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Metapopulation capacity provides an analytic tool to quantify the
impact of landscape configuration on metapopulation persistence,
which has proven powerful in biological conservation. Yet sur-
prisingly few efforts have been made to apply this approach to
multispecies systems. Here, we extend metapopulation capacity
theory to predict the persistence of trophically interacting species.
Our results demonstrate that metapopulation capacity could be
used to predict the persistence of trophic systems such as prey–
predator pairs and food chains in fragmented landscapes. In par-
ticular, we derive explicit predictions for food chain length as a
function of metapopulation capacity, top-down control, and pop-
ulation dynamical parameters. Under certain assumptions, we
show that the fraction of empty patches for the basal species pro-
vides a useful indicator to predict the length of food chains that a
fragmented landscape can support and confirm this prediction for
a host–parasitoid interaction. We further show that the impact of
habitat changes on biodiversity can be predicted from changes in
metapopulation capacity or approximately by changes in the frac-
tion of empty patches. Our study provides an important step to-
ward a spatially explicit theory of trophic metacommunities and a
useful tool for predicting their responses to habitat changes.

fragmentation | habitat changes | heterogeneous landscapes | trophic
interactions

Spatial models offer a critical tool for understanding the
maintenance of biodiversity across scales and guiding con-

servation efforts (1, 2). More than half a century ago, two the-
oretical frameworks were developed to understand species
persistence and diversity in a spatial context, namely, the theory
of island biogeography (3) and metapopulation theory (4). These
two theories laid the foundation for a new scientific paradigm
and have motivated decades of research into the role of space in
population dynamics and species interactions (1, 2, 5). While
subsequent studies during the 1970s largely focused on the theory
of island biogeography, metapopulation theory has been increas-
ingly adopted since the late 1980s because species extinctions in
fragmented landscapes have become an important issue (6–8),
particularly for species at high trophic levels (9, 10).
The original metapopulation model highlighted a dynamical

equilibrium perspective of species persistence in patchy landscapes:
populations undergo continuing local extinction, but recolonization
maintains the persistence of the whole metapopulation (4). De-
spite its simplicity, this model has generated significant insights that
are of both theoretical and practical implications. In particular, the
model predicts that for a species living in a patchy landscape,
the minimum habitat area required for the species to persist equals
the observed fraction of empty patches (referred to as Levins’ rule;
ref. 8). Such a rule provides a useful practical guide for landscape
conservation, which has been validated by some empirical studies
(e.g., on the conservation of the northern spotted owl; ref. 11).
However, Levins’ model missed two important aspects, namely,
species interactions and landscape configuration, which potentially
restricts its applications in real-world ecosystems. Consequently, a

significant body of work in the past decades has been devoted to
extending Levins’ model by incorporating interspecific interactions
and explicit landscape configurations (2, 8, 12).
Soon after the inaugural paper that proposed the meta-

population concept (4), Levins and Culver (13) extended meta-
population theory to study the coexistence of two competing
species in fragmented landscapes. Later studies further extended
the model to a broader context of interspecific relationships,
including prey–predator, host–parasitoid, and mutualistic inter-
actions (14–16), and more complex species assemblages includ-
ing multiple competing species (17, 18) and complex food webs
(19, 20). These studies have contributed to a new research
framework, namely, metacommunity ecology, which has received
considerable attention and development during the past two
decades (2, 21, 22).
Early metapopulation models were spatially implicit and thus

did not account for the area and spatial distribution of habitat
patches. This simplification made the models mathematically trac-
table but prevented them from incorporating real-world landscape
heterogeneity (8). Different types of spatially explicit models have
been developed to understand the effects of dispersal and land-
scape configuration on population dynamics and metacommunity
patterns (1, 2, 8, 23). While these models often require a simulation
approach, the spatially explicit patch-occupancy model of meta-
populations (24) provides a remarkable exception. Specifically,
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Hanski and Ovaskainen (24) formulated the concept of “meta-
population capacity,” which integrates all the information of hab-
itat area and spatial distribution that is relevant to species
persistence into a single metric. Mathematically, metapopulation
capacity is calculated as the dominant eigenvalue of the “land-
scape” matrix, the elements of which are determined by species
dispersal, habitat area, and arrangement. This analytic approach
provides an elegant tool to evaluate species persistence in frag-
mented, heterogeneous landscapes (24). The concept of meta-
population capacity has thus been widely adopted in empirical
studies and conservation biology (25–27), and it has motivated new
theoretical developments [e.g., predicting how patch network
properties and dispersal regimes affect metapopulation capacity
and thus species persistence (28–30)].
Despite these theoretical advances, surprisingly little progress

