We have provided likelihood formulas for all
four cases. This was possible because we provided an
explicit model for the choice of the lineage on which the
rate shift occurs. Moore et al. (2016) already remarked
that such a model was missing in BAMM which
they considered problematic for estimating evolutionary
rates, although the Moore et al. (2016) critique employed
the problematic D–E framework applied to mapped rate
shifts. With our formulas, we have offered a solution to
these problems. In all four cases, we have also provided
the appropriate null model for model comparison, that
is, a model where there is a shift but rates do not actually
change (dummy shift). We have also shown that we
recover the well-established likelihood of a constant-rate
or time-dependent birth–death model (Nee et al. 1994)
in case we allow this dummy shift to occur anywhere in
the phylogeny.

While we offer a likelihood that can account for
unobserved rate shifts, the use of maximum likelihood
to infer shifts on extinct branches is not especially
useful in practice. Indeed, this will lead to the estimate
of the shifted extinction rate being infinite, as this makes
the observed phylogeny most likely. Even when fixing
the extinction rate at a given value (or not allowing
it to shift), maximizing the likelihood will lead to
the shifted speciation rate being estimated to be 0
in unobserved lineages. Fortunately, the generalized
likelihood developed to answer the question whether
a shift occurred at all at the given shift time (either
in an observed or unobserved lineage)—of which the
likelihood for unobserved shifts is an integral part—
will not suffer from this problem as any inferred shifted
extinction rate applies to both observed and unobserved
lineages. To assess whether estimates are biased, one
should perform an extensive analysis of simulated trees
which is beyond the scope of the current article. An
alternative is that for a specific study one conducts
simulations with the estimated parameters and checks
whether the distribution of parameters estimated from
the simulations is in line with the original estimated
parameters used to generate the simulated phylogenies.
In fact, this parametric bootstrap procedure is useful for
any parameter estimation method.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/70/2/389/5866755 by guest on 16 February 2021



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[14:44 15/1/2021 Sysbio-OP-SYSB200051.tex] Page: 397 389–407

2021 LAUDANNO ET AL.—LIKELIHOOD FOR SINGLE-SPECIES SHIFTED TREE 397

Because the likelihoods implemented in most rate shift
methods suffer from the largely unappreciated issue
described in this article, we suggest that researchers
interpret results from these methods with caution. The
likelihoods obtained with these methods are system-
atically too large, and hence using these methods to
detect rate shifts may be subject to false positives.
Simulation studies have generally found that BAMM
appears conservative with respect to the inference of
rate heterogeneity (Maliet et al. 2019), and rate estimates
have been shown to be reasonable across a broad range
of parameter space (Title and Rabosky 2019). However,
the fact that the likelihood expression is incorrect
implies that BAMM and other approaches may behave
unexpectedly in some areas of parameter space or on
some data sets. We expect the errors to be largest when
there are many species at the time of the shift which
do not survive to the present, but the specific conditions
under which this situation arises may be hard to identify.
Researchers who use these methods should be vigilant
in assessing whether results are sensible and should
strive to cross-check inferences with alternative methods
wherever possible. Our numerical results show how, on
sets of simulated trees, the new likelihood (14) performs
consistently better in estimating the rates (i.e., produces
less bias) than the likelihoods based on applying the
D–E framework to mapped rate shifts. In some simula-
tions the difference was large, in others it seemed small,
but it is difficult to say beforehand when estimates will
deviate mostly between the corrected likelihood and the
likelihood resulting from applying the D–E framework
to mapped rate shifts.

As stated in the introduction, alternative approaches
to detecting shifts in diversification rates have been
developed that do not explicitly map shifts in diversific-
ation rates on the phylogeny, but rather look for evidence
for multiple rate regimes in general across the phylogeny
(Barido-Sottani et al. 2020; Hoehna et al. 2019). These
approaches—which rely on the same mathematical
equations—do not suffer from the problems we identi-
fied here, but they resort to ancestral state reconstruction
to identify what parts of the phylogeny are governed
by a rate regime, that is, the shifts in diversification
are not fixed, but one obtains a (posterior) probability
distribution for the shift positions. Another recently
developed approach assumes that each speciation event
is accompanied by (usually small) rate shifts in each
descendant lineage and allows reconstruction of branch-
specific rate estimates (Maliet et al. 2019). However, in
each of these frameworks, it is not possible to directly
link rate shifts to historical events that happened at
specific times: shifts are either assumed to happen with
each speciation event (Maliet et al. 2019) or the model
determines where the most probable shift locations
are (Barido-Sottani et al. 2020; Hoehna et al. 2019).
When linking rate shifts to historical events such as
glaciation (e.g., Weir et al., 2016) or mountain uplift
(e.g., Chaves et al., 2011) is the ultimate goal of rate
shift analyses, our likelihood framework is ideally
suited.

Lastly, we emphasize that our approach can also
be used for diversity-dependent diversification models,
which is not the case for the three recent approaches
mentioned above (Barido-Sottani et al. 2020; Hoehna
et al. 2019; Maliet et al. 2019).

It has recently been suggested that making inference
on diversification scenarios from phylogenies of extant
species may be a futile enterprise, because this type
of data cannot distinguish between models assuming
constant speciation and extinction rates and an infinite
set of models with time-dependent speciation and
extinction models (Louca and Pennell 2020), which is
a generalization of the results by Nee et al. (1994)
that a model with constant speciation and extinction
rates is equivalent to a model without extinction and
time-dependent speciation rate. While this problem
of nonidentifiability has not yet been mathematically
shown to apply also to SSE models (Louca and Pennell
2020), diversity-dependent models (but see Etienne et al.
2016) or rate shift models as considered here, the results
of Louca and Pennell (2020) have made clear that we
can only draw conclusions on the models that we are
comparing, and not on the existence of time-dependence,
diversity-dependence or rate shifts in general.

