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Relating the temperature dependence of photosynthetic biomass
production to underlying metabolic rates in autotrophs is cru-
cial for predicting the effects of climatic temperature fluctuations
on the carbon balance of ecosystems. We present a mathe-
matical model that links thermal performance curves (TPCs) of
photosynthesis, respiration, and carbon allocation efficiency to
the exponential growth rate of a population of photosynthetic
autotroph cells. Using experiments with the green alga, Chlorella
vulgaris, we apply the model to show that the temperature
dependence of carbon allocation efficiency is key to understand-
ing responses of growth rates to warming at both ecological
and longer-term evolutionary timescales. Finally, we assemble a
dataset of multiple terrestrial and aquatic autotroph species to
show that the effects of temperature-dependent carbon alloca-
tion efficiency on potential growth rate TPCs are expected to be
consistent across taxa. In particular, both the thermal sensitivity
and the optimal temperature of growth rates are expected to
change significantly due to temperature dependence of carbon
allocation efficiency alone. Our study provides a foundation
for understanding how the temperature dependence of carbon
allocation determines how population growth rates respond to
temperature.
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A ll autotroph cells show a strong dependence of doubling
rate on environmental temperature (1–3). This doubling

rate drives exponential population growth rate in unicellular
autotrophs and somatic growth in multicellular autotrophs, and
is often used as a measure of fitness (4, 5). Global primary
productivity depends fundamentally on the growth rates of pho-
tosynthetic tissue in aquatic and terrestrial photo-autotrophs—
mostly phytoplankton and terrestrial plants, respectively (6, 7).
Therefore, understanding the mechanistic, physiological basis
of temperature-dependent exponential growth rate in autotroph
cell populations is of fundamental importance. In particular,
ongoing climate change will not only alter mean tempera-
tures, but also likely exacerbate the thermal variability faced
by autotrophs in the future (8, 9), meaning that more popula-
tions will be challenged with novel environments in which to
compete and persist. In these situations, fitness can be primar-
ily driven by the exponential growth rate of cells, either at low
cell densities (e.g., competitive fitness among phytoplankton) or
during somatic growth (e.g., germination or phenological change
in terrestrial plants) (10, 11).

The mechanistic basis for the intraspecific temperature depen-
dence of growth rates in photosynthetic tissue requires an
understanding of a number of underlying metabolic processes,
especially photosynthesis and respiration. The cell fixes carbon
through photosynthesis, and part of that intracellular carbon is
used in respiration to generate the carbon skeleton as well as
usable forms of energy essential for maintenance and growth
(12–15). The temperature dependencies of these metabolic pro-

cesses take the form of unimodal thermal performance curves
(TPCs), with an exponential increase of the rate followed by
a sharp decline at higher temperatures (Fig. 1A) (16, 17).
Current knowledge suggests that the photosynthesis and res-
piration TPCs differ, partly because temperature affects their
underlying metabolic reactions differently (2, 3, 18, 19). The
carbon potentially available for growth is expected to be pro-
portional to the difference between these two metabolic rates
(net carbon flux; solid line in Fig. 1F), and therefore differ-
ences in the TPCs of these processes should influence the shape
of the emergent growth rate TPC (SI Appendix, section S3)
(3, 20).

Not all available carbon in the cell, however, is used in
growth (2, 3, 20, 21). This allocation to growth, typically quan-
tified as an efficiency, could be expected to depend on a range
of environmental variables, especially temperature, CO2 con-
centration (22), and, in terrestrial plants, water availability or
movement of photosynthates out of the cell (23). The temper-
ature dependence of carbon allocation efficiency has received
little attention and has rarely been considered in population
growth models (14, 19, 24), but may also be a significant factor
influencing the growth TPC. Here, we develop a mathemati-
cal model for the contribution of the TPCs of photosynthesis,
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Fig. 1. The impact of a temperature-dependent allocation efficiency ε(T)
on the TPC of growth rates in a population of photosynthetic cells. (A)
Real TPCs for photosynthesis P, respiration R, and resulting net flux F
for Cladophora glomerata (a green alga). (B) Allocation efficiency ε(T)
expressed as a Boltzmann–Arrhenius function (Eq. 4 and SI Appendix, sec-
tion S1.2) with a range of different temperature dependences (set by
the activation energy Eε). (C) The result is a range of different potential
growth TPCs. (D and E) ∆Er (Eq. 5) (D) and ∆Tpk,r (Eq. 6) (E) as func-
tions of the temperature dependence of ε(T). (F) Relationships between
potential growth and net flux (blues represent colder and reds warmer
temperatures). A temperature-dependent ε(T) affects the shape of the
growth TPC and as a result how growth responds to temperature. The
growth–net flux relationship can be highly nonlinear in this scenario, with
the direction of the nonlinearity (blue-to-red trajectory) depending upon
whether ε(T) increases or decreases with T (B). Temperature-independent
ε(κ) (solid black line in B) produces growth TPCs that are qualitatively
equal to those of net flux (solid blue line in C) and that are unaf-
fected by ε(T). In B, C, and F the dotted lines are for Eε =−0.7 and the
dashed lines are for Eε = 0.7. Note that in D and E, larger values of |Eε|
produce curves that do not peak within the experimental temperature
range (C).

