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Abstract

Detecting selection on codon usage (CU) is a difficult task, since CU can be shaped by both the mutational process and
selective constraints operating at the DNA, RNA, and protein levels. Yang and Nielsen (2008) developed a test (which we
call CUYN) for detecting selection on CU using two competing mutation-selection models of codon substitution. The null
model assumes that CU is determined by the mutation bias alone, whereas the alternative model assumes that both
mutation bias and/or selection act on CU. In applications on mammalian-scale alignments, the CUYN test detects selec-
tion on CU for numerous genes. This is surprising, given the small effective population size of mammals, and prompted us
to use simulations to evaluate the robustness of the test to model violations. Simulations using a modest level of CpG
hypermutability completely mislead the test, with 100% false positives. Surprisingly, a high level of false positives (56.1%)
resulted simply from using the HKY mutation-level parameterization within the CUYN test on simulations conducted with
a GTR mutation-level parameterization. Finally, by using a crude optimization procedure on a parameter controlling the
CpG hypermutability rate, we find that this mutational property could explain a very large part of the observed mam-
malian CU. Altogether, our work emphasizes the need to evaluate the potential impact of model violations on statistical
tests in the field of molecular phylogenetic analysis. The source code of the simulator and the mammalian genes used are
available as a GitHub repository (https://github.com/Simonll/LikelihoodFreePhylogenetics.git).
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Introduction
Elucidating the evolutionary factors influencing codon usage
(CU) in protein-coding genes is a challenging endeavor. One
difficulty resides in the complex nature of the CU genotype–
phenotype relation. The nature of this relationship is affected
by features of the mutational process, the degeneracy struc-
ture of the genetic code, synonymous codon recognition by
tRNA molecules, and multiple other constraints operating at
the DNA, RNA, and protein levels.

Unequivocally, the most important feature highlighted
since the beginning of CU studies (Grantham et al. 1980), is
the positive correlation found between the CU of highly
expressed genes and the isoaccepting-tRNA pool composi-
tion (Ikemura 1985; Bulmer 1987; Akashi 1995; Sharp et al.
1995; Duret 2002). Presumably, the coevolution of CU and
tRNA pool composition ensures the accuracy and efficiency
of translation of highly expressed genes (reviewed in Quax
et al. 2015).

The CU of highly expressed genes is usually postulated to
result from a selection process on synonymous mutations, as
investigated in large comparative frameworks across bacteria
(Sharp et al. 2005) and eukaryotes (dos Reis and Wernisch

2009), and several more specific contexts, such as in
Drosophila (Shields et al. 1988; Akashi 1994; Bierne and
Eyre-Walker 2006; Lawrie et al. 2013), in Caenorhabditis ele-
gans (Duret and Mouchiroud 1999), in Daphnia pulex (Lynch
et al. 2017), in vertebrates (Doherty and McInerney 2013), in
the Euarchotonglires from mammals (Yang and Nielsen
2008), as well as in humans (Lavner and Kotlar 2005). While
there might be mutational features that could partially ac-
count for the match between CU and the tRNA pool com-
position, “mutational pressures alone cannot explain why the
more frequent codons [. . .] are those that are recognized by
more abundant tRNA molecules” (Hershberg and Petrov
2008), probably because selection might be more effective
at modulating the tRNA pool composition. Nonetheless, until
a plausible mechanism is proposed, there generally remains
“an understandable reluctance to accept selection at synon-
ymous sites” (Chamary et al. 2006).

Exogenous gene expression is one area in which these
issues have practical ramifications. Indeed, practitioners in
this field remain without a clear rationalization of the meth-
ods for their activity: “A future challenge in studying the re-
lation between coding sequences and protein production is
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to perform a thorough comparative analysis of all currently
known, and yet to be discovered, features of coding sequen-
ces that influence the translation process.” (Quax et al. 2015).
To date, two strategies are available to them for increasing the
efficiency of exogenous genes expression: the first consists of
expressing additional tRNA genes in the host cell to match
the CU of the exogenous gene to be expressed; and the sec-
ond consists of modifying the CU of the exogenous genes
(reviewed in Quax et al. 2015). For instance, when using a
bacterial system, one cannot achieve a worthwhile produc-
tion of some desired human protein without modifying the
codons used for encoding the desired amino acid sequence
(Doble and Gummadi 2007). Nonetheless, there are still many
instances in which the CU modifications for a particular se-
quence proceed by trial-and-error (Webster et al. 2017), with-
out discernible reasons for the final CU that optimizes protein
production.

Probabilistic models of molecular evolution have the po-
tential to tease apart the determining factors of CU. The
mutation-selection models (reviewed by McCandlish and
Stoltzfus 2014), and particularly the phylogenetic ones, are
well suited for testing hypotheses related to coding sequence
evolution. The distinguishing features of these models is that
they specify a substitution process with distinct parameter-
izations for the manner in which genetic variation is gener-
ated and for the fixation probability of genetic variants. In
some cases, the models have specifically included considera-
tions of selection on CU (McVean and Vieira 2001; Nielsen
et al. 2007; Rodrigue et al. 2008; Yang and Nielsen 2008;
Rodrigue and Philippe 2010; Pouyet et al. 2016).