In summary, we have described theoretical concerns
with the likelihood expression used by a number of
diversification rate shift methodologies, and we have
provided a new likelihood formula for rate shifts that
is mathematically consistent. We implemented this
approach for macroevolutionary scenarios involving a
single rate shift and found that the approach performed
better than the incorrect D–E framework. We hope that
our formulas or algorithms to compute the likelihoods
will be applied in likelihood-based inference tools such
as BAMM and MEDUSA.

APPENDIX A: D–E LIKELIHOOD FOR EXAMPLE PHYLOGENY

OF FIG. 1
Here, we compute the D–E likelihood for the tree of

Fig. 1. We apply the “recompute” algorithm and use the
solutions (3) and (4) for the functions D and E.

In the example, the phylogeny has only a single
extant branch. This implies that the D–E likelihood
we obtain at the root is a real probability and not a
probability density due to the multiplication by � at
the nodes (formally the multiplication is with �dt for
an infinitesimal dt). We assume that at time tq a clade-
wide rate shift in diversification rates occurs: all lineages
present at that time undergo this shift. Subsequently, at
time ts another shift occurs involving only one branch,
which is the branch that we currently observe. Other
branches become extinct before the present.

The derivation of the D–E likelihood proceeds in
several steps:

• We solve the D–E equations in the interval [ts,tp]
with rates �S and �S. For initial conditions, E(tp)=
0 and D(tp)=1 the solution reads

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/70/2/389/5866755 by guest on 16 February 2021



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[14:44 15/1/2021 Sysbio-OP-SYSB200051.tex] Page: 398 389–407

398 SYSTEMATIC BIOLOGY VOL. 70

D1(ts)

=D(tp)
(�S −�S)2�S(ts −tp)(

�S(1−E(tp))−(�S −�SE(tp))�S(ts −tp)
)2

= (�S −�S)2�S(ts −tp)(
�S −�S�S(ts −tp)

)2 (A1)

E1(ts)=
�S(1−E(tp))−(�S −�SE(tp))�S(ts −tp)
�S(1−E(tp))−(�S −�SE(tp))�S(ts −tp)

= �S −�S�S(ts −tp)
�S −�S�S(ts −tp)

, (A2)

where the index 1 refers to the first computation in
the interval [ts,tp].

• We solve the D–E equations a second time in the
interval [ts,tp], this time with rates �M2 and �M2 .
This is required for the “recompute” variant of the
D–E framework. The initial conditions are again
E(tp)=0 and D(tp)=1, so that

D2(ts)=
(�M2 −�M2 )2�M2 (ts −tp)(
�M2 −�M2�M2 (ts −tp)

)2 (A3)

E2(ts)=
�M2 −�M2�M2 (ts −tp)
�M2 −�M2�M2 (ts −tp)

, (A4)

where the index 2 refers to the second computation
in the interval [ts,tp].

• We solve the D–E equations in the interval [tq,ts]
with rates �M2 and �M2 . The initial conditions are
E(ts)=E2(ts) (species that originate in [tq,ts] and
become extinct in [ts,tp] are governed by rates �M2
and �M2 ) and D(ts)=D1(ts) (the observed branch
in [ts,tp] is governed by rates �S and �S). We get

D(tq)=D1(ts)
(�M2 −�M2 )2�M2 (tq −ts)

(�M2 (1−E2(ts))−(�M2 −�M2E2(ts))
�M2 (tq −ts))2

=D1(ts)
(�M2 −�M2�M2 (ts −tp))2�M2 (tq −ts)

(�M2 −�M2�M2 (tq −tp))2

(A5)

E(tq)=
�M2 (1−E2(ts))−(�M2 −�M2E2(ts))

�M2 (tq −tp)
�M2 (1−E2(ts))−(�M2 −�M2E2(ts))

�M2 (tq −tp)

= �M2 −�M2�M2 (tq −tp)
�M2 −�M2�M2 (tq −tp)

. (A6)

• We solve the D–E equations in the interval [t0,tq]
with rates �M1 and �M1 . Using as initial conditions

the expressions for D(tq) and E(tq), we get

D(t0)=D(tq)
(�M1 −�M1 )2�M1 (t0 −tq)(

�M1 (1−E(tq))−(�M1 −�M1E(tq))
�M1 (t0 −tq)

)2

.

(A7)

Then, the likelihood as prescribed by the D–E frame-
work (which we are going to show to be incorrect) is
LDE =D(t0).

To make formulas clearer, we set tq → ts, that is, the
lineage-specific rate shift occurs immediately after the
clade-wide range shift. Then, eqs. (A1)–(A7) can be
expressed in terms of the functions p and u introduced
by Nee et al. (1994), already stated in eqs. (6) and (7),
which yields

D(tq)=D1(ts)=pS(ts,tp)(1−uS(ts,tp)) (A8)

E(tq)=E2(ts)=1−pM2 (tq,tp) (A9)

D(t0)=D(tq)
pM1 (t0,ts)(1−uM1 (t0,ts))(

1−uM1 (t0,ts)(1−pM2 (ts,tp)
)2

= pS(ts,tp)(1−uS(ts,tp))pM1 (t0,ts)(1−uM1 (t0,ts))(
1−uM1 (t0,ts)(1−pM2 (ts,tp)

)2

(A10)

which establishes eq. (5).

APPENDIX B: CORRECTED LIKELIHOOD FOR PHYLOGENY OF

FIGURE 1
In the main text, we presented a short derivation of the

corrected likelihood for the example phylogeny shown
in Figure 1. Here, we provide an introduction to the
approach of Nee et al. (1994) on which the derivation
is based, and a comparison of the corrected likelihood
with the incorrect likelihood computed within the D–E
framework.