respiration, and carbon allocation efficiency to the tempera-
ture dependence of doubling rate of a population of photosyn-
thetic autotroph cells. In particular, we focus on the effect of
temperature-dependent carbon allocation efficiency on two key
parameters of growth rate TPCs: thermal sensitivity (activation
energy, E ; Fig. 1) and optimal temperature (Tpk). These two
parameters strongly determine the temperature dependence of
fitness of populations in their operational, ecologically relevant
temperature range and have been extensively used in metabolic
theories in ecology (SI Appendix, section S4) (25–27). We use
laboratory experiments on the freshwater alga Chlorella vul-
garis, combined with an analysis of data across a diversity of
aquatic and terrestrial plants (38 species in 21 orders cover-
ing all major phyla), to quantify how much the temperature
dependence of carbon allocation efficiency can affect growth
rate TPCs.

Theory
Our model incorporates the TPCs of photosynthesis, respiration,
and allocation efficiency into the TPC of doubling rate of a pop-
ulation of photosynthetic autotroph cells (for further details of
the model, see SI Appendix, section S1). We begin with a sin-
gle autotroph population’s biomass density N (e.g., µg C/m2 or
m3) in the exponential phase of growth, integrated over a 24-h
period,

1

N

dN

dt
= r = εF , [1]

where F is net carbon flux (1/d) and ε (dimensionless) is the
allocation efficiency and captures the allocation of the fixed
intracellular carbon to growth. Growth here accounts for both
individual cell growth [e.g., through carbon storage (10, 28)]
and population growth. While more complex models that mech-
anistically include intracellular processes are possible (28–33),
the simplicity of our model allows comparisons with the type of
experimental data that are typically feasible to collect (e.g., ref.
2). Net carbon flux F (henceforth “net flux”) is a measure of
mass-specific growth potential, given by

F =P −R, [2]

where P is net photosynthesis (difference between maximum
gross photosynthetic rate in nutrient-saturated and optimal-light
conditions and daytime respiration), and R is nighttime (dark)
respiration. Thus, F (blue line in Fig. 1A) represents an upper
bound for how much of the carbon fixed in photosynthesis
could be available to the cells for growth, after accounting for
respiratory and other losses. We fitted the model to labora-
tory experiments performed in nutrient-saturated conditions—
we accordingly assume nutrient saturation. However, the model
could be extended to include nutrient limitation (SI Appendix,
section S1). We come back to the possible effects of nutrient
limitation on growth rate TPCs in Discussion.

An allocation efficiency implies that some of the carbon assim-
ilated is “lost” from the cells. This is to be expected. For example,
phytoplankton cells commonly exude photosynthetic assimilates
instead of storing them or using them for growth (34, 35), and
that carbon then enters the broader carbon cycle (ref. 36 and SI
Appendix, section S1.2). In higher plants, carbon may also be allo-
cated away from leaves to nonphotosynthetic tissues; that carbon
would no longer be available for growth of the focal population
of photosynthetic cells.

We now specify the TPCs of each of the parameters of
the growth model (Eq. 1). For photosynthesis and respiration,
we use the Schoolfield–Sharpe model without low-temperature
inactivation (2, 3, 16):

B =

B0 exp

(
−E

k

(
1

T
− 1

Tref

))
1 + exp

(
ED

k

(
1

Th
− 1

T

)) . [3]

Here, B is a metabolic rate (1/d) at a given temperature T (in
kelvins), B0 is approximately (37) the rate (1/d) at a reference
temperature Tref, E and ED are the activation and deactivation
energies (electronvolts) that set the relative rate of increase up to
and decrease from the maximum, respectively, Th is the temper-
ature at which the rate is half inactive due to high temperatures,
and k ≈ 8.617× 10−5 eV/K is the Boltzmann constant. Example
P and R TPCs are shown in Fig. 1A. This model has been shown
to fit well to photosynthesis and respiration rate data (2, 3, 16,
38, 39).
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For the TPC of allocation efficiency, we use the Boltzmann–
Arrhenius (BA) equation