has been made to extend metapopulation capacity theory to
multispecies systems. Based on observational data, van Nouhuys
and Hanski (31) showed that as the metapopulation capacity of
the host species increased, the occupancy of its parasitoid also
increased. Hanski (32) extended their spatially explicit patch-
occupancy model to understand the coexistence of competitors
in fragmented landscapes but with simulation approaches. It re-
mains unexplored whether the analytical tool of metapopulation
capacity can be applied to understand the persistence of inter-
acting species in fragmented landscapes. Such extensions, if ap-
plicable, would overcome limitations of Levins’ model and offer
novel analytic insights for predicting the responses of community
diversity to habitat changes in realistic settings (33, 34).
In this paper, we develop a spatially explicit patch-occupancy

model of trophic interactions and examine whether meta-
population capacity can predict the persistence of trophically
interacting species. We start with a prey–predator system, for which
we derive approximate solutions and show that metapopulation
capacity does predict its persistence in fragmented landscapes. We
then extend our model to food chains and derive an analytic so-
lution for food chain length as a function of metapopulation ca-
pacity, strength of top-down control, and population dynamical
parameters. Under certain assumptions, we show that the fraction
of empty patches provides a useful indicator for predicting the
length of food chains that a fragmented landscape can support,
which extends Levins’ rule. We show that our theoretical results
shed light on the empirical system described in ref. 31. Our study
demonstrates the value of metapopulation capacity theory in un-
derstanding the persistence of multitrophic systems in fragmented
landscapes and predicting their responses to habitat changes.

Results
A Spatially Explicit Patch-Occupancy Model of Prey–Predator Interactions.
We first develop a spatially explicit model for prey–predator dy-
namics by extending Hanski and Ovaskainen’s (24) single-species
metapopulation model. In our model, the temporal dynamics of
probabilities that patch i is occupied by the prey (p1i) and predator
(p2i) follow

dp1i
dt

= c1 ·∑
j≠i
exp −α1dij( )Ajp1j 1 − p1i( ) −

e1 · 1 − p2i
p1i

( ) + e1f ·
p2i
p1i

Ai
p1i

[1a]

dp2i
dt

= c2 ·∑
j≠i
exp(−α2dij)Ajp2j(p1i − p2i) − e1f + e2

Ai
p2i, [1b]

where Aj is the area of patch j and dij is the distance between
patch i and j. c1 and e1 are the prey colonization and extinction
parameters, respectively, and α1 captures how fast the coloniza-
tion rate decreases with distance for the prey. c2, e2, and α2 are

similar parameters for the predator. Following ref. 24, we as-
sume that colonization rate increases linearly with patch area
and that local extinction rate decreases inversely with patch area.
To characterize bottom-up effects, we assume that the predator
can recolonize only patches in which the prey is present and the
predator is absent (i.e., p1i − p2i) and the local extinction of the
predator can be caused by either prey or predator extinction. To
characterize top-down effects, we assume that the prey has an
extinction rate of e1 (in patches with unit area) in the absence of
the predator and e1f in the presence of the predator. Thus, the
extinction rate for the prey is e1 · 1 − p2i

p1i
( ) + e1f ·

p2i
p1i
, where p2i

p1i
gives

the conditional probability of predator’s presence on the patch i
provided that the prey is present (i.e., “conditional incidence”;
ref. 14). Presence of the predator can either increase (f > 1) or
decrease (0 < f < 1) the extinction rate of its prey or have no
effect in donor control cases (f = 1) (ref. 14; see SI Appendix,
Appendix S1 for discussion).
In this model, the prey and predator may both persist, only the

prey can persist, or both go extinct. For instance, when the local
extinction rates of the prey and predator are low, both species
can persist on the landscape with high occupancies (Fig. 1). As
their extinction rates increase, the average occupancies of both
species decrease. At certain extinction rates, the predator will go
extinct, followed by the extinction of the prey (Fig. 1). Below, we
provide the persistence conditions for the prey and predator
(Eqs. 2 and 3).
Because the persistence conditions characterize the thresholds

below which the prey or predator species goes extinct, we are
essentially interested in the dynamics of Eq. 1 at the brink of
species extinction. When the prey species is close to extinction
(p1i ≈ 0 for all i), we expect the predator species to have already
gone extinct (i.e., p2i = 0 for all i) (e.g., Fig. 1). In such cases, the
system reduces to the single prey species, and thus the persis-
tence condition for the prey species is given by (SI Appendix,
Appendix S1; ref. 24)

e1
c1λ1

<1. [2a]

where λ1 denotes the metapopulation capacity of the prey and is
calculated as the dominant eigenvalue of the landscape matrix
for the prey (see SI Appendix, Appendix S1). When the predator
is close to extinction, it has low occupancy probabilities in all
patches (i.e., p2i ≈ 0 for all i). In such cases, the predator has
weak top-down effects, and thus the prey has similar equilibrium
occupancy as in single-species metapopulations. Under a homo-
geneity assumption (i.e., the prey has the same occupancy prob-
ability in all patches), we can derive the persistence condition for
the predator as (SI Appendix, Appendix S1)

e1
c1λ1

+ e1f + e2
c2λ2

<1, [2b]

which is more stringent than Eq. 2a. Here λ2 denotes the meta-
population capacity of the predator. These conditions suggest
that top-down control does not affect the prey persistence but
modulates predator persistence. SI Appendix, Appendix S1 pro-
vides approximate solutions for the average occupancy for both
prey and predator.
The above solutions (Eq. 2) are derived under the assumption

that the predator goes extinct before the prey, which may often
be the case (e.g., refs. 9 and 10). However, if the predator species
has a very high or even infinite colonization rate (e.g., c2 →∞),
the predator should always coexist with or go extinct together
with the prey. In such cases, the predator reaches its equilibrium
only when pp1i = pp2i for all i, and we can derive the condition of
persistence for both prey and predator species (SI Appendix,
Appendix S1):
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e1f
c1λ1