A short introduction to Nee et al. (1994)
Many properties of the constant-rate birth–death

process can be expressed in terms of functions p and
u introduced by Nee et al. (1994),

p(t1,t2)= �−�

�−�e−(�−�)(t2−t1)

u(t1,t2)= �
(
1−e−(�−�)(t2−t1))

�−�e−(�−�)(t2−t1)
,

where � is the speciation rate and � the extinction rate.
In particular, the probability that the process starting at
time t1 with a single species has n descendant species at
a later time t2 is given by
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P(1,n;t1,t2)

=
{

1−p(t1,t2) if n=0
p(t1,t2)

(
1−u(t1,t2)

)
u(t1,t2)n−1 if n=1,2,...

(B1)

We see that the number of species is a geometric
distribution with parameter 1−u with an added zero
term (Nee et al. 1994). This formula can be generalized
to the probability that n1 species at time t1 have
n2 species at time t2, denoted by P(n1,n2;t1,t2). The
computation exploits the fact that the n1 species at time
t1 undergo independent dynamics, so that the number
of species at time t2 is the n1-fold convolution product
of P(1,n2;t1,t2). For example, the formula for the case
n2 =0 reads

P(n1,0;t1,t2)=[P(1,0;t1,t2)]n1 =(
1−p(t1,t2)

)n1 . (B2)

Nee et al. (1994) showed that under the constant-rate
birth–death model the likelihood of a phylogeny can
be computed as a product over branches. Each of these
branches runs from a branching time ti to the present
time tp. The corresponding likelihood contribution is
equal to the probability that a speciation event occurs at ti
multiplied by the probability that the branch has a single
descendant species at the present time tp. Explicitly,

Likelihood contribution of branch from ti to tp

=�dti ×p(ti,tp)
(
1−u(ti,tp)

)
. (B3)

The infinitesimal factor dti is required to impose that
the branching time occurs in the infinitesimal interval
[ti,ti +dti]. Because, this factor does not affect likelihood
maximization, we will leave it out of the likelihood
formulas (so that the likelihood is no longer a probability,
but a probability density). Taking the product over
branches, we obtain the (unconditioned) likelihood of
the phylogeny

L=�s
s+1∏
i=0

p(ti,tp)
(
1−u(ti,tp)

)
, (B4)

where s denotes the number of branching events in the
phylogeny and t0 = t1 denotes the crown age. Because the
likelihood is obtained by decomposing the phylogeny
into branches, the approach of Nee et al. (1994) is some-
times referred to as “breaking the tree.” In Appendix C,
we present an alternative derivation of eq. (B4), which in
contrast to the argument of Nee et al. (1994) can be easily
generalized to phylogenies with rate shifts.

Comparison of D–E likelihood and corrected likelihood
From the expressions of the likelihoods LDE and

Lcorr, we see that the difference resides in an additional
factor n. To interpret this difference, we isolate in both
likelihoods the probability that, given that there are n
species at the rate shift time ts, one of them undergoes
the rate shift and has surviving descendant species at
the present time tp, while the other n−1 species has no
descendant species at tp. This probability is

According to likelihood LDE

n
(
1−pM2 (ts,tp)

)n−1pS(ts,tp) (B5)

According to likelihood Lcorr(
1−pM2 (ts,tp)

)n−1pS(ts,tp). (B6)

In Figure B1, we construct this probability by explicitly
considering all possible full trees corresponding to a
specific reconstructed tree. Note that in the figure we
use simplified notation and set pM =pM2 (ts,tp) and pS =
pS(ts,tp).

It is instructive to first consider the case without
rate shift (Fig. B1a). We consider a reconstructed tree
consisting of a single branch. If there are n species at
the intermediate time ts, there are n possible full trees,
because each of the n species extant at time ts can be
chosen to survive. Each full tree has probability pM(1−
pM)n−1, so that the total probability is npM(1−pM)n−1.
Note that this probability cannot be larger than one;
indeed, when adding the probabilities that none or more
than one species survives, we get

npM(1−pM)n−1 ≤
n∑

s=0

(
n
s

)
ps

M(1−pM)n−s

=(
pM +(1−pM)

)n =1. (B7)

Next consider the case with rate shift (Fig. B1b). As
in the example of Fig. 1, we consider a reconstructed
tree with a single branch and an observed rate shift. We
see that there are n2 possible full trees, corresponding
to two choices, each one having n options. First, we
have to choose the species that is undergoing the rate
shift. Second, we have to choose the species that is going
to survive, which can be either the species that has
undergone the rate shift or one of the n−1 other species.
Importantly, not all of these full trees are consistent with
the reconstructed tree. In particular, for n(n−1) of them
the rate shift is unobserved. The n full trees for which the
rate shift is observed in the corresponding phylogeny
each have probability 1

n pS(1−pM)n−1, so that the total
probability is pS(1−pM)n−1. This probability cannot be
larger than one, because when adding the probabilities
that none or more than one species survives,

pS(1−pM)n−1 ≤(
pS +(1−pS)

)n−1∑
s=0

ps
M(1−pM)n−1−s

=(
pS +(1−pS)

)(
pM +(1−pM)

)n−1 =1.