ε= ε0 exp

(
−Eε

k

(
1

T
− 1

Tref

))
, [4]

where normalization constant ε0 is the efficiency at Tref, and Eε

sets the relative rate of change of ε(T ) with T . There is limited
evidence for the temperature dependence of ε over the opera-
tional temperature range of organisms (38, 40, 41); here we make
no a priori assumption about the directionality of the tempera-
ture dependence and consider both positive and negative values
of Eε (Fig. 1B). The BA form for ε(T ) (Eq. 4) allows us to
study the effect of putative thermodynamic constraints on the
metabolic rates underlying allocation and is also supported by
our experimental data (see below). In SI Appendix, section S12
we show that using a more phenomenological quadratic TPC (SI
Appendix, sections S1.2 and S6) for ε(T ) does not qualitatively
change our results.

To quantify how a temperature-dependent ε(T ) alters the
potential growth rate TPC we compare it to the assumption of
a constant, temperature-independent ε=κ [henceforth ε(κ)],
by expressing changes in Er (activation energy of growth rate)
and Tpk,r (temperature of peak growth rate) as a result of the
temperature dependence of ε; i.e.,

∆Er =Er (ε(T ))−Er (ε(κ)) [5]
∆Tpk,r =Tpk,r (ε(T ))−Tpk,r (ε(κ)). [6]

The effect of ε(T ) (Eq. 4) on Er is straightforward to derive ana-
lytically: ∆Er =Eε (Fig. 1D and SI Appendix, section S5). It is
not possible to analytically derive the effect of ε(T ) on Tpk,r .
However, numerical simulations show that ∆Tpk,r is expected to
correlate positively with Eε (Fig. 1E).

Substituting the TPCs of P , R, and ε(T ) in the population
model of Eq. 1 gives the full temperature-dependent model of
growth.

The Importance of Temperature-Dependent Allocation in an
Experimental System
Next, we fitted the model for population growth to data from
a laboratory experiment on C. vulgaris (2). In the experiments,
net photosynthesis, respiration, and growth rate TPCs were
measured for acclimated (10 generations) and adapted (100 gen-
erations) populations (Materials and Methods). The temperature-
dependent ε(T ) was supported over a temperature-independent
ε(κ) (SI Appendix, Table S1). The inferred ε(T ) monotoni-
cally increased in both populations (Fig. 2C). We found that
ε(T ) has a greater activation energy in adapted (0.64 eV
±0.35 95% confidence interval) than in acclimated (0.53 eV
±0.33) populations. Even though the confidence intervals of
both Eε and ε0 overlap (Eq. 4 and SI Appendix, Table S2),
Fig. 2C shows that adapted populations allocated a greater
proportion of the carbon flux to growth and that this propor-
tion increased more rapidly with temperature than that for
acclimated populations. Finally, both ∆Er and ∆Tpk,r (Eqs. 5
and 6) were positive; i.e., both activation energies and Tpk,r
increased due to the temperature dependence of allocation effi-
ciency (Fig. 3). As expected from theory (Theory above and
SI Appendix, section S5), ∆Er =Eε for both acclimated and
adapted populations. The change in Tpk,r due to ε(T ) (∆Tpk,r )
was also positive, although the growth rate TPC for adapted
populations did not peak within the experimental temper-
ature range.

In addition to the model of Eq. 1, we also fitted an alter-
native, structurally different, but biologically feasible model (SI
Appendix, section S9). In contrast to Eq. 1, in this alternative
model, ε(T ) limits how much fixed carbon is available to the
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Fig. 2. Metabolic rates and allocation efficiencies for experiments on accli-
mated and adapted C. vulgaris populations. (A) Net photosynthesis P and
dark respiration rates R. (B) Net flux F. (C) BA ε(T) (with Eε of 0.53 eV and
0.64 eV for acclimated and adapted populations, respectively; SI Appendix,
Table S2). Dashed lines and open circles are for acclimated responses (10 gen-
erations) and solid lines and solid circles are for adapted responses (100 gen-
erations). Circles correspond to the means of three replicate experimental
values at each growth temperature.

cell before respiration occurs. The results show that Eq. 1 is bet-
ter supported for both acclimated and adapted populations (SI
Appendix, Table S1).