The most well known of these models of codon substitu-
tion are those of Yang and Nielsen (2008). In their work, they
propose a likelihood ratio test (LRT) to detect selection on
CU, which we refer to as the CUYN test. The LRT is performed
using two competing mutation-selection models: the null
model is built with selection acting only on amino acid usage,
assigning the same fitness to each degenerate codon encod-
ing a particular amino acid; and the alternative model assigns
a distinct fitness to each codon, and thus accounts for selec-
tion acting on both amino acid usage (by assigning a higher/
lower fitness overall to the codons that encode a particular
amino acid) and CU (by assigning a distinct fitness to each
codon of an amino acid).

Yang and Nielsen (2008) found that much of the mam-
malian genes they tested rejected the null model, suggest-
ing pervasive selection on CU. However, population
genetics principles suggest that for organisms with a small
effective population sizes, like mammals, selection is too
inefficient to distinguish small effects conferred by certain
synonymous mutations (reviewed in Chamary et al. 2006;
Charlesworth 2009; Lynch et al. 2016). In contrast, selec-
tion is expected to be efficient within highly expressed
proteins and in groups of fast-growing organisms (Sharp
et al. 2010). Consequently, mammalian CU is expected to
be mainly determined by mutation bias (reviewed in
Chamary et al. 2006).

Several important features of the mutational process are
unaccounted for in most codon substitution models. Among

these, a phenomenon known as CpG hypermutability,
whereby certain mutations occur at higher rates in the con-
text of the states at adjacent positions in the sequence, is
considered pervasive in mammalian genomes (reviewed in
Hodgkinson and Eyre-Walker 2011). The resultants of CpG
hypermutability are numerous. For instance, the most used
synonymous codon for Alanine in human, GCC, is four times
more represented than GCG (Coleman et al. 2008), probably
because the latter codon includes a highly mutable con-
text (i.e., CpG), and is therefore short-lasting. In addition,
on the basis of the relative synonymous codon usage
(RSCU) metric, the most frequent adjacent codon pair
for Alanine-Glutamine is expected to be GCC-GAR. In
fact, however, this pair is the most underrepresented in
humans (Coleman et al. 2008), probably because of the
instability of the CpG context found at the interface of
these two sequential codons. Another important feature
that is known to bias the generation of genetic variation
within mammalian genomes is GC-biased gene conversion
(Duret and Galtier 2009): a phenomenon produced from
meiotic recombination favoring transmission of G: C alleles
over A: T alleles. Hypermutability of CpG contexts and GC-
biased gene conversion are considered responsible for the iso-
chore structures found in vertebrates (Duret and Galtier 2009;
Munch et al. 2014; Mugal et al. 2015). These phenomena may
have an impact on the test proposed by Yang and Nielsen
(2008), in a manner that is very difficult to foresee. Indeed, in
light of their surprising results, Yang and Nielsen (2008) point
out that “the sensitivity of the LRT to violations of the assumed
mutation model is not well understood and merits further
research.”

In this work, we use simulations to evaluate the effect of
model violations on the accuracy of the CUYN test. We ex-
plore several types of violations at the mutation level, includ-
ing one with dependence across codons, related to CpG
hypermutability. We also evaluate how site-heterogeneous
preferences on amino acids can affect the test. Numerous
false positives are obtained under these model violations.
While not excluding other potential features that can affect
CU bias, our findings suggest that CpG hypermutability alone
could explain the results of the CUYN test. Moreover, the test
is even more unlikely to be reliable when yet other features
(e.g., biased gene conversion) become involved, such as would
be the case for real data sets. Altogether, given the small
effective population sizes of mammals, and the potentially
strong effect of known model violations, we find the CUYN
test to be ill-suited for the detection of CU in the mammalian
context.

Phylogenetic Mutation-Selection Models of Codon
Substitution
Our study involves comparisons across several different sub-
stitution models, which we detail in this section. Branch
lengths are free parameters for all models used in this work,
while the tree topology is fixed. The models we use herein
assume a point-mutation process, going from one codon a to
another b, which differ at the cth position. In other words, c is
an index of value 1, 2, or 3, indicating which of the three
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nucleotide positions is different between codons a and b.
Stop codons are also disallowed from the state space, leading
to a 61� 61 rate matrix Q. The rate matrix is quite sparse,
however, since entries corresponding to nucleotide doublet
or triplet events are set to 0. All nonnull, nondiagonal entries
of the matrix are specified from two overall sets of parame-
ters: those controlling a mutation process, and those control-
ling selection.

At the mutation level, nucleotide propensity parameters

are invoked, defined as u ¼ ðunÞ1� n� 4, with
P4
n¼1

un ¼ 1.

When using the M[HKY] settings, one parameter is intro-
duced (i.e., j> 0) to account for unequal rates between
transitions and transversions. When using the M[GTR] set-
tings, the exchangeabilities of each unique pair of nucleotides,
m and n, are defined as . ¼ ð.mnÞ1�m;n� 4, withP

1�m< n� 4 .mn ¼ 1. For some models, the transition rates

within the CpG context (i.e., C to T and G to A) are modu-
lated via a multiplicative parameter, kCpG.