(B8)

This computation demonstrates that formula (B6), and
hence likelihood Lcorr, is correct, and that formula (B5),
and hence likelihood LDE, is not. The latter, which can
be seen as a naive generalization of the formula without
rate shift, does not account correctly for unobserved rate
shifts (i.e., rate shifts that occur in a species that is not
represented in the phylogeny). Note that formula (B5)
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FIGURE B1. Demonstration of correct likelihood formula. a) Case of phylogeny without rate shift. We consider a reconstructed tree consisting
of a single branch running from t0 to tp. We assume that there are three extant species at an intermediate time ts (indicated by the middle vertical
line) and consider the dynamics of these three species from ts to tp, all governed by rates �M and �M . There are three possible full trees, each
having probability pM(1−pM)2, so that the total probability is 3pM(1−pM)2. b) Case of phylogeny with rate shift. The reconstructed tree consists
of a single branch with an observed rate shift at the intermediate time ts. We assume again that there are three extant species at ts, each of
them having probability 1

3 of undergoing the rate shift. The rate shifted species has rates (�S,�S); the other species have rates (�M,�M). We
show the nine combinations obtained by first selecting the species undergoing the rate shift, and second selecting the species surviving until
the present. Only three of these nine combinations have the correct reconstructed tree (consistent combinations are plotted in blue); the other
six combinations correspond to unobserved rate shifts. Each of the three consistent full trees have probability 1

3 pS(1−pM)2, so that the total
probability is pS(1−pM)2. Symbols have same meaning as in other figures (×-mark: rate shift; filled circle: species surviving until present; open
circle: species going extinct before present).

is also different from the probability of having either
an observed or an unobserved rate shift. The correct
probability for this case is

pS(1−pM)n−1 +(1−pS)(n−1)pM(1−pM)n−2. (B9)

APPENDIX C: CORRECTED LIKELIHOOD FOR GENERAL

PHYLOGENIES

In this appendix, we derive the likelihood formula for
a general phylogeny with one or several lineage-specific
rate shifts. We start the computation, which is related

to the “breaking the tree” argument of Nee et al. (1994),
by deriving the likelihood again for a general phylogeny
without rate shift.

A useful identity
We will repeatedly use the following identity:

P(1,n2;t0,t2)n2 =
∑

n1,n2a,n2b
n2a+n2b=n2

P(1,n1;t0,t1)n1

P(1,n2a;t1,t2)n2aP(n1 −1,n2b;t1,t2). (C1)
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This identity can be understood by introducing a
sampling process at time t2, in which each extant species
is sampled with probability �. Multiplying the left-hand
side of eq. (C1) by �(1−�)n2−1, we see that

A=P(1,n2;t0,t2)n2�(1−�)n2−1

is the probability that a species at time t0 has n2 des-
cendant species at time t2 and one sampled descendant
species. We establish identity (C1) by computing this
same probability in a different way. To do so, we consider
the n1 species extant at time t1. For this group of
n1 species to have one sampled descendant species at
time t1, there should be one of the n1 species with a
single sampled descendant species, and all other species
should have no sampled descendant species. Therefore,
the probability A can also be computed as

A=
∑
n1

P(1,n1;t0,t1)n1
∑

n2a,n2b
n2a+n2b=n2

P(1,n2a;t1,t2)n2a

�(1−�)n2a−1P(n1 −1,n2b;t1,t2)(1−�)n2b

=
∑

n1,n2a,n2b
n2a+n2b=n2

P(1,n1;t0,t1)n1P(1,n2a;t1,t2)n2a

P(n1 −1,n2b;t1,t2)�(1−�)n2−1.

Here, n2a is the number of species at t2 (before sampling)
descendant from the single species extant at t1 with a
sampled descendant species at t2; and n2b is the number
of species at t2 (before sampling) descendant from the
other n1 −1 species extant at t1. From the n2a species, one
should be sampled; from the n2b species none should be
sampled. Dividing the last expression by �(1−�)n2−1, we
obtain the right-hand side of eq. (C1).

Case without rate shift
We construct the likelihood of a tree under speciation–

extinction dynamics without rate shift. This likelihood
will be extended below to speciation–extinction dynam-
ics with one or more rate shifts. The argument is related
to the “breaking the tree” approach of Nee et al. (1994).
As in the proof of eq. (C1), we consider a sampling pro-
cess at the present time tp with sampling probability �.

We start by decomposing the tree into simple
branches, that is, branches of the reconstructed tree
without branching events. See left panel of Figure C1,
where the simple branches are labeled by letters “a”
to “n.” We denote the time interval of branch � by
[tb

�,te
�]. We distinguish internal and boundary simple

branches: internal branches are those for which te
� < tp,

and boundary branches are those for which te
� = tp. We

denote the set of internal simple branches by Bint, and the
set of boundary simple branches by Bext. For the example
of Figure C1 (left panel), we have

Bint ={a,b,d,f,g,h} Bext ={c,e,i,j,k,l,m,n}.

For each internal simple branch �, we denote by n� the
number of descendant species at the end of the branch (at
time te

�). One of these descendant species is represented
in the tree. For the other n�−1 descendant species, we
keep track of the number of descendants at tp; we denote
this number by m�. For each boundary simple branch
�, we denote by m� the number of descendants at tp in
addition to the species represented in the tree (hence,
1+m� descendant species in total).

The numbers n� and m� allow us to write down the
likelihood

L=�s
∑

n�|�∈Bint

∑
m�|�∈Bint

( ∏
�∈Bint

P(1,n�;tb
�,te

�)n�P(n�−1,m�;te
�,tp)(1−�)m�

)

×
∑

m�|�∈Bext

( ∏
�∈Bext

P(1,1+m�;tb
�,tp)

(1+m�)�(1−�)m�

)
, (C2)

where we used short-hand notation for the multidimen-
sional sums, for example,

∑
n�|�∈Bint

stands for
∑
n�1

∑
n�2

···
∑
n�s

assuming

Bint ={�1,�2,...,�s}.
Equation (C2) can be understood as follows. The product
on the first line corresponds to internal simple branches.
The term for branch � contains the probability of having
n� descendants at te

�, a factor n� related to the selection
of the descendant species that is represented in the tree,
the probability that the other n�−1 species at te

� have m�

descendants at tp, and the probability that none of the
latter descendants is sampled. The product on the second
line corresponds to boundary simple branches. The term
for branch � contains the probability of having 1+m�
descendants at tp, a factor 1+m� related to the selection
of the sampled descendant species, and the probability of
sampling this species and not sampling the other species.