The Effect of ε on Potential Growth Rates Across Species
Finally, we explore how ε(T ) might affect the shape of the
growth rate TPC across a wide diversity of species. We calcu-
lated the potential growth rate TPCs (Eq. 1) for 38 aquatic
and terrestrial autotroph species for which coupled P and R
TPCs were available, assuming different levels of temperature
dependence of ε(T ) (e.g., Fig. 1 and Materials and Methods).
We parameterized ε(T ) by choosing a value of ε0 (Eq. 4) that
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Fig. 3. Growth rates with temperature-independent and -dependent ε, for
experiments on acclimated and adapted C. vulgaris populations. (A and B)
Growth rates for (A) acclimated and (B) adapted populations. Light blue
lines are for growth assuming a temperature-independent ε(κ), while black
lines are for growth with the ε(T) of Fig. 2C. Vertical lines correspond to the
respective Tpk,r values. ∆Er (Eq. 5) was 0.53 eV and 0.64 eV for acclimated
and adapted populations, respectively, corresponding to the values of Eε

(Fig. 2C) and thus in line with theoretical expectations. ∆Tpk,r (Eq. 6) was
1.7 ◦C and over 8.4 ◦C for acclimated and adapted populations, respectively.
Circles correspond to the means of three replicate experimental values at
each growth temperature.

ensured that between the minimum experimental temperature
and Tpk,P , half of the total available carbon was allocated to
growth (SI Appendix, section S6). Then, we estimated the impact
of temperature dependence of ε(T ) (Eε) on both the activation
energy (Er ) and the optimal temperature (Tpk,r ) of potential
growth. We also compared the resulting distributions of activa-
tion energies of potential growth rate TPCs with an empirical
distribution estimated from growth TPCs measured in laboratory
experiments (Materials and Methods). Because only phytoplank-
ton growth rate data were available for this comparison, here we
focus on the potential growth rates calculated for aquatic species
only (results including terrestrial species are in SI Appendix,
section S12.1).

Our results show that ε(T ) can substantially alter the activa-
tion energy of growth rate (Er ) across species (Fig. 4A). The
change in Er (∆Er ) due to ε(T ) is directly proportional to Eε,
as predicted by the theory (SI Appendix, section S5). That is,
when ε(T ) increases with T (Eε> 0, as found in the laboratory
experiments), potential growth curves become more sensitive to
temperature. Conversely, when ε(T ) decreases with temperature
(Eε< 0), potential growth TPCs become less temperature sen-
sitive. Overall, as seen in Fig. 4B, the distribution of activation
energies of potential growth rates depends on the temperature
sensitivity of ε(T ); the distribution becomes more right skewed
as Eε declines (from positive to negative values). Comparing

A

B

C

Fig. 4. Impact of temperature dependence in ε on Er and Tpk,r . (A) ∆Er (Eq.
5) as a function of the activation energy of ε(T) for the 21 aquatic pop-
ulations. (B) Theoretical distributions of Er for different Eε values (black
lines) juxtaposed against the empirically observed distribution for phyto-
plankton (orange line) (see SI Appendix, Fig. S8 for analogous results for
combined terrestrial and aquatic species). The vertical lines mark the median
activation energies for the respective distributions; note that median acti-
vation energy when Eε> 0 is closest to that of the empirical distribution.
(C) ∆Tpk,r as a function of the activation energy of ε(T). For example,
∆Er = 0.2 in A means that when Er is estimated with ε(T), it is 0.2 eV
higher than when Er is calculated with ε(κ) (Eq. 5). Similarly, ∆Tpk,r =−5
in C means that potential growth estimated with a temperature-dependent
ε(T) peaks at a temperature 5 ◦C lower than when growth is calculated
with ε(κ) (Eq. 6). The shaded areas in A and C range from 12.5th to 87.5th
percentiles across all potential growth rates, thin lines are the 25th and
75th percentiles, and the thick lines are the 50th percentiles. For a spe-
cific example with a single pair of P and R curves, see Fig. 1 D and E.
Red circles in A and C show ∆Er and ∆Tpk,r observed in the laboratory
experiments on C. vulgaris: Open and solid circles are for acclimated and
adapted populations, respectively (Fig. 3). The growth TPC for the adapted
population did not peak within the experimental range, so the arrow on
the solid red circle in C indicates that the value is a minimum bound
on ∆Tpk,r .
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the theoretical activation energy distributions to the empirical
one (orange line in Fig. 4B) suggests that a positive temperature
dependence of Eε is the most likely scenario in autotrophs (see
SI Appendix, section S12.5 for a more detailed discussion), as was
also observed in the experimental data (Fig. 2C).