At the level of selection, in the most elaborate settings, the
specification of the model involves a set of K vectors, with each
having 20 entries corresponding to amino acid preferences
(also called profiles), denoted w ¼ ðwðkÞl Þ1� l� 20;1� k�K . The
specification also involves an allocation variable denoted
z ¼ ðziÞ1� i�N, where N is the length of the gene (in codons);
for a given site i, zi returns an index from 1 to K, specifying
the amino acid profile operating at that site. The scaled
selection coefficient (see Yang and Nielsen 2008) associ-
ated to a nonsynonymous change from codon a to b at
site i is given as

S
ðiÞ
ab ¼ ln

wðziÞ
fðbÞ

wðziÞ
fðaÞ

0
@

1
A; (1)

where f(a) returns an index, from 1 to 20, of the amino acid
encoded by codon a. The value of S

ðiÞ
ab , in turn, defines a

fixation factor, denoted hðSðiÞabÞ, and calculated as

hðSðiÞabÞ ¼
S
ðiÞ
ab

1� e�S
ðiÞ
ab

; (2)

which will then be used directly in the rate matrix. The set
of K amino acid profiles, the allocation variable z, and the
value of K itself, are random variables within a Dirichlet
process device (Rodrigue et al. 2010). We refer to this
setting as S[NCatAA]. Of course, one can dispense with
the Dirichlet process device, and simply use a single cat-
egory of amino acid preferences, in which case, we drop
the index on sites, i, from the notation, and refer to it as
S[1CatAA].

Another setting at the level of selection replaces a single
20-dimensional vector with one that includes 61 values in-
stead, one for each codon. The scaled selection coefficients
and fixation factors are computed as before, although in this
case, they are required for both synonymous and nonsynon-
ymous events. We refer to this as the S[1CatCodon] setting.

Finally, we include a parameter (i.e., x�) on nonsynony-
mous rates, aimed at capturing deviations from the
mutation-selection balance (Rodrigue and Lartillot 2017).
The different models obtained from the combinations of mu-
tation and selection parts are thus as follows:

• M[HKY]-S[1CatAA]: the mutation part of this model has
four parameters (3 degrees of freedom) controlling nu-
cleotide propensities, as well as a parameter (1 df) to
distinguish transitions from transversions. The selection
part of this model has a single category of amino acid
preference (20 parameters and 19 df). The model was first
described by Yang and Nielsen (2008) as FMutSel0, and is
detailed below:

Qab ¼

ubc
; if syn:tr:;

ubc
j; if syn:ts:;

ubc
x�hðSabÞ; if nonsyn: tr:;

ubc
jx�hðSabÞ; if nonsyn: ts:;

8>>>>><
>>>>>:

(3)

where “syn.” and “nonsyn.” are short for “synonymous” and
“nonsynonymous,” “tr.” and “ts.” are short for “transversion”
and “transition,” and bc returns an index, from 1 to 4, of the
nucleotide found at the cth position in codon b.

• M[GTR]-S[1CatAA]: This model is nearly the same as
M[HKY]-S[1CatAA], but has 6 distinct parameters (5
df) controlling the relative rate of each (unordered)
pair of nucleotides. The model was also first de-
scribed in Yang and Nielsen (2008), and is detailed
in equation (4):

Qab ¼
.acbc

ubc
; if syn:;

.acbc
ubc

x�hðSabÞ; if nonsyn:

(
(4)

• M[HKYþkCpG]-S[1CatAA]: Similarly as before, this
model only differs from equation (3) in having an
additional parameter, kCpG, controlling the mutation
rate of transitions in the CpG context. The model is
detailed below:

Qab ¼

ubc
; if syn: tr:;

ubc
j; if syn: ts: non� CpG;

ubc
jkCpG; if syn: ts:CpG;

ubc
x�hðSabÞ; if nonsyn: tr:;

ubc
jx�hðSabÞ; if nonsyn: ts: non� CpG;

ubc
jx�hðSabÞkCpG; if nonsyn: ts:CpG:;

8>>>>>>>>>>><
>>>>>>>>>>>:

(5)

where “CpG” refers to a hypermutability context (assuming
kCpG > 1) type of event.

• M[GTRþkCpG]-S[1CatAA]: Similarly as before, this model
only differs from equation (4) in having one parameter,
kCpG, controlling the mutation rate of the CpG context.
The model is detailed in equation (6):
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Qab ¼

.acbc
ubc

; if syn: tr:;

.acbc
ubc

; if syn: ts: non� CpG;

.acbc
ubc

kCpG; if syn: ts:CpG;

.acbc
ubc

x�hðSabÞ; if nonsyn: tr:;

.acbc
ubc

x�hðSabÞ; if nonsyn: ts: non� CpG;

.acbc
ubc

x�hðSabÞkCpG; if nonsyn: ts:CpG:

8>>>>>>>>>>><
>>>>>>>>>>>:

(6)

• M[HKY]-S[1CatCodon]: In contrast to M[HKY]-
S[1CatAA], which in effect assigns all codons encoding
a particular amino acid the same preference, this model
has as distinct parameter for each codon (60 df). The
model was first described by Yang and Nielsen (2008)
as FMutSel, and is detailed in equation (7):

Qab ¼

ubc
hðSabÞ; if syn: tr:;

ubc
jhðSabÞ; if syn: ts:;

ubc
x�hðSabÞ; if nonsyn: tr:;

ubc
jx�hðSabÞ; if nonsyn: ts:

8>>>>><
>>>>>:

(7)

• M[GTR]-S[1CatCodon]: Similarly as before, this model
only differs from the previous one in having 6 parameters
controlling relative rates of nucleotide exchange, as de-
scribed in Yang and Nielsen (2008), and equation (8):

Qab ¼
.acbc

ubc
hðSabÞ; if syn:;

.acbc
ubc

x�hðSabÞ; if nonsyn:

(
(8)

• M[HKY]-S[NCatAA]: Of the same form as M[HKY]-
S[1CatAA], this model allows for heterogeneity across
sites for the amino acid preference by including multiple
categories of amino acid preference, as described by
Rodrigue et al. (2010), and equation (9):