<1. [3]

We conduct numerical simulations to test the accuracy of our
analytic approximations of persistence conditions (summarized
in Table 1). Simulation results showed that, although derived
under the homogeneity assumption, our approximate solutions
work remarkably well in predicting prey–predator persistence in
heterogeneous landscapes (SI Appendix, Fig. S1). The discrep-
ancy in the threshold extinction rate between our analytic ap-
proximation and numerical simulations is generally below 5%.
Such discrepancy increases as the strength of top-down control
(f) increases, but it does not change with the spatial heteroge-
neity of patch areas (SI Appendix, Fig. S1). Moreover, our sim-
ulations showed that, as the colonization rate of the predator
increased from small to large values, the threshold meta-
population capacities for prey and predator persistence exhibited
a transition from Eqs. 2 to 3 (SI Appendix, Fig. S2). Interestingly,
we found that when the predators substantially reduced the prey
extinction rate (i.e., f << 1), the transition could take different
pathways for systems starting with different initial predator oc-
cupancies (SI Appendix, Fig. S2). In other words, the system can
exhibit alternative stable states at intermediate rates of predator
colonization (i.e., the prey and predator either both persist or
both go extinct) depending on the initial predator occupancy (SI
Appendix, Fig. S3 and Appendix S1). Lastly, while our model
describes patch-occupancy dynamics in a deterministic manner,
simulations of their stochastic counterparts (SI Appendix, Ap-
pendix S2) showed that our analytic solutions provide reasonable
predictions of the persistence conditions of the prey and predator

in stochastic settings, although the average occupancies from
stochastic simulations were generally lower than those predicted
by our deterministic model (SI Appendix, Fig. S4).

Extensions to Food Chains.We further extend our spatially explicit
model to longer food chains that contain L trophic levels:

dp1i
dt

= c1 ·∑
j≠i
exp −α1dij( )Ajp1j 1 − p1i( ) −

e1 · 1 − p2i
p1i

( ) + e1f1 ·
p2i
p1i

Ai
p1i

[4a]

dp2i
dt

= c2 ·∑
j≠i
exp −α2dij( )Ajp2j p1i − p2i( )

−
e1f1 + e2 · 1 − p3i

p2i
( ) + e2f2 ·

p3i
p2i

Ai
p2i [4b]

. . .

dpLi
dt

= cL ·∑
j≠i
exp( − αLdij)AjpLj · (pL−1,i − pLi)

− e1f1 + . . . eL−1fL−1 + eL
Ai

pLi, [4c]

where pki denotes the occupancy probability of trophic level k on
patch i. The parameters ck, ek, and αk have similar meanings as in
Eq. 1. fk captures the top-down effect of the trophic level k+1 on
extinction of the trophic level k in a food chain of length L. Be-
cause of local dynamics such as trophic cascades, fk could vary with
food chain length (e.g., an herbivore might be less able to overex-
ploit its plant resource) if a natural enemy keeps its numbers in
check. Based on Eq. 4, we can similarly derive the persistence
condition for a food chain of length L (SI Appendix, Appendix S1):

∑L
k=1

∑k−1
i=1 eifi + ek
ckλk

<1. [5]

This equation shows that the persistence of the food chain in
fragmented landscapes is jointly determined by the metapopulation
capacities of all species (λi), the species-specific parameters of colo-
nization (ci) and extinction (ei), and the strength of top-down effects
of higher trophic levels on their prey levels (fi). If all species have the
same metapopulation capacity (λi ≡ λ, ∀i) and dynamical parameters
(i.e., e, c, and f), we can derive the upper limit of the food chain
length that a landscape can support (SI Appendix, Appendix S1):

L<L̂≜
1
2f

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
8λfc
e

+ (2 − f )2
√

− (2 − f )). [6]

The above analytic solution predicts that the maximum food
chain length that a landscape can support increases with the
metapopulation capacity (λ) and colonization rate (c), but it de-
creases with the strength of top-down control (f) and the extinc-
tion rate (e) (Fig. 2A).
In donor-control systems (f = 1), the above solution (Eq. 6)

can be further simplified:

L<L̂d ≜
1
2

⎛⎜⎜⎜⎜⎜⎝ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅
8
U1

+ 1

√
− 1

⎞⎟⎟⎟⎟⎟⎠, [7]

where U1 = e
λc represents the average fraction of empty patches

for the basal species (see SI Appendix, Appendix S1; ref. 24). Eq.
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Fig. 1. The equilibrium average occupancies of prey and predator species
along a gradient of local extinction parameter, on a landscape with 20
patches. For simplicity, we assume that prey and predator have same ex-
tinction parameter (e). Solid and dashed lines show results from simulation
and analytic approximation, respectively. The three upper panels exhibit the
distribution of habitat patches and species occupancy corresponding to
three values of extinction parameters (e), indicated by the dashed gray lines.
The habitat patch is indicated by green points, with size proportional to
patch area. The size of blue and red points (relative to green points) indi-
cates the occupancy probability of prey and predator, respectively. See SI
Appendix, Table S1 for parameter values.
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7 suggests that one can use the fraction of empty patches of the
basal species to predict the number of trophic levels that a land-
scape can support. Specifically, the basal species persists (L̂d > 1)
when U1 < 1, and a second trophic level can persist (L̂d > 2) when
U1 < 1=3, a third trophic level can persist when U1 < 1=6, and a
fourth trophic level can persist when U1 < 1=10.
Again, we note that the above solutions (Eqs. 5–7) are derived

by assuming finite colonization rates of higher trophic levels. If
all predators (i.e., trophic level ≥ 2) have infinite colonization
rates, the food chain length is unlimited as long as the basal
species satisfies the condition given by Eq. 3 (Table 1).
Our simulations confirmed the validity of the solutions given

by Eqs. 5–7. Among 1,000 simulated food chains, more than 90%
reached a food chain length as predicted by Eq. 6, while the
exceptions exhibited one trophic level higher or lower than
predicted (blue and green points, respectively, in Fig. 2B and SI
Appendix, Fig. S5). Although it ignores top-down control and
assumes identical species parameters, Eq. 7 provided an overall
good prediction of realized food chain length for systems with
top-down control (Fig. 2C) and species-specific parameters (SI
Appendix, Fig. S5). Eqs. 6 and 7, however, tended to overesti-
mate food chain length when f > 1 and underestimate it when f <
1 (inserted panels in Fig. 2 B and C).

Persistence of Trophic Species under Habitat Changes. The above
solutions (Eqs. 2, 3, and 5–7) clarify that the persistence of

prey–predator or food chain systems depends on habitat area
and spatial distribution through the metapopulation capacity.
Consequently, the effect of habitat changes can be understood
from their effects on the metapopulation capacities of all species.
Here, we consider three scenarios of habitat changes: 1) habitat
deterioration, in which the area of each patch is reduced to a
proportion h of its original area (i.e., A’

i = hAi). In this case, we
have λ’

λ = h2, where λ’ and λ represent the new and original
metapopulation capacities, respectively (SI Appendix, Appendix
S1). 2) Habitat loss, in which a fraction of randomly selected
patches is lost, and the remaining fraction is a*100%. In this
case, we can derive the change in metapopulation capacity if all
patches have the same area and connectivity: λ

’

λ = na−1
n−1 , where n is

the initial number of patches (SI Appendix, Appendix S1). 3)
Habitat fragmentation, in which the connectivity decreased
due to an increased effective distance between all patches
(d’ij = dij + s, s > 0). In this case, we have λ’

λ = e−αs (SI Appendix,
Appendix S1).
We denote Δλ ≜ λ’

λ, which equals h2, na−1n−1 , and e
−αs, respectively,

under the above three scenarios of habitat changes (i.e., habitat
deterioration, loss, and fragmentation). By substituting Δλ into
Eqs. 5–7, we can evaluate how habitat changes will alter the
maximum food chain length. In particular, when all species have
same parameters, we can substitute λ’ = λΔλ to Eq. 6 to predict
the food chain length in the changed landscape (L’):

Table 1. Analytic approximations on the persistence condition of prey–predator systems and the maximum food chain length in
spatially explicit metacommunity models

Finite colonization of predator(s)
Infinite colonization of

predator(s)

Species-specific
parameters

Species shared parameters

Top-down control Donor control (f = 1)

Prey persistence condition e1
c1λ1

< 1 e
cλ<1 U1 < 1 e1f

c1λ1
<1

Predator persistence
condition

e1
c1λ1

þ e1fþe2
c2λ2

< 1 eð2þfÞ
cλ < 1 3U1 <1 e1f

c1λ1
<1

Food chain length (L)
PL
k¼1

Pk�1

i¼1
ei fiþek

ckλk
<1 L< 1

2f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8λfc
e þ 2� fð Þ2

q
� 2� fð Þ

� �
L< 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
8
U1

þ 1
q

� 1
�

Unlimited if e1f
c1λ1

<1

ck, ek, and λk represent the colonization rate, local extinction rate, and metapopulation capacities of the species at trophic level k, respectively. fk captures
the top-down effect of the trophic level k+1 on the trophic level k. U1 = e/λc represents the average fraction of empty patches for the basal species.