The optimal temperature for potential growth rates, Tpk,r ,
also varied systematically with the temperature dependence of
ε(T ) (Fig. 4C). The response was qualitatively consistent across
species: Negative (respectively positive) activation energies of
ε(T ) lowered (respectively increased) Tpk,r relative to ε(κ).
However, the degree to which Tpk,r changed varied across taxa,
as evidenced by the wide shaded areas in Fig. 4C, meaning
that the magnitude of ∆Tpk,r depends on the specific shape
of the species’ underlying metabolic rate TPCs. The effect of
ε(T ) on Tpk,r can be substantial: For Eε =−0.6 eV, the median
∆Tpk,r is −4.5 ◦C. The effect is also asymmetrical and nonlin-
ear: For Eε = 0.6 eV, median ∆Tpk,r is 0.6 ◦C. Note, however,
that for the larger values of |Eε|, many potential growth curves
do not peak at all within the experimental temperature range.
These were excluded from Fig. 4C and thus likely bias the asym-
metry of the pattern. For example, the growth rate TPC for
adapted populations of C. vulgaris did not peak within the exper-
imental temperature range (Fig. 3B), perhaps explaining why
the corresponding solid red circle in Fig. 4C falls outside the
shaded area.

While Fig. 4 shows results for aquatic species only, pat-
terns remain qualitatively similar when also including terrestrial
species (SI Appendix, Fig. S8). These results are also largely
robust to how ε(T ) is parameterized (SI Appendix, section S12);
with an alternative parameterization of Eq. 4, the relationship
between ∆Er and Eε remains the same (SI Appendix, Fig. S9A),
while the pattern between ∆Tpk,r and Eε changes quantitatively,
but not qualitatively (SI Appendix, Fig. S9C).

Discussion
We have presented a mathematical model for the temperature
dependence of exponential growth rates in populations of pho-
tosynthetic autotroph cells and used data to both test the theory
and understand how the temperature dependence of carbon allo-
cation efficiency contributes to shape growth rate TPCs across a
diversity of species. Our results show that temperature depen-
dence in carbon allocation efficiency can be a significant factor
in determining the shape of the TPCs of growth rates.

The laboratory experiments on a phytoplankton species (the
single-celled green alga C. vulgaris) show that in this species,
allocation efficiency ε is temperature dependent, with exponen-
tially increasing allocation of intracellular carbon to growth with
warming. This temperature dependence of ε(T ) in C. vulgaris
leads to both a higher activation energy Er and optimal temper-
ature Tpk,r of the growth rate TPC, compared with if ε had been
assumed to be temperature independent. Padfield et al. (2) previ-
ously hypothesized that carbon use efficiency (CUE), a measure
of growth “potential” defined as the ratio of net and gross pho-
tosynthesis (SI Appendix, section S1.4), plays an important role
in the evolution of elevated thermal tolerance in phytoplankton.
Here we have shown that it is in fact the marked increase in
efficiency of carbon allocation to growth that allowed this evo-
lution of tolerance to high temperature. This increase in carbon
allocation efficiency with evolution may result from diversion of
metabolic energy away from maintenance and repair [reflected in
the high respiration rates of the nonevolved populations at high
temperature (Fig. 2)], and toward growth.

Our further investigation of the effect of ε(T ) on potential
growth rates across a diverse group of aquatic species showed
that despite considerable variation in paired photosynthesis and
respiration TPCs, the impact of a temperature-dependent ε(T )
was very consistent across these species. Comparing distribu-
tions of activation energies of predicted growth rates with real

data suggests that allocation efficiency is likely to increase with
temperature across most aquatic autotroph species. This result
implies that activation energies of growth rate are expected to
be higher than activation energies for net flux. We note that
although this analysis focused on aquatic species, the model
should also apply to tissue growth in terrestrial plants using
locally fixed carbon (e.g., leaves in shoots of young saplings).
However, we were unable to find sufficient data on growth rates
of such tissues across sufficient multiple temperatures with which
to create an empirical distribution of activation energies and
perform an analogous comparison for terrestrial plants.