Equation (C2) can be simplified by combining simple
branches. In particular, the terms relating to an internal
branch can be incorporated in the terms relating to the
boundary branch to which it is connected. For example,
referring to Figure C1 (left panel), consider branches “a”
and “e,” which are an internal and a boundary simple
branch, respectively. The terms in eq. (C2) associated
with branches “a” and “e” are∑

na

∑
ma

P(1,na;tb
a,t

e
a)naP(na −1,ma;te

a,tp)(1−�)ma

×
∑
me

P(1,1+me;tb
e,tp)(1+me)�(1−�)me

=
∑

na,ma,me

P(1,na;tb
a,t

e
a)naP(na −1,ma;te

a,tp)(1−�)ma
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FIGURE C1. Decomposing a phylogeny in simple branches. Left panel: Example tree without rate shift, decomposed in simple branches
labeled by letters “a” to “n.” Right panel: Same example tree, but this time with rate shift at ts. Simple branches that contain the rate shift are
split, resulting in a larger set of simple branches (labeled by letters “a” to “r”).

P(1,1+me;tb
e,tp)(1+me)�(1−�)me

=
∑
mae

P(1,1+mae;tb
ae,tp)(1+mae)�(1−�)mae , (C3)

where we have applied eq. (C1) in the last line. We
see that the part of the likelihood corresponding to the
composed branch “ae” (composed of simple branches
“a” and “e,” with tb

ae = tb
a and te

ae = te
e = tp, where mae =

ma +me) has the same form as a boundary simple branch
� in eq. (C2). Hence, we can absorb an internal simple
branch in the boundary simple branch to which it is
connected.

By repeatedly absorbing internal simple branches,
we obtain boundary branches that are increasingly
composed, until there are no internal simple branches
left in eq. (C2). Denoting the resulting set of boundary
branches by I, we obtain

L=�s
∑

m�|�∈I

∏
�∈I

P(1,1+m�;tb
�,tp)(1+m�)�(1−�)m� (C4)

and for the case where all species are sampled (set �=1)

L=�s
∏
�∈I

P(1,1;tb
�,tp). (C5)

This is the “breaking the tree” likelihood of (Nee et al.,
1994), see eq. (B4).

Note that there are several ways of combining simple
branches into composed ones. For example, for the
tree shown in Fig. C1 (left panel), two possible sets of
boundary branches are

{ae,fm,n,bc,dgk,l,hi,j} and {afn,m,e,bdhj,i,gl,k,c}.
However, these sets lead to the same value of likeli-
hoods (C4) and (C5). In fact, the likelihoods only depend

on the branching times, and the latter do not depend on
the specific choice of composed branches.

Case of a single rate shift
The “breaking the tree” approach can also be used to

construct the likelihood of a tree with a rate shift. For the
rate shift model described in the main text, we have to
divide by the total number of species extant at the rate
shift time ts. Hence, we have to keep track of the total
number of species at ts.

First, note that the subclade with the rate shift can
be dealt with separately from the main clade. For the
subclade, we can apply the likelihood formula for a tree
without rate shift. The subclade tree starts at the rate
shift time ts and continues until the present time tp. Here,
we derive the likelihood formula for the main clade. For
the example phylogeny of Figure C1 (right panel) the
main clade corresponds to the entire tree except branches
{h,q,r}.

We decompose the main clade into simple branches.
In the case of a rate shift, all simple branches are split
at the rate shift time, see Figure C1 (right panel). We
distinguish internal simple branches before the rate shift
(with te

� < ts; set denoted by B(M,1)
int ), boundary simple

branches before the rate shift (with te
� = ts; set denoted by

B(M,1)
ext ), internal simple branches after the rate shift (with

ts < te
� < tp; set denoted by B(M,2)

int ) and boundary simple
branches after the rate shift (with te

� = tp; set denoted by

B(M,2)
ext ). For the example of Fig. C1 (right panel),

B(M,1)
int ={a,b} B(M,1)

ext ={c,d,e,f} B(M,2)
int ={j,k,l}

B(M,2)
ext ={g,i,m,n,o,p}.
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As before, we introduce the numbers n� and m� for
internal simple branch �, and m� for boundary simple
branch �. For an internal branch, ni stands for the number
of descendant species at te

�. Only one of the n� species
is represented in the phylogeny; the other n�−1 species
have m� descendant species at time ts (for a branch before
the rate shift) or at time tp (for a branch after the rate
shift). Similarly, for a boundary branch, m� stands for
the number of descendant species not represented in the
phylogeny at time ts (for a branch before the rate shift)
or at time tp (for a branch after the rate shift).