Q
ðiÞ
ab ¼

ubc
; if syn: tr:;

ubc
j; if syn: ts:;

ubc
x�hðSðiÞabÞ; if nonsyn: tr:;

ubc
jx�hðSðiÞabÞ; if nonsyn: ts:

8>>>>>><
>>>>>>:

(9)

• M[GTR]-S[NCatAA]: This model extends the previous
one, to 6 parameters controlling relative rates of nucleo-
tide exchange. This is the model studied in Rodrigue et al.
(2010), and given in equation (10):

Q
ðiÞ
ab ¼

.acbc
ubc

; if syn:;

.acbc
ubc

hðSðiÞabÞx�; if nonsyn:

(
(10)

Finally, we also used two intermediate parameterizations
to the M[HKY] and the M[GTR] settings. The first of these is
referred to as M[Tr], since it introduces distinct parameters to
transversion exchangeabilities (i.e., where exchangeability
parameters for A and C, A and T, C and G, and G and T

are distinct, but where a single exchangeability parameter is
shared for transition events involving A and G and those
involving C and T: Posada 2008), and the second is denoted
M[Ts], since it includes distinct parameters for transition
exchangeabilities (where a single exchangeability parameter
is shared for events involving A and C, A and T, C and G, and
G and T, whereas those involving A and G, as well as C and T,
have distinct exchangeability parameters: Tamura and Nei
1993).

Results and Discussion

CUYN Test on Observed Data
We applied the CUYN test on 137 placental mammalian gene
alignments (see Materials and Methods). At a level of 5%, all
of the 137 genes analyzed showed a significant LRT (fig. 1A).
Yang and Nielsen (2008) and Kessler and Dean (2014) also
found a large proportion of genes with significant LRTs, but
not 100%. This is likely due to the fact that the genes we study
are longer and include more species, resulting in more evo-
lutionary signal (i.e., substitutions) available for the models to
learn their parameters, and therefore increases the statistical
power of the test.

Protocols and Validations of the CUYN Test
In order to perform a verification of the CUYN test, we con-
ducted several sets of simulations using parameter values
obtained from the use of various mutation-selection models
on 16 genes among the 137 previously subjected to the
CUYN (see Materials and Methods). As a negative control,
we generated a set of simulated alignments without se-
lection on CU using parameter values obtained under the
null models (i.e., M[HKY]-S[1CatAA] and M[GTR]-
S[1CatAA]). The rate of false positives, at a significance
level of 5%, is close to expectations for the analyses with
M[HKY] mutation-level parameterization (fig. 1B: 5.2%).
Unexpectedly, almost twice the amount of false positives
(table 1: 8.8%) is obtained when using M[GTR] parame-
terization. To explore this surprising result, we increased
the lengths of the branches of the tree over which our
simulations were conducted by multiplying them with a
parameter kTBL ¼ 50. In these conditions, the rate of false
positive approaches the expectation (table 1: 5.7%), sug-
gesting that the overall signal present in the data when
kTBL ¼ 1 is weak, even if we used a richer taxon sampling
than Yang and Nielsen (2008), and hence limiting the
statistical accuracy of the CUYN test when using the
M[GTR] setting.

As a positive control, we generated a set of simulated
alignments with selection on CU using the parameter values
obtained under the alternative models (i.e., M[HKY]-
S[1CatCodon] and M[GTR]-S[1CatCodon]). In this case, all
the simulated alignments tested show significant evidence for
selection on CU. Altogether, for these control simulations, the
CUYN test generally performs correctly, by detecting signa-
tures of selection on CU when they are indeed present in the
data, and not rejecting the null models in the absence of
selection on CU.
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Model Violations at the Mutation Level
We next explored simulations done without selection on CU,
using the parameter values obtained from analyses of the
same 16 genes previously used. We found that alignments
simulated with M[GTR] and analyzed with M[HKY]
mutation-level settings generated 56.1% false positives
(fig. 1C). This is a surprising result, since it involves one of
the simplest model violations one could test. Moreover, it
does not support the frequent use of the M[HKY] in the
analyses conducted with the PAML package (Yang 2007).
When using the intermediate settings to M[HKY] and
M[GTR], where transition exchangeabilities are set equal
and transversion exchangeabilities are kept distinct, the
M[Tr] setting, or where transition exchangeabilities are kept
distinct and transversion exchangeabilities are set equal, the
M[Ts] setting, we find that the heterogeneity of transversion
rates has more impact than the heterogeneity of transition
rates (i.e., 43.1% of false positives vs. 19.4%, respectively).

To study the properties of the CUYN test when dealing
with increasingly information-rich data, we again increased

the lengths of the branches of the tree over which our sim-
ulations were conducted with a multiplicative parameter
kTBL, taking on values 5, 10, and 50 (table 1). In one set of
simulations, we increased the tree length when using M[Tr]
and M[Ts] mutation-level specifications. We observed that
even if the false positive rate increases with dilated branch
lengths (e.g., 33% for kTBL ¼ 50 vs. 19.4% for kTBL ¼ 1 when
using the M[Ts]) it does not reach the false positive rate
detected when analyzing simulations made with the
M[GTR] (fig. 1C: 56.1%), suggesting that the main factor de-
termining the number of false positives is the relative com-
plexity of the model used to generate the simulated
alignments compared to the model used for its analysis.
This is confirmed by the fact that the accuracy of the test
does not change for trees of greater length when M[HKY]-
S[1CatCodon] is used against M[HKY]-S[1CatAA] (table 1:
4.2–5.7%).