The effect of allocation efficiency ε(T ) on the potential growth
rate TPC depends on its temperature dependence in the oper-
ational temperature range (the increasing part of the growth
TPC, expected to be the ecologically most relevant temperature
range). If ε(T ) increases (respectively decreases) with tempera-
ture, its effect is likely to increase (respectively decrease) both
the activation energy of the potential growth rate TPC (Er )
and the optimal temperature for potential growth (Tpk,r ). This
result qualitatively holds irrespective of the specific shape of
ε(T ) (SI Appendix, section S12). The effect of ε(T ) on the
activation energy of potential growth rates is very predictable,
while the impact on Tpk,r , while qualitatively consistent, is more
variable across species and less quantitatively predictable. The
reason is simple: When ε(T ) increases with temperature, Tpk,r
can only be greater than Tpk,F , but the difference between
the two is contingent on the specific shape of the underlying
metabolic rate TPCs. When net flux around its peak is relatively
insensitive to temperature, it takes only moderate tempera-
ture dependence in ε(T ) to substantially change Tpk,r , while
when net flux is strongly temperature dependent around its
peak, a greater temperature dependence in ε(T ) is necessary to
change Tpk,r .

The model can also be extended to explore how uptake of
a limiting nutrient (other than carbon, which is typically not
limiting in natural environments) may interact with allocation
efficiency to affect the shape of potential growth rate TPCs. For
instance, let

r =Vn εF , [7]

where Vn is a dimensionless Michaelis–Menten nutrient uptake
term which can be theoretically approximated as a monotoni-
cally decreasing function of temperature (SI Appendix, section
S1.3) (10, 42). In this case, nutrient limitation lowers both Er

and Tpk,r (SI Appendix, Fig. S13). Similar results were obtained
by Thomas et al. (43) with a temperature-independent nutrient
uptake, although their model was closer to our alternative model
structure (SI Appendix, sections S1.5 and S9), where nutrient
limitation affects carbon fixation only in photosynthesis. Nutri-
ent limitation could then interact with ε(T ) and, where ε(T )
increases with temperature, counteract its effects on the poten-
tial growth rate TPC [by offsetting the increases in both Er and
Tpk,r due to ε(T )] or, where ε(T ) decreases with temperature,
compound its effects by further reducing Er and Tpk,r (SI
Appendix, Fig. S14). Thus, nutrient limitation would be expected
to reduce both the sensitivity of potential growth rates to
increases in temperature and the optimal temperature for
growth. Despite these predictions from our model, further
experiments would be necessary to elucidate whether nutri-
ent availability nonlinearly affects allocation efficiency and its
temperature dependence; nutrient limitation could conceivably
systematically alter how carbon is allocated.

Our model is intended to apply to unicellular autotrophs (phy-
toplankton) and other cell populations that use carbon fixed
by those cells such as in elongating leaves of terrestrial plants
and aquatic macrophytes and shoots of all young multicellu-
lar plants (e.g., small saplings). In terrestrial “higher” plants,
leaves constitute a single component of a more complex system,
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and, as a result, ε(T ) could additionally encapsulate carbon that
is reallocated to nonphotosynthetic tissue. The findings of our
meta-analysis hold even when terrestrial and aquatic species
are analyzed together (SI Appendix, section S12.4). However,
the model could be expanded to include growth of the whole
plant (including nonphotosynthetic tissue). At its simplest, an
additional respiration term would be necessary in Eq. 1, to
account for nonphotosynthetic tissues. Preferably, nonphoto-
synthetic biomass could be tracked in an additional, coupled
differential equation that would allow for carbon to be trans-
ferred between the two components. Such a model would require
additional data that are not easily measurable. Understanding
how adaptation might be expected to affect TPCs, as a function
of long-term changes in temperature and time, also requires fur-
ther work. The model, currently formulated in rates per day,
could be elaborated to explicitly account for adaptation over
longer timescales by, for example, letting the parameters that
define P , R, and ε (e.g., activation energies and normalization
constants) be functions of adaptation temperature and time (e.g.,
ref. 39). Here too, a more substantial volume of data, to include
how TPCs vary over time, would be required.

Overall, these findings challenge the common assumption that
allocation efficiency is temperature independent (10, 20, 24, 39)
and suggest that to understand the link between intraspecific
growth rate TPCs and underlying metabolic rates, it is impor-
tant to include the temperature dependence of the allocation
efficiency. In the metabolic theory of ecology (25, 26, 44), growth
rate TPCs are often used as a means to infer the temperature
dependence of the underlying metabolism or vice versa (39).
However, as shown by our meta-analysis, some of the observed
variation in the growth rate TPCs (38) may stem from vari-
ation in the temperature dependence of allocation efficiency
and not be due to that in metabolic rates. Thus, studies that
use growth rate TPCs as proxies for the TPCs of metabolism
but ignore ε(T ) may reach biased conclusions. More gener-
ally, allocation efficiency in heterotrophs (commonly referred
to as mass-conversion efficiency in the literature; e.g., ref. 45)
has already been shown to broadly increase with temperature
(46), and its consequences there also need to be explored more
carefully.