B CA

(U1)

Fig. 2. (A) The maximum food chain length as a function of metapopulation capacity (λ) and strength of top-down control (f), as predicted by Eq. 6. (B and C)
The realized food chain length (points) as functions of the theoretical expectation on the maximum food chain length (L̂, Eq. 6) (B) and the average fraction of
empty patches (U1) (C). The red lines show the theoretical expected food chain length by Eq. 6 in B and Eq. 7 in C. The blue and green points indicate, respectively,
simulated food chains whose realized food chain are higher and lower than the theoretical expectation. The inserted panels in B and C show the relationship of
deviation between predicted and realized food chain length with the strength of top-down effects. See SI Appendix, Table S1 for parameter values.

4 of 8 | PNAS Wang et al.
https://doi.org/10.1073/pnas.2102733118 Metapopulation capacity determines food chain length in fragmented landscapes

D
ow

nl
oa

de
d 

at
 IN

IS
T

 C
N

R
S

 o
n 

A
ug

us
t 2

4,
 2

02
1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2102733118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2102733118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2102733118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2102733118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2102733118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2102733118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2102733118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2102733118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2102733118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2102733118/-/DCSupplemental
https://doi.org/10.1073/pnas.2102733118


L’<L̂’ ≜
1
2f

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
8λfc
e

Δλ + (2 − f )2
√

− (2 − f )). [8]

Moreover, in the donor-control case, the fraction of empty
patches following habitat changes becomes: U ’

1 = e
λ’c

= U1
Δλ
. We

then substitute it to Eq. 7 and have

L’<L̂d
’ ≜

1
2

⎛⎜⎜⎜⎜⎜⎝ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
8
U1

·Δλ + 1

√
− 1

⎞⎟⎟⎟⎟⎟⎠. [9]

Thus, based on the initially observed fraction of empty patches
(U1) and the proportional change in the metapopulation capacity
(Δλ) following habitat changes, one can predict the change in
food chain length (SI Appendix, Appendix S1).
Our simulations showed that all three types of habitat changes

decreased the persistence of higher trophic levels and reduced
food chain length (Fig. 3). The change in food chain length was
well predicted by our analytic approximation Eq. 8 (Fig. 3).
Furthermore, our simulations showed that Eq. 9, though derived
under the donor-control case and requiring no detailed infor-
mation on population dynamical parameters (e.g., c, e, f) also
provided a reasonable predictor for food chain changes (Fig. 3).

Empirical Test. The butterfly–wasp metacommunity in the Åland
archipelago provides a unique system to test our model predic-
tions (31). The Glanville fritillary butterfly Melitaea cinxia has
two cooccurring parasitoids (i.e., Cotesia melitaearum and
Hyposoter horticola), which have low and high rates of dispersal
(or colonization), respectively (31, 35). Given that detailed dy-
namical parameters are unavailable for the two parasitoids, we
tested two model predictions: 1) Predators with limited coloni-
zation rates (e.g., C. melitaearum) can only persist on landscapes
in which the fraction of empty patches U1 < 1/3 (Eq. 7) and their
average occupancy could be predicted by p2 = 1 − 3U1 (SI Ap-
pendix, Appendix S1); 2) Predators with very high colonization
rates (e.g., H. horticola) could persist as long as the prey persists
on the landscape (Eq. 3). Our empirical analyses generally sup-
ported these two predictions. Among 102 patch networks, C.
melitaearum was absent or had low occupancy (only 4 out of 89
networks had an average occupancy >0.05) in those networks in
which the fraction of empty patches for the butterfly (i.e., U1) is
larger than 1/3; in contrast, it was present in many networks (8
out of 13 networks had an average occupancy >0.05) in those
networks in which U1 < 1/3 and its occupancy followed the trend
as our model predicted (Fig. 4). Moreover, H. horticola occurred
in all patch networks in which the host butterfly occurred (35),
consistent with our prediction under high colonization rates.

Discussion
Metapopulation capacity offers an elegant, quantitative tool to
assess the effects of landscape configuration (e.g., habitat area
and spatial distribution) on species persistence in fragmented,
heterogeneous landscapes (24). Our theoretical analyses extend
metapopulation capacity theory to predict the persistence of
multitrophic systems (e.g., prey–predator interactions and food
chains). While our analytic solutions are approximate, simulations
demonstrate their remarkable accuracy in predicting persistence
of species across trophic levels. Although our model was built
upon prey–predator interactions, it has broad implications for
antagonistic systems including plant–herbivore, host–parasite, and
host–parasitoid relationships. As an example, we use similar ap-
proaches and derive persistence conditions for a more complex
food web module with omnivory and competition (SI Appendix,
Appendix S3). As natural ecosystems are inherently diverse and
complex, our multitrophic extension of metapopulation capacity

theory offers ample opportunities for empirical applications and
further theory development.