Using the numbers n� and m� we can construct the
likelihood for the main clade

LM =�s
M

∑
n1

�|�∈B(M,1)
int

∑
m1

�|�∈B(M,1)
int

( ∏
�∈B(M,1)

int

PM(1,n1
�;tb

�,te
�)n1

�

PM(n1
�−1,m1

�;te
�,ts)

)

×
∑

m1
�|�∈B(M,1)

ext

( ∏
�∈B(M,1)

ext

PM(1,1+m1
�;tb

�,ts)(1+m1
�)

)

× 1

k1
s +∑

�m1
�+∑

�m1
�

∑
ms

PM(
∑

�m1
�+∑

�m1
�,ms;ts,tp)(1−�)ms

×
∑

n2
�|�∈B(M,2)

int

∑
m2

�|�∈B(M,2)
int

( ∏
�∈B(M,2)

int

PM(1,n2
�;tb

�,te
�)n2

�PM(n2
�−1,m2

�;te
�,tp)(1−�)m2

�

)

×
∑

m2
�|�∈B(M,2)

ext

( ∏
�∈B(M,2)

ext

PM(1,1+m2
�;tb

�,tp)

(1+m2
�)�(1−�)m2

�

)
. (C6)

The first and second line impose the branching times
before the rate shift, while keeping track of the total
number of species at the rate shift. This number is equal
to k1

s +∑
�∈B(M,1)

int
m1

�+∑
�∈B(M,1)

ext
m1

�, by which we divide in

the third line, where
∑

�∈B(M,1)
ext

1=k1
s denotes the number

of species represented in the phylogeny at the time
of the shift (in Fig. C1 (right panel) k1

s =4). The other
factor on the third line imposes that the species that
are not represented in the phylogeny, of which there are∑

�∈B(M,1)
int

m1
�+∑

�∈B(M,1)
ext

m1
�, do not have sampled species.

The fourth and fifth line impose the branching times after
the rate shift, and require that the species that are (not)
represented in the phylogeny are (not) sampled.

As for the case without rate shift, the likelihood
expression can be simplified. We absorb internal into
boundary branches, until there are no internal branches
left. This leads to a set of boundary branches before the
rate shift, and a set of boundary branches after the rate
shift, which we denote by I(M,1) and I(M,2), respectively.

For example, for the tree of Fig. C1 (right panel), these
sets could be

I(M,1) ={ae,f,bc,d} I(M,2) ={g,i,jko,p,lm,n}.
Other ways of combining branches are possible, leading
to different sets I(M,1) and I(M,2), but result in the same
likelihood value,

LM =�s
M

∑
m1

�|�∈I(M,1)

( ∏
�∈I(M,1)

PM(1,1+m1
�;tb

�,ts)(1+m1
�)

)

× 1

k1
s +∑

�m1
�

∑
ms

PM(
∑

�m1
�,ms;ts,tp)(1−�)ms

×
∑

m2
�|�∈I(M,2)

( ∏
�∈I(M,2)

PM(1,1+m2
�;tb

�,tp)

(1+m2
�)�(1−�)m2

�

)
. (C7)

If all species are sampled, we get (by setting �=1)

LM =�s
M

∑
m�|�∈I(M,1)

( ∏
�∈I(M,1)

PM(1,1+m�;tb
�,ts)(1+m�)

)

× 1

k1
s +∑

�m�

PM(
∑

�m�,0;ts,tp)

×
∏

�∈I(M,2)

PM(1,1;tb
�,tp). (C8)

This is the likelihood formula reported in the main text,
see eq. (14).

Case of multiple rate shifts

Consider two rate shifts at times t1
s and t2

s . We
distinguish two cases. First, we assume that the second
rate shift occurs in the subclade with the first rate
shift (Fig. C2, left panel). The corresponding likelihood
can be readily constructed from the single rate shift
formula. Indeed, because the main-clade diversification
dynamics after t1

s are unaffected by the second rate shift,
the part of the likelihood dealing with the main clade
follows directly from the one for a single rate shift.
Similarly, because the subclade diversification dynamics
are unaffected by the main clade, also the part of the
likelihood dealing with the subclade follows directly
from the one for a single rate shift.

Here, we work out the second, more complicated case,
in which the second rate shift occurs in the main clade
(Fig. C2, right panel). We denote the sets of simple
branches by B(M,1)

int and B(M,1)
ext (branches before t1

s ), B(M,2)
int

and B(M,2)
ext (branches between t1

s and t2
s ) and B(M,3)

int and

B(M,3)
ext (branches after t2

s ). We again introduce numbers
n� and m� to keep track of the total number of species
at the two rate shifts. Then, the part of the likelihood

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/70/2/389/5866755 by guest on 16 February 2021



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[14:44 15/1/2021 Sysbio-OP-SYSB200051.tex] Page: 404 389–407

404 SYSTEMATIC BIOLOGY VOL. 70

FIGURE C2. Example phylogenies with two rate shifts. Colors indicate the different rate regimes: main clade in blue, subclade initiated by
first rate shift in green, subclade initiated by second rate shift in red. Left panel: The second rate shift occurs in the subclade of the first rate shift.
The likelihood of this phylogeny is the product of the one-shift likelihood for the main clade, the one-shift likelihood for the first subclade, and
the no-shift likelihood for the second subclade. Right panel: The second rate shift occurs in the main clade. The total likelihood is the product
of the two-shifts likelihood for the main clade, the no-shift likelihood for the first subclade, and the no-shift likelihood for the second subclade.

relating to the main clade (i.e., the blue clade in Fig. C2) is

LM =�s
M

∑
n1

�|�∈B(M,1)
int

∑
m1

�|�∈B(M,1)
int

( ∏
�∈B(M,1)

int

PM(1,n1
�;tb

�,te
�)n1

�

PM(n1
�−1,m1

�;te
�,t1

s )
)

×
∑

m1
�|�∈B(M,1)

ext

( ∏
�∈B(M,1)

ext

PM(1,1+m1
�;tb

�,t
1
s )(1+m1

�)
)

× 1

k1
s +∑

�m1
�+∑

�m1
�

∑
m1

s

PM(
∑

�m1
�+∑

�m1
�,m

1
s ;t1

s ,t
2
s )