Our work also shows that to make further progress toward
understanding the temperature dependence of autotroph pop-
ulation growth rates, experimental data where growth rates, P ,
and R are measured in the same study are needed. Paucity of
data is particularly acute in terrestrial species, where growth
rates (in terms of mass) of leaves and shoots are seldom collected
across multiple temperatures. Even when all three rates are mea-
sured in the same study, usually in aquatic species (e.g., ref. 3),
establishing the mechanistic link between a growth rate on the
one hand and the underlying metabolic rates on the other hand
would require that both are measured at comparable timescales.
For example, in phytoplankton, metabolic rates are often mea-
sured as acute responses to a change in temperature in short
experiments (the order of minutes), while growth rates may take
days to estimate. This difference might potentially introduce a
confounding effect of acclimation in the processes underlying
allocation of carbon to growth [i.e., ε(T )]. With appropriate
data, ε(T ) can then be estimated by fitting our model directly
(as done here) or, alternatively, by fitting different formulations
of ε(T ) to r/F = r/(P −R).

Finally, further work is required to unpack the metabolic
processes involved in allocation efficiency and thus provide a
more mechanistic link between population growth and individ-
ual metabolism. For example, the role played by respiration is
greatly simplified in this model: It simply reduces how much
carbon is available to the cells. However, growth can be con-
strained by respiration (47, 48); its products, such as energy and
carbon skeletons, are essential for growth, maintenance, and

transport processes (12, 15, 49, 50). However, the efficiency with
which these products are generated can depend on which one
is in greatest demand (48), which in turn may affect our esti-
mated allocation efficiency. Under certain conditions, alternative
(less “efficient”) respiratory pathways may also be activated (47,
51), which would further complicate the link between the mea-
sured use of carbon through respiration and growth. To what
extent these respiratory processes are reflected in P and R is
unclear, and some elements may in fact be captured in ε (13).
We also exclusively focus on the effect of temperature on allo-
cation efficiency. However, other (potentially covarying) envi-
ronmental variables could interact with temperature to affect
ε. For instance, external CO2 concentration affects metabolic
rates (22, 23, 52), and under water stress growth in terrestrial
plants is reduced (23) as cells accumulate carbon to maintain
osmotic balance. These and other factors such as light availabil-
ity may well result in systematic differences in the temperature
dependence of ε between terrestrial and aquatic autotrophs,
which we are currently unable to detect in the available experi-
mental data.

In conclusion, our model and empirical results link, in the
simplest possible way, the temperature dependence of the under-
lying metabolic rates and allocation, with exponential population
or somatic growth in autotrophs. While more detailed mod-
els of exponential growth rates have been previously published
(28, 31, 32, 53, 54), none of these explicitly consider the tem-
perature dependence of underlying metabolic rates. Our results
provide a framework for experimentalists that requires data for
only three frequently measured rates (growth rate, net photosyn-
thesis, and dark respiration) across temperatures, to determine
the TPC of allocation efficiency ε(T ), a prerequisite for devel-
oping more complex, mechanistic models. The simplicity of our
approach means that it has the potential to be used and applied
to explore and uncover broader patterns in the metabolic basis
for the temperature dependence of growth rates in autotrophs.

Materials and Methods
Experimental Data on C. vulgaris. Full details on the experimental setup can
be found in ref. 2 and more information is provided in SI Appendix, section
S10; we here provide a summary. Three replicate populations of C. vul-
garis were established per five different growth temperatures (20 ◦C, 23 ◦C,
27 ◦C, 30 ◦C, and 33 ◦C). Exponential growth rates were estimated for each
growth temperature after ∼10 (“acclimated”) and 100 (“adapted”) gener-
ations. Padfield et al. (2) also measured the acute short-term responses of
metabolic rates (net photosynthesis P and dark respiration R) to a range
of temperatures for each of the populations grown at the five growth
temperatures, after both 10 and 100 generations. Data used from these
experiments are available online (55).