Persistence of Trophic Systems in Heterogeneous Landscapes. The
dynamics of interacting species are determined by both abiotic
(e.g., landscape configuration) and biotic (e.g., species interac-
tions) conditions they experience. The classic theory of meta-
population capacity captures the effect of abiotic conditions
(i.e., habitat area and spatial distribution) on species persistence
in a single-species context. In multispecies systems, however, biotic
interactions modify the landscapes experienced by any species. For
instance, the presence of predators can alter habitat quality and
thus local extinction rate for its prey (i.e., top-down effect),
whereas the absence of prey makes potential habitats for the
predator unavailable (i.e., bottom-up effects). Such modifications
add much complexity, making it difficult to analytically predict the
persistence of interacting species in heterogeneous landscapes.
Our analytic solutions clarify how landscape configuration

(characterized by the metapopulation capacity, λ), population
dynamical parameters (e and c), and top-down control (f) jointly
determine the persistence of prey–predator interactions and
food chains (Table 1). Interestingly, they suggest that if a pred-
ator has a finite colonization rate, top-down control (f) impairs
the persistence of the predator itself but not that of its prey (Eq.
2). This counterintuitive result can be understood from the weak
top-down effect at the brink of species extinction. When the prey
species is close to extinction, the predator should have an even
lower occupancy or be already extinct and thus have a weak
impact on the prey. But we note that although the top-down
control by the predator does not affect the persistence condi-
tion of the prey, it can significantly decrease the occupancy of the
prey when both species are far away from the brink of extinction
(Fig. 1). Moreover, if the predator has a very large colonization
rate and thus quickly occupies patches wherever its prey occurs,
its top-down control can modulate the persistence of prey (Eq.
3). Consequently, when the top-down control increases prey
extinction (f > 1), the persistence of the predator could first
increase and then decrease with its colonization rate (SI Ap-
pendix, Fig. S2). Such a maximum persistence at intermediate
colonization rate is in line with previous findings in local prey–
predator systems, in which increasing the predators’ attack rate
can first increase its own abundance but then decrease it until it
reaches extinction (36).
Our model also provides a quantitative tool to predict food

chain length. Using spatially homogenous models, Holt (14) pre-
dicted that the length of food chains should increase with habitat
area and decrease with isolation. Our analytic solutions extend this
prediction to heterogeneous landscapes, in which the influence of
landscape heterogeneity (e.g., patch areas and spatial distribution)
is integrated into metapopulation capacity. Our finding that
metapopulation capacity provides an important predictor of spe-
cies persistence across trophic levels is in line with the recently
proposed concept of species-fragmented area relationship (SFAR;
ref. 37). But our models extend SFAR by explicitly incorporating
trophic interactions and clarifying the effect of top-down control
on food chain length (Eq. 6).

An Extended Levins’ Rule. One interesting insight from classic
metapopulation models is Levins’ rule (i.e., the minimum frac-
tion of habitats to be conserved is determined by the fraction of
empty patches) (8, 38). Such a rule is particularly useful in
practice because the fraction of empty patches can be easily
measured, and no detailed knowledge on metapopulation dy-
namics is needed to predict the consequences of habitat changes
(11, 38). Our results extend Levins’ rule to multitrophic systems
in heterogeneous landscapes (see SI Appendix, Appendix S4 for
similar results in homogeneous landscapes). Specifically, our Eq.
7 provides a quantitative tool to predict food chain length based
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on the fraction of empty patches for the basal species (U1). As
expected, a lower U1 indicates a larger potential for supporting
higher trophic levels, and the threshold for increasing one tro-
phic level is given by Eq. 7. The rationale underlying such an
extended Levins’ rule is that U1 is an emergent property, which
integrates the combined effects of habitat configuration and
population dynamical parameters.
Our extended Levins’ rule provides a reasonable explanation

for the occupancy of C. melitaearum, a specialist parasitoid of its
host butterfly M. cinxia in the Åland archipelago. The butterfly
M. cinxia in this system provided the first empirical support for
the metapopulation capacity theory (24), which was often studied
in a single-species metapopulation context. However, M. cinxia is
embedded in a complex species interaction network including
parasites and parasitoids (31, 35). A recent study revealed no
evidence for a top-down effect of C. melitaearum on the extinction
of M. cinxia and showed that they had comparable rates of colo-
nization and extinction (39), which satisfy the assumptions under
which our extended Levins’ rule was derived. Consistent with our
prediction (Eq. 7 and SI Appendix, Appendix S4), C. melitaearum
was found to be absent or have low occupancy in patch networks
in which the average fraction of empty patches was larger than 1/3,
and it occurred with increasing occupancy as the fraction of empty
patches decreased from 1/3 to 0 (Fig. 4). These results support the
extended Levins’ rule as a rule of thumb in empirical studies.
However, we make two caveats to our extended Levins’ rule.