Next, we simulated data with a new model that further
modulates the mutation rates of the CpG context found
within and across codon boundaries, using the multiplicative

FIG. 1. Histograms of the log-likelihood differences (D‘) computed
using the null and alternative hypotheses (i.e., M[HKY]-S[1CatAA]
and M[HKY]-S[1CatCodon], respectively) on (A) 137 mammalian
genes and on (B–D) simulated alignments. (B) Distribution of log-
likelihood differences computed on the simulated alignments (100
replicates per set of parameter values), generated from parameter
values obtained under M[HKY]-S[1CatAA] on 16 genes. (C)
Distribution of log-likelihood differences computed on the simulated
alignment (100 replicates per set of parameter values), generated
from parameter values obtained under M[GTR]-S[1CatAA] on 16
genes. (D) Distribution of log-likelihood differences computed on
the simulated alignments (100 replicates per set of parameter values),
generated from the parameter values obtained under
M[HKYþkCpG ¼ 5]-S[1CatAA] on 16 genes. The vertical line corre-
sponds to the threshold of significance (i.e., 28.47) at 5% with 41
degrees of freedom (i.e., 60–19 parameters) according to the v2 dis-
tribution. The proportion of significant analyses is shown at top right.

Table 1. Comparison of the Proportion of False Positives Detected
When Computing CUYN Test on Simulated Alignments Generated
Using Parameter Values Inferred from Various Mutation-Selection
Models.

Models Used To Generate
the Simulated Alignments

Mutational
Model Used to
Compute CUYN
Test

CUYN Test
(% positives)

M[GTR]-S[1CatAA] M[GTR] 8.8
M[GTR]-S[1CatAA] M[HKY] 56.1
M[HKY]-S[1CatAA] M[GTR] 8.4
M[HKY]-S[1CatAA] M[HKY] 5.2
M[HKY]-S[1CatAA]þ(kTBL¼5) M[HKY] 4.2
M[HKY]-S[1CatAA]þ(kTBL¼10) M[HKY] 5.3
M[HKY]-S[1CatAA]þ(kTBL¼50) M[HKY] 5.7
M[GTR]-S[1CatAA]þ(kTBL¼50) M[GTR] 5.7
M[GTR]-S[1CatCodon] M[GTR] 100
M[GTR]-S[1CatCodon] M[HKY] 100
M[HKY]-S[1CatCodon] M[GTR] 100
M[HKY]-S[1CatCodon] M[HKY] 100
M[Ts]-S[1CatAA] M[HKY] 19.4
M[Tr]-S[1CatAA] M[HKY] 43.1
M[Ts]-S[1CatAA]þ(kTBL¼5) M[HKY] 24.8
M[Tr]-S[1CatAA]þ(kTBL¼5) M[HKY] 74.1
M[Ts]-S[1CatAA]þ(kTBL¼10) M[HKY] 27.0
M[Tr]-S[1CatAA]þ(kTBL¼10) M[HKY] 77.1
M[Ts]-S[1CatAA]þ(kTBL¼50) M[HKY] 33
M[Tr]-S[1CatAA]þ(kTBL¼50) M[HKY] 85.3
M[HKYþkCpG¼0.1]-S[1CatAA] M[HKY] 99.9
M[HKYþkCpG¼0.5]-S[1CatAA] M[HKY] 67.1
M[HKYþkCpG¼2]-S[1CatAA] M[HKY] 76.9
M[HKYþkCpG¼4]-S[1CatAA] M[HKY] 99.8
M[HKYþkCpG¼5]-S[1CatAA] M[HKY] 100
M[HKYþkCpG¼8]-S[1CatAA] M[HKY] 100
M[HKYþkCpG¼16]-S[1CatAA] M[HKY] 100
M[HKY]-S[NCatAA] M[HKY] 20.6
M[HKY]-S[NCatAA]þ(kTBL¼5) M[HKY] 42.4
M[HKY]-S[NCatAA]þ(kTBL¼10) M[HKY] 65.9
M[HKY]-S[NCatAA]þ(kTBL¼50) M[HKY] 97.2

kTBL, multiplicative parameter used to dilate the branches length; kCpG, multiplica-
tive parameter used to modulate the transition rates of the CpG context.
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parameter kCpG (see Materials and Methods). This new CpG
context-dependent mutability, coupled with the null selec-
tion setting (i.e., M[HKYþ kCpG]-S[1CatAA]), generates
�100% of false positives when kCpG reaches a value of only
5 (fig. 1D), even when CpG hypermutability only explains
�10–20% of the substitutions. We note that a value of kCpG

¼ 5 is probably an underestimate in mammals (Hodgkinson
and Eyre-Walker 2011). On the other hand, hypomutability of
CpG (i.e., kCpG < 1:0) generates a similar amount of false
positives, suggesting that any context-dependent mutation
pattern may generate a high level of false positives for the
CUYN test.

Impacts of Model Violations at the Level of Selection
A low rate of false positives (table 1: 20.6%) was recovered
when analyzing alignments generated with heterogeneous
amino acid fitness across sites. However, our alignments are
highly conserved, with a small number of multiple amino acid
substitutions at a given position (i.e., up to 68% of the posi-
tions have less than three nucleotide substitutions), leaving
little opportunity to exhibit site-specific amino acid preferen-
ces. Increasing the total tree length by 5, 10, and 50 using the
multiplicative parameter kTBL leads to an increase in the num-
ber of false positives (table 1: 42.4%, 65.9%, and 97.2%, respec-
tively). Thus, site-heterogeneous amino acid preference can
mislead results of the CUYN test, particularly at deep evolu-
tionary scales or for fast evolving proteins.