×
∑

n2
�|�∈B(M,2)

int

∑
m2

�|�∈B(M,2)
int

( ∏
�∈B(M,2)

int

PM(1,n2
�;tb

�,te
�)n2

�

PM(n2
�−1,m2

�;te
�,t2

s )
)

×
∑

m2
�|�∈B(M,2)

ext

( ∏
�∈B(M,2)

ext

PM(1,1+m2
�;tb

�,t
2
s )(1+m2

�)
)

× 1

k2
s +m1

s +∑
�m2

�+∑
�m2

�

∑
m2

s

PM(m1
s +

∑
�

m2
�

+
∑
�

m2
�,m

2
s ;t2

s ,tp)(1−�)m2
s

×
∑

n3
�|�∈B(M,3)

int

∑
m3

�|�∈B(M,3)
int

( ∏
�∈B(M,3)

int

PM(1,n3
�;tb

�,te
�)n3

�PM(n3
�−1,m3

�;te
�,tp)(1−�)m3

�

)

×
∑

m3
�|�∈B(M,3)

ext

( ∏
�∈B(M,3)

ext

PM(1,1+m3
�;tb

�,tp)

(1+m3
�)�(1−�)m3

�

)
. (C9)

The latter expression can be simplified by incorporating
internal branches into longer boundary branches. Denot-
ing the resulting sets of boundary branches by I(M,1),
I(M,2), and I(M,3), we obtain

LM =�s
M

∑
m1

i |i∈I(M,1)

( ∏
i∈I(M,1)

PM(1,1+m1
i ;tb

i ,t
1
s )(1+m1

i )
)

× 1

k1
s +∑

i m
1
i

∑
m1

s

PM(
∑

i m
1
i ,m

1
s ;t1

s ,t
2
s )

×
∑

m2
i |i∈I(M,2)

( ∏
i∈I(M,2)

PM(1,1+m2
i ;tb

i ,t
2
s )(1+m2

i )
)

× 1

k2
s +m1

s +∑
i m

2
i

∑
m2

s

PM(m1
s +

∑
i

m2
i ,m

2
s ;t2

s ,tp)(1−�)m2
s

×
∑

m3
i |i∈I(M,3)

( ∏
i∈I(M,3)

PM(1,1+m3
i ;tb

i ,tp)

(1+m3
i )�(1−�)m3

i

)
. (C10)
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If all species are sampled, we get

LM =�s
M

∑
m1

i |i∈I(M,1)

( ∏
i∈I(M,1)

PM(1,1+m1
i ;tb

i ,t
1
s )(1+m1

i )
)

× 1

ks +∑
i m

1
i

∑
m1

s

PM(
∑

i m
1
i ,m

1
s ;t1

s ,t
2
s )

×
∑

m2
i |i∈I(M,2)

( ∏
i∈I(M,2)

PM(1,1+m2
i ;tb

i ,t
2
s )(1+m2

i )
)

× 1

ks +m1
s +∑

i m
2
i

PM(m1
s +∑

i m
2
i ,0;t2

s ,tp)

×
∏

i∈I(M,3)

PM(1,1;tb
i ,tp). (C11)

APPENDIX D: LIKELIHOOD FOR UNOBSERVED RATE SHIFT

It is intuitively clear that the rate shift model in which
the rate shift has no effect, that is, when rate shifted
rates (�S,�S) are equal to nonrate shifted rates (�M,�M),
should be connected to the model without rate shift.
Here, we show how the likelihood formula with rate
shift should be combined to recover Nee et al.’s (1994)
likelihood. More precisely, we prove that

lim
S→M

(
Lobs

corr +Lunobs
corr

)
=

∏
i∈I(M<)∪I(M>

j )∪I(Sj)

PM(1,1;ti,tp) (D1)

We start by noting that when the rate shift has no

effect (i.e., when setting S→M), the likelihoods Lobs,j
corr

and Lunobs,j
corr can be rewritten as

lim
S→M

Lobs,j
corr =

∞∑
m1=0

···
∞∑

mks=0

1
ks +ms

C( �m) (D2)

lim
S→M

Lunobs,j
corr =

∞∑
m1=0

···
∞∑

mks=0

mj

ks +ms
C( �m) (D3)

with common factor C( �m) given by

C( �m)=
( ∏

i∈I(M<)

PM(1,mi +1;ti,ts)(mi +1)PM(mi,0;ts,tp)
)

×
( ∏

i∈I(M>
j )

PM(1,1;ti,tp)
)( ∏

i∈I(Sj)

PM(1,1;ti,tp)
)
.

(D4)

Hence,

lim
S→M

(
Lobs

corr +Lunobs
corr

)

= lim
S→M

∑
j∈I(M<)

Lobs,j
corr +

∑
j∈I(M<)

Lunobs,j
corr

=
∞∑

m1=0

···
∞∑

mks=0

∑
j∈I(M<)

( 1
ks +ms

+ mj

ks +ms

)
C( �m)

=
∞∑

m1=0

···
∞∑

mks=0

C( �m). (D5)

Substituting the expression for C( �m),

lim
S→M

(
Lobs

corr +Lunobs
corr

)

=
( ∞∑

m1=0

···
∞∑

mks=0

∏
i|ti≤ts

PM(1,mi +1;ti,ts)(mi +1)

PM(1,1;ts,tp)PM(mi,0;ts,tp)
)

×
( ∏

i|ti>ts

PM(1,1;ti,tp)
)

=
( ∏

i|ti≤ts

PM(1,1;ti,tp)
)
×

( ∏
i|ti>ts

PM(1,1;ti,tp)
)

=
∏

i∈I(M<)∪I(M>
j )∪I(Sj)

PM(1,1;ti,tp), (D6)

where in the second equality we have applied eq. (C1)
with n2 =1 (and hence n2a =1 and n2b =0). This con-
cludes the proof of eq. (D1).