First, our prediction (Eq. 7) was derived for donor-control in-
teractions and under the assumption that all species have the
same dynamical parameters. In the presence of top-down control
and variation in species parameters, our numerical simulations

suggest that Eq. 7 can either over- or underestimate food chain
length (Fig. 2C and SI Appendix, Fig. S5). Moreover, in natural
ecosystems, U1 can also be affected by processes that are ignored
in our models, for instance, the rescue effect and transient dy-
namics (15), which may bias our prediction.

Conservation Implications. Our theoretical results have useful
implications for landscape conservation. To determine the crit-
ical area or connectivity for food chain persistence, we need to
understand how habitat changes affect metapopulation capacity
across trophic levels and compare them with their persistence
conditions (Eq. 8). These persistence conditions are in turn de-
termined by species-specific parameters of population dynamics
(αi, ei, and ci) and trophic interactions (fi), yet estimation of these
parameters requires long-term observational data (8) that are
not always accessible. Alternatively, our extended Levins’ rule
provides a practical way to predict food chain changes based on
changes in the observed fraction of empty patches (Eq. 9). For
instance, start with a landscape in which the basal species occurs
in 90% of all habitat patches (i.e., U1 ≈ 10%). Eq. 9 predicts that
such a landscape can support up to four trophic levels, but any
degree of habitat destruction or fragmentation will cause the
extinction of the fourth trophic level. Continuing habitat de-
struction can further drive the third trophic level to extinction
when U ’

1 > 1=6 (or Δλ < 0.6), which happens when all patches
shrink by more than 23% (i.e., h < 0.77), more than 40% patches
are lost (i.e., a < 0.6), or the increased distance between patches
exceeds half of the characteristic distance (i.e., s< 0.5=α) (Eq. 9).
Again, we note that Eq. 9 should be used with caution because it
ignores top-down effects and variation in species dynamical

dij dij + sAj 0(A hAj)

f 
f 
f 

A B C

D E F

Fig. 3. The effect of habitat changes on food chain length: habitat deterioration (A and D), habitat loss (B and E), and habitat fragmentation (C and F). A–C
illustrate the three types of habitat changes. In A and B, green and gray points represent the remaining and destroyed habitats, respectively. In C, habitats are
not reduced, but the distance between patches increases. D–F show results in food chains with different strengths of top-down control: f = 0.5 (red), 1 (black),
and 2 (blue). Solid lines represent simulated results, and dashed and dotted lines show the theoretical expectations by Eqs. 8 and 9, respectively. See SI
Appendix, Table S1 for parameter values.
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parameters. Nevertheless, our theoretical predictions are quali-
tatively consistent with numerical simulations as well as simula-
tions of population dynamics under habitat changes that integrate
both bottom-up and top-down effects to show that complex food
webs are deconstructed from the top to the bottom (40).
Conservation efforts should thus be targeted at enhancing

metapopulation capacity, which can be achieved by increasing
the area, number, and/or connectivity of habitat patches (Fig. 3).
Conversely, if the objective is to eliminate a parasite species,
landscape management should be designed to decrease meta-
population capacity to such an extent that the parasite goes extinct
but the host species persists. In this case, characteristics of the
parasite species should be taken into account. For instance, if the
parasite species has a very high colonization rate (e.g., H. horticola
in the M. cinxia system), elimination of such species by reducing
metapopulation capacity risks host extinction as well (Eq. 3).

Conclusions
Our study provides an important step toward understanding and
predicting trophic interactions in heterogeneous, fragmented
landscapes. By extending metapopulation capacity theory to mul-
titrophic systems, we derive analytical insights into the persistence
of trophically interacting species in heterogeneous landscapes and
their responses to habitat changes. Our findings have implications
for both ecological studies and conservation practices. In particu-
lar, our extended Levins’ rule offers a practical tool for managing
habitat configuration to maintain food chain length, an important
indicator of vertical diversity and ecosystem functioning (41). Our
model framework may serve as a benchmark for future theoretical
research that incorporates other scenarios of area and context
dependency of colonization and extinction processes (30, 42, 43)
and more complex trophic interactions to understand how meta-
population capacity may predict the spatial scaling of trophic
structure (15, 44). While we have assumed constant dynamical
parameters following habitat changes, future models should take
into account potential habitat change–induced alterations in these
parameters (e.g., the strength of trophic interactions [f]) (45). Such

theoretical developments, together with empirical work designed
to test theoretical predictions, will contribute to a more operational
and predictive science of conservation biology.

Methods
Analytical Investigation of the Models. Our analyses of the spatially explicit
models of prey–predator interactions (Eq. 1) and food chains (Eq. 4) were
built upon the classic results by ref. 24. Although deriving the exact persis-
tence conditions for higher trophic levels was difficult (except under donor-
control cases; see SI Appendix, Appendix S1), we could provide approximate
solutions under a homogeneity assumption, in which species at the lower
trophic level had the same occupancy in all patches. For brevity, all details on
the derivation of our analytic solutions (summarized in Table 1) are pre-
sented in SI Appendix, Appendix S1.