CpG Hypermutability Can Largely Explain CU
The hypermutability of CpGs appears to be the model viola-
tion having the greatest impact on the rate of false positives
when using the CUYN test. Given that CpG hypermutability
is significant in mammals (Hodgkinson and Eyre-Walker
2011), we suspect that the selection detected on CU by
Yang and Nielsen (2008) is largely due to this phenomenon.
We designed a crude experimental protocol to explore the
ability of the null model, M[GTR]-S[1CatAA], and the alter-
native model, M[GTR]-S[1CatCodon], to reproduce the co-
don frequencies of the 16 gene alignments. To do so, we
computed a distance between the mean RSCU retrieved
from batches of sequences generated under the stationarity
of the different models and that same statistic computed
from the real sequences of our alignments (refer to
Materials and Methods for details on the procedure). As
expected, the alternative model performed much better
than the null model at predicting the codon frequencies, by
rendering an RSCU closer to that of the true alignment (fig. 2).

We also explored the impact of CpG hypermutability on
CU by generating sequences using parameter values from the
stationarity of the null model obtained for each of the same
16 genes along with various values of kCpG, ranging from 0.1 to
20 (i.e., M[GTRþ kCpG]-S[1CatAA]). Focusing on the RSCU
retrieved from the batches of sequences generated under the
latter conditions, we sought to find the values of kCpG that
minimized the distance with the observed CU, leading to a
rough approximation of the maximum likelihood value of
kCpG itself. We then compare the resulting distance with

those retrieved from the null and the alternative models
(fig. 2).

The distance to the true data greatly decreases when
invoking kCpG within the null model to account for CpG
hypermutability. Interestingly, the CU induced by M[GTRþ
kCpG]-S[1CatAA] model appears to be close to that of the
M[GTR]-S[1CatCodon] model (fig. 2). In two cases, the rough
optimization of kCpG brings the sequences drawn from the
stationary distribution closer to the observed RSCU. This is
particularly significant, since the M[GTR]-S[1CatCodon]
model involves 41 additional jointly optimized parameters
(relative to the null), whereas the M[GTRþ kCpG]-
S[1CatAA] involves only a single additional parameter, esti-
mated crudely.

The batches of sequences simulated from the stationary
distribution are independent one from the other, and thus
computing the mean RSCU on them is justified. The sequen-
ces of the true alignments, however, are not independent of
each other, such that averaging RSCU over them ignores their
phylogenetic inertia. Therefore, investigated how the rough
estimation procedure for kCpG using subsets of sequences
from the true alignment when computing the mean RSCU,
to the point of using a single sequence. As expected, using
only one sequence picked from the true alignment leads to a
high variance of the minimized distance between the true
data and the simulated data (supplementary fig. S1,
Supplementary Material online). This is obviously a result of
the low ratio between the degrees of freedom involved in the
computation of the RSCU statistics (i.e., 41 df) and the num-
ber of codon states available in a single sequence from drawn
from the true alignment. In spite of this high variance, the
general tendency of the results is similar: the distance be-
tween true and simulated data is comparatively low when
invoking kCpG. Results obtained when averaging with 1/3 and
2/3 of the sequences present in the true alignments (supple-
mentary figs. S2 and S3, Supplementary Material online) show
progressively decreasing variance, as expected, and lead to
very similar values of kCpG when compared to the results
obtained with the entire alignment.

Figure 2 suggests that the selection detected on CU in
mammals could be due to CpG hypermutability. The kCpG

estimated from our rough procedure leads to values >1, as
expected, and ranges between 4 and 12. These are probably
underestimates, as the procedure is conditional on other pa-
rameter values obtained from the plain null model (i.e.,
M[GTR]-S[1CatAA]) rather than a proper joint estimation
under the model with dependence across sites. The number
of transition substitutions occurring in the CpG context is
potentially limited, as the null model is probably attributing
aspects of the hypermutability related to CpG contexts to the
x� parameter and to the transition rates of the GTR muta-
tion model. The CU of few genes (e.g., EDEM2) were not
significantly altered by introducing the kCpG parameter, sug-
gesting that CpG hypermutability is not among the most
important factor determining CU for those genes. Other po-
tential model violations should be further investigated, such
as GC-biased gene conversion, and its potential interaction
with CpG hypermutability.
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Low-Information Context of the CUYN Test on
Mammals
Our study suggests that testing for CU with mammalian sin-
gle gene alignments is a low-information context for ML in-
ference. First, in analyzing the true data sets, most genes lead
to parameter inferences at the boundaries of permissible
values for nucleotide frequencies when in the M[GTR] set-
tings (as detailed in the Materials and Methods). Second,
when using real-data-obtained branch lengths, some simula-
tion experiments uncovered an unexpectedly high rate of
false-positives, which then approached expectations when
conducting the simulation with increased branch lengths
(i.e., increased statistical signal). Indeed, the attractiveness of
ML inference comes from working with data sets that are
sufficiently rich for large-sample theory to apply. With in-
creasingly subtle features being introduced in the models
(e.g., distinct exchangeabilities for each pair of nucleotides,
or weak selection on CU), we risk falling into irregular con-
ditions of ML estimation. A few recent studies have also un-
covered such conditions (Baker et al. 2016; Mingrone et al.
2016). We note that Bayesian methods could be better-suited
to dealing with such low-information settings, since they
make no assumption of large-sample conditions; in the
Bayesian framework, low-information contexts simply imply
posterior distributions that are only very mild departures
from prior distributions.