APPENDIX E: RATE SHIFTS IN DIVERSITY-DEPENDENT MODEL

The corrected likelihood Lobs,j
corr , eq. (14), can be exten-

ded to the case of diversity-dependent diversification.
Here, we describe how this can be done within the
framework of Etienne et al. (2012). In this approach
the total number of species, including the unobserved
ones, is tracked through time. Therefore, the likelihood
correction of eq. (14), which basically consists in the
division by the total number of species present at the
rate shift, can be readily implemented.

The framework of Etienne et al. (2012) is built on the
quantities Qk

m(t), the probabilities that the diversification
process is consistent with the observed phylogeny from
the starting time (typically crown age tc) to the current
time t, with k visible (i.e., represented in the phylogeny)
and m invisible (i.e., not represented in the phylogeny,
as they will go extinct before the present time tp or
they are unsampled in the data) species at time t. The
probabilities Qk

m(t) are computed forward in time, from
tc to tp. We introduce the vector Qk(t) with components
Qk

m(t) for all m. Then, for a phylogeny with kp tips and
without rate shift,

Qkp (tp)=Akp (tkp−1,tp)Bkp−1,kp Akp−1(tkp−2,tkp−1)...

A4(t3,t4)B3,4A3(t2,t3)B2,3A2(tc,t2)Q2(tc).
(E1)
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Starting from the initial vector Q2(tc) at crown age, we
repeatedly apply matrices Ak(tk−1,tk) between branch-
ing times tk−1 and tk and matrices Bk,k+1 at branching
time tk . Here, the branching times are time-ordered
(i.e., tc < t2 < t3 <...< tkp−1 < tp), so that at branching
time tk the phylogeny transits from k to k+1 branches.
The (unconditioned) likelihood of the tree under
the diversity-dependent diversification model is then
obtained as the m=0 component of Qkp (tp).

The matrices Ak appearing in eq. (E1) is obtained by
solving the linear differential equation

dQk(t)
dt

=TkQk(t), (E2)

so that Ak(tk−1,tk)=exp(Tk(tk −tk−1)), with the matrices
Tk given by

Tk =

⎡
⎢⎢⎢⎢⎢⎢⎣

−k(�k +�k) �k+1
2k�k −(k+1)(�k+1 +�k+1)

0 (2k+1)�k+1
0 0
...

...

0 ...

2�k+2 ...

−(k+2)(�k+2 +�k+2) ...

(2k+2)�k+2 ...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

. (E3)

Here, the speciation rates �n and extinction rates �n can
depend on the number of extant species n=k+m at the
event times. The matrices Bk,k+1 are given by

Bk,k+1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

�k 0 0 0 ...

0 �k+1 0 0 ...

0 0 �k+2 0 ...

0 0 0 �k+3 ...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

(E4)

For the case of a lineage-specific rate shift, we apply
the same computation from tc to the rate shift time ts. At
the rate shift, we choose the species that is undergoing
the rate shift, which corresponds to dividing by the total
number of species (both visible and invisible) extant at
ts. We then continue the computation from ts to tp, taking
into account that the main clade has lost one branch at
the rate shift. Hence, eq. (E1) has to be modified to

Qkp (tp)=Akp (tkp ,tp)Bkp−1,kp Akp−1(tkp−1,tkp )...

Aks−1(ts,tks )Cks,ks−1Aks (tks−1,ts)...

A3(t2,t3)B2,3A2(tc,t2)Q2(tc) (E5)

with the matrices Ck,k−1 given by

Ck,k−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
k 0 0 0 ...

0 1
k+1 0 0 ...

0 0 1
k+2 0 ...

0 0 0 1
k+3 ...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (E6)

Note that at branching time tk < ts the main-clade phylo-
geny goes from k to k+1 branches, and at branching time
tk > ts it goes from k−1 to k branches.

The likelihood contribution LM of the main clade is
obtained as the m=0 component of Qkp (tp) computed
with eq. (E5). The likelihood contribution LS of the
subclade can be computed with eq. (E1) starting at the
rate shift time ts. By multiplying these two contributions,
we get the (unconditioned) corrected likelihood for a
phylogeny with an observed rate shift in a specific
branch j

Lobs,j
corr =LMLS. (E7)

Using techniques of Laudanno et al. (2020), it can be
proven that this formula reduces to the likelihood (14)
in the diversity-independent case.

In the same way as for the likelihood Lobs,j
corr of an

observed rate shift, diversity-dependent extensions can
be derived for

• the likelihood Lunobs
corr of an unobserved rate shift.

Note however that in the diversity-dependent case
a dummy rate shift (i.e., rates before and after
rate shift are the same) does have an effect on the
diversification dynamics, because the subclade is
not subjected to the diversity dependence of the
main clade. Hence, there is no diversity-dependent
extension of eq. (D1);

• the conditioning probabilities Pc,0, Pc,1, and Pc,2,
see eqs. (15), (16), and (17) of the main text;
see also Etienne and Haegeman (2012), where
explicit expressions are presented for the diversity-
dependent analog of eq. (15);

• the likelihood for multiple rate shifts, that is,
eqs. (C10) and (C11) for the case of two rate
shifts in the main clade. In fact, while the explicit
formulas are cumbersome for multiple rate shifts,
the framework of Etienne et al. (2012) with the
vector Q can easily incorporate an arbitrary num-
ber of rate shifts and can be used to numerically
evaluate the multiple-shifts likelihood. This has
been implemented in version 4.3 in the R package
DDD (Etienne and Haegeman 2020).
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