Simulation. We conducted numerical simulations to evaluate the accuracy of
our approximate solutions for persistence conditions. Our simulated land-
scapes consisted of n patches (n = 20 to 100), with their areas (Ak) sampled
from a log-uniform distribution (i.e., log2Ak ∼ U[−2,2]) and locations sam-
pled from a two-dimensional uniform distribution on a square landscape of
[0, 10] × [0, 10]. These simulated landscapes provided habitats for prey–
predator pairs or food chains, for which we assigned dynamical parameters
(ci, ei, αi, and fi) for each species. We simulated the dynamics of these trophic
systems using Eq. 1 (for prey–predator pairs) or Eq. 4 (for food chains) until
they reached equilibrium (10,000 time steps) and record status of each
species (extinction or persistence). For prey–predator pairs, we gradually
changed species (e.g., the extinction parameter in Fig. 1 and SI Appendix,
Fig. S1) or landscape parameters (e.g., patch area in SI Appendix, Fig. S2) and
determined numerically the threshold conditions for the persistence of each
species. We then compared these numerical conditions to our analytical
predictions (i.e., Eqs. 2 and 3). For food chains, each simulation was initial-
ized with eight trophic levels, and the realized food chain length was
recorded at the end of simulations. We compared the realized food chain
length with the prediction by Eqs. 5–7 (Fig. 2 and SI Appendix, Fig. S5). In all
simulations, we calculated the weighted average occupancy for species i by

p*i = ∑k
p*
ik
A2

k∑k
A2

k

(24) and then derived the fraction of empty patches of the basal

species as U1 = 1 − p*1 .
We simulated three scenarios of habitat changes and examined their

effects on the persistence of food chains (i.e., Fig. 3). Our simulations started
with a landscape consisting of 50 patches and hosting a food chain of eight
trophic levels all with equal parameters (c, e, f, α). Three ways of habitat
changes were then simulated: habitat deterioration (i.e., decreasing the area
of all patches proportionally by 1-h), habitat loss (i.e., randomly removing a
fraction of patches by 1-a), or habitat fragmentation (i.e., increasing the
distance between each pair of patches by s). For each scenario and level
(i.e., 1-h, 1-a, and s) of habitat changes, we ran the dynamics of food chains
(Eq. 4) to equilibrium and recorded the realized food chain length. In sim-
ulating habitat loss, we randomly removed patches from 50 to 5 and re-
peated the process 100 times, from which we took the median food chain
length at each level of habitat loss. We compared the simulation results with
our analytic predictions by Eqs. 8 and 9.

See SI Appendix, Table S1 for model parameters used for generating
each figure.

Empirical Data. The butterfly M. cinxia in the Åland archipelago is a model
system for the study of metapopulation dynamics (24). It inhabits a 50 ×
70 km2 landscape made up of ∼4500 small meadow habitat patches, each
surrounded by unsuitable habitat. The patches are surveyed annually to
count the number of butterfly larval nests (since 1993) as well as the cocoons
of the specialist parasitoid wasp, C. melitaearum (since 1998) (39, 46). The
butterfly occupies several hundred meadows annually, with a turnover of
between 50 and 200 local extinctions and colonizations (46). C. melitaearum
occupies 5 to 15% of the local butterfly populations and also has a high rate
of local population turnover (31, 39). Systematic sampling has also con-
firmed the presence of another parasitoid wasp, H. horticola, in virtually all
M. cinxia populations (35).

The 4,500 habitat patches occur in clusters in the landscape. We have
divided them into 131 networks using the software SPOMSIM (47) based on
the connectivity of patches as a function of the distances between them,
their areas, and the characteristic dispersal distance of the butterfly. Thus,
butterflies inhabiting a network easily colonize patches within it, but move-
ment among networks is rare. For this study, we used 10 y of survey data, from
2005 to 2014. We omitted those networks located on isolated islands where
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Fig. 4. Average occupancy of the parasitoid C. melitaearum as a function of
the average fraction of empty patches for the host butterfly (i.e., one minus
the average occupancy) across 102 patch networks in the Åland archipelago.
Black points represent patch networks consisting of more than 10 patches
and circles with no more than 10 patches. The gray area indicates the region
where the parasitoid is predicted to persist (i.e., U1 < 1/3). The red line shows
the predicted occupancy (SI Appendix, Eq. S4).
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the wasps rarely appear (17/131) and containing patches with missing records
during the survey period (16/131). This left 102 networks (note that four
networks are on islands and contain missing values). For each network, we first
calculated the temporal average of butterfly occupancy for each patch k (pk)
and then derived the average fraction of empty patches by U1 = 1 −∑

k
pkωk,

where the weight ωk was given by the squared area of the patch k (follow-
ing ref. 24). We similarly calculated the temporal average of patch occu-
pancy for the wasp and derived its average network-level occupancy (again
weighted by ωk).

Data Availability. R code and Excel data have been deposited in GitHub
(https://github.com/spwangpku/MC_foodchain).
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