Conclusions and Future Directions
In spite of being formulated from mechanistic principles to
account for CU, the parameters introduced in the alternative
model of the CUYN test appear to be absorbing other

features of the evolutionary process than those intended, in
a manner that is a statistically significant departure from the
values expected under the null model. We have shown that
violations on both the mutation and the selection aspects of
the models can greatly impact the accuracy of the CUYN test,
to a point where it may not be useful for the analysis of
mammalian genes. We have shown that the frequent use
of the M[HKY] setting should be avoided when the
M[GTR] is available, since this oversimplified mutational pa-
rameterization alone can generate an important amount of
false positives. We have also shown that two important
aspects of evolution, CpG hypermutability, and, to a much
lesser extent, site-heterogeneous preferences on amino acids,
can mislead the CUYN test.

Simulation studies are key to evaluating the robustness of
probabilistic inferences with respect to model violations that
are well known to be pervasive in the data at hand. If the
model-based test appears to be robust to violations (e.g., in
some instances, site-heterogeneous selection on amino acids),
its use is reassuring. If not (e.g., CpG hypermutability), the
general reliability of the test is in doubt.

In some contexts, addressing model violations directly may
be beneficial. In the case of CpG hypermutability, the most
obvious modeling expansion from the work we have con-
ducted here would be to include the kCpG parameter within
the overall inference. While Monte Carlo methods for imple-
menting such site-dependent models have been developed in
Bayesian contexts (Rodrigue and Lartillot 2012), our crude
approximation based on simulations also suggests the use
of Approximate Bayesian Computation (Csillery et al. 2010).
In any case, with such a formulation, it is hoped, the

FIG. 2. Models comparison on the basis of their ability to predict CU (i.e., blue: M[GTR]-S[1CatAA], red: M[GTR]-S[1CatCodon] and green from the
rough approximation procedure: [GTRþ kCpG]-S[1CatAA]). The mean distances (i.e., dots) obtained for each specific analysis of the 16 mam-
malian genes are plot along with their associated error bars, that corresponds to 95% intervals, where the closest distances (2.5%) and the farthest
distances (2.5%) were removed. The distances are computed between the mean RSCU retrieved independently from batches of sequences (i.e.,
1,000 batches of 10 sequences) all generated under the stationarity of each specific model used, and the RSCU recovered from the true alignment.
Only the results rendering the minimum mean distance from the rough optimization procedure are presented (i.e., triangles). The label of each
gene analyzed is added as well as the values of kCpG that minimized the mean distance.
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parameters introduced by the alternative model would no
longer need to absorb CpG effects, and would presumably be
“freed” for their intended purpose. Or, the introduced param-
eters could absorb other model violations, still. Indeed, the
issue is much more difficult when model violations are poorly
characterized (e.g., selective constraints on mRNA secondary
structure) or even unknown, but the results we present here
suggest that this should be a major part of research efforts.

Materials and Methods

Data Preparation and Tree Inference
We queried the OrthoMaM database, version 9 (Douzery
et al. 2014), to retrieve all gene alignments where all of the
43 species available in the database were present, which leads
to a collection of 137 mammalian alignments. We then arbi-
trarily removed from these the 4 nonplacental mammals that
are part of OrthoMaM, in order to focus our study on the 39
placentals mammals. Each alignment was treated with
HmmCleaner (Amemiya et al. 2013) and Gblocks (Talavera
and Castresana 2007) to remove structural annotation errors
and poorly aligned regions, respectively. Gblocks was used
under a nonstringent setting, resulting in very few positions
being removed (<1.5%). Our analyses were conducted with a
fixed tree topology, as obtained under the CAT model
(Lartillot and Philippe 2004) implemented in PhyloBayes-
MPI (Lartillot et al. 2013) on the amino acid concatenation
of the 137 alignments (supplementary fig. S4, Supplementary
Material online). When compared to a recent review on the
topic (Foley et al. 2016), our topology is almost identical, with
the only difference being in the relationships at the base of
Laurasiatheria, which precisely corresponds to very short in-
ternal branches. The impact of such topology variation is
therefore expected to be negligible.

Inferring Model Parameters
Parameters were estimated on the 137 genes with
PhyloBayes-MPI (Rodrigue and Lartillot 2014) for the
M[HKY]-S[1CatAA], M[GTR]-S[1CatAA], M[HKY]-
S[1CatCodon], M[GTR]-S[1CatCodon], M[HKY]-
S[NCatAA], and M[GTR]-S[NCatAA] models. Parameters
were estimated separately on the 137 genes with CodeML
for the M[HKY]-S[1CatAA], M[GTR]-S[1CatAA], M[HKY]-
S[1CatCodon], and M[GTR]-S[1CatCodon] models. With
CodeML, we found that 121 genes gave extreme parameter
values when applying the M[GTR]-S[1CatCodon], for in-
stance, with one of the nucleotide propensity parameters at
a value close to 0 or 1. Yang and Nielsen (2008) mentioned
that in comparing M[HKY]-S[1CatCodon] and M[GTR]-
S[1CatCodon] “[. . .] the estimates of codon-fitness parame-
ters for the concatenated data under the 2 mutation models
are very different (results not shown). This is the case even
though both mutation models predicted very similar codon
frequency parameters, which closely match the observed fre-
quencies. Our estimates of the selection coefficients are af-
fected by the mutation model. Thus, we found that the LRT is
somewhat insensitive to the assumed mutation model but
the estimates of codon fitness parameters are.” Obviously, the

mutation-level parameterization had to compensate in order
to obtain similar codon frequencies. In order to keep
computation-time of our simulation study manageable, we
chose to work with the parameter values obtained from a
subsample of alignments, and decided to work the 16 genes
that did not exhibit this issue (this still implies 100� 16
simulations for each condition, and several times as many
ML inferences and Bayesian MCMC runs). Since the results
based on CodeML and PhyloBayes-MPI for the M[HKY]-
S[1CatAA], M[GTR]-S[1CatAA], M[HKY]-S[1CatCodon],
and M[GTR]-S[1CatCodon] models were similar, we only
present results based on CodeML (see supplementary tables
S1 and S2, Supplementary Material online).

Simulation Program
We wrote a simulation program that evolves sequences along
a phylogenetic tree, generating DNA alignments with various
mutation-selection models (see the previous section). Our
simulation software can take as input the outputs of
CodeML or of PhyloBayes-MPI when used with mutation-
selection models.

In our implementation, sequences are evolved in a jump-
chain manner, substitution by substitution, starting from the
root and traversing all branches to the tips of the tree. We first
sample a sequence from the stationary distribution as it
would be under the site-independent model (with
kCpG ¼ 1). This sequence is then evolved for a large number
of events, to reach stationarity under the site-interdependent
framework, before being set as the starting state at the root of
the tree. The simulation along each branch of the tree pro-
ceeds by first drawing a waiting time from an exponential
distribution with a parameter corresponding to the sum of
rates to all nearest-neighbors of the current sequence. If the
waiting time drawn does not go beyond the length of the
current branch, the nature of the event is drawn, with a
probability proportional to the rate to each nearest-
neighbor sequence. From this new state, and time-point
along the branch, another waiting time is drawn as before,
until the waiting time sampled goes beyond the length of the
branch; once it does, the state at the descendant node is set to
the current sequence, and the simulation procedure splits
and continues independently along the daughter branches.
This continues until sampling waiting times beyond the final
terminal branches, thereby yielding the states in the simulated
alignment set. The source code of the simulation software is
available as a GitHub repository (https://github.com/Simonll/
LikelihoodFreePhylogenetics.git; last accessed April 3, 2018).

Simulated Data Sets
We simulated data sets by using the parametric boot-
strapping and the posterior predictive procedures. The
different experimental conditions were defined by the
models used. Experimental conditions were replicated at
two levels: 100 simulated alignments were generated
from the parameter values retrieved under the use of
the different models on the 16 genes. The root position
was set at 90% of the branch from the Afrotheria to the
(Xenarthraþ Laurasiatheriaþ Euarchontoglires). In some
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cases, we manipulated the values of the model parame-
ters prior to the simulation procedures: (1) we set the
transversion rates to the average of nucleotide exchange-
ability parameters of transversions obtained from a GTR-
based analysis (i.e., M[Ts]); (2) we did as in (1), but for
the transition rates rather than transversion rates (i.e.,
M[Tr]); (3) we increased the total tree length by 5, 10,
and 50 times using a multiplicative parameter, kTBL; and
(4) we modulated the mutation rate in the CpG context
with a multiplicative parameter, kCpG, using different val-
ues (i.e., 0.1, 0.5, 1, 2, 4, 5, 8, 16).

Approximating the Observed CU
We developed a rough methodology to help build our intu-
ition about how CpG hypermutability could impact CU. We
drew sequences from the stationary distribution (i.e., 10,000
sequences per set of parameter values) to study how the
different models predict the codon frequencies of the true
alignments. The comparison of the CU obtained under the
different models is achieved by retrieving the squared
Euclidean distance (i.e., eq. 11) between the mean RSCU com-
puted from 1,000 batches of 10 sequences drawn from each
model stationary distribution and the mean RSCU obtained
from the true alignment, or subsets thereof:

CUdist ¼
X61

a¼1

ð log2ðzaÞ � log2ðyaÞÞ2; (11)

where y and z are the mean codon state frequencies normal-
ized by amino acid (i.e., RSCU) obtained from the batches of
simulated sequences and the true sequence(s), respectively.

We investigated the effect of computing the distances
when including different numbers of sequences randomly
picked from the true alignment. This was achieved by ran-
domly sampling various proportion of sequences (i.e., 1/39, 1/
3, and 2/3) from each alignment studied; note that 39 sequen-
ces are present in each of the alignments studied. Our expec-
tation was that the number of codon states present in a
sequence, even if the sequences contain >500 codons, will
limit the accuracy of the rough procedure we designed here,
as the RSCU involves 41 degrees of freedom. We compared
the ability of the null and the alternative models (i.e.,
M[GTR]-S[1CatAA] and M[GTR]-S[1CatCodon]) to predict
the CU for each of the 16 genes, but also performed the
comparison with the CpG context model M[GTRþ kCpG]-
S[1CatAA], incorporating different kCpG values (i.e., 0.25, 0.5,
0.75, 1, 2, 4, 8, 10, 12, 14, 16, 18, 20). We also tracked the
proportion of CpG context substitutions occurring during
the simulations.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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