Acute responses of metabolic rates to a change in temperature are typi-
cally measured in brief (order of minutes) experiments in stressful conditions
for the cells. On the other hand, growth rate experiments take longer (order
of days), to ensure maximum exponential growth rates are captured. To
allow the most direct comparison between metabolic rates and growth
rates, we needed acclimated and adapted responses of metabolic rates. We
fitted the Schoolfield–Sharpe model (Eq. 3) to each acute response and used
the model to estimate the metabolic rates at the culture’s corresponding
growth temperature (i.e., we estimated P and R at 20 ◦C for the cultures
acclimated and adapted to 20 ◦C, at 23 ◦C for the cultures grown at 23 ◦C,
and so on; SI Appendix, Fig. S6). When fitting the models to the data, we
averaged metabolic rates and growth rates across the three replicates. As
a result, we had experimental values of P, R, and growth rates, for both
acclimated and adapted responses. For the alternative model structure (SI
Appendix, section S9), we assumed that gross photosynthesis Pg≈ P + Rl

(where Rl is daytime respiration) and that R≈ Rl (2).

Potential Growth Rate TPCs Across a Range of Autotroph Species. We com-
piled a database of intraspecific TPCs of net photosynthesis and respiration
extracted from the literature. We digitized data from tables, text, or figures,
using DataThief (56) and Plot Digitizer (57), and, when possible, contacted
authors to obtain raw data. Most TPCs were measured under saturated
light conditions and ambient or saturating CO2 concentrations (not all
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studies reported this information). In all cases, metabolic rates were mea-
sured on photosynthetic tissue only; thus, in higher terrestrial plants, rates
were measured on leaves only.

Metabolic rates are usually single peaked across their full thermal range;
some studies, however, focused on a narrower temperature range such that
TPCs can consist of a rise or fall in the trait only. We are specifically interested
in the operational temperature range, which typically comprises the rise of
a rate up to its maximum value. To be able to accurately characterize this
rise in rates with temperature when fitting the Schoolfield–Sharpe model
to the data, we kept curves with at least three data points below the rates’
Tpk and at least five data points in total. We also removed curves with activa-
tion energies greater than three, as higher values are often due to poor fits
of the model to the data or the result of performing the experiment over a
narrow temperature range (17). Because we were interested in how P and
R interact with ε(T) to produce a potential intraspecific growth rate TPC,
we kept curves for which both P and R were measured in the same experi-
ment. For experiments in which multiple TPCs were available for the same
species and rate, we kept the curve with the highest coefficient of deter-
mination R2. Allocation efficiency ε(T) can be expected to differ between
species and taxonomic groups. However, to be able to parameterize ε(T) in
a way that could allow comparisons across species, we required a fixed refer-
ence point common to all curves (SI Appendix, section S6). Because species’
operational temperature ranges are likely to be limited, on the upper range,
by the temperature at which photosynthesis peaks (17, 58), we discarded
pairs of curves for which net photosynthesis did not peak within the exper-
imental temperature range. We also excluded pairs of curves for which net
flux was negative for T < Tpk,P , because the model implicitly assumes posi-
tive net fluxes. The result was a database with 43 pairs of P and R TPCs (21
aquatic and 22 terrestrial species) for 38 different species, from 27 sources.
The rates were integrated over 24 h (giving the total amount of O2 or
CO2 per unit mass or area per day). Rates were measured in a variety of
different units (µmol O2 or CO2 per unit kg dry weight, fresh weight, chloro-
phyll, cell, or area per unit time), making comparisons between pairs of
curves difficult. We were specifically interested in the impacts of ε(T) on
the qualitative temperature dependence of the potential growth rate. For
this reason, for each pair of curves, we normalized both P and R curves
using the peak net photosynthetic rate (Ppk), i.e., P/Ppk and R/Ppk. Thus, the
maximum net photosynthetic rate was equal to one for all species, while
maintaining the relative shapes of the P and R curves. For this reason, the
metabolic rates and resultant growth rates are unitless. Processed data (with
unitless normalization constants and integration over 24 h) are provided in
Dataset S2.

We describe ε(T) as a BA function [Eq. 4 and Fig. 1B; although we also
use a quadratic ε(T) in SI Appendix, sections S6 and S12]. The degree of
temperature dependence of ε(T) (Eε in Eq. 4) was set and varied to assess
its effect on the potential growth rate TPC. The maximum |Eε| was com-

parable to the value observed in the C. vulgaris laboratory experiments
(Fig. 2C). We then introduced each ε(T) TPC, together with each pair of
P and R curves, into Eq. 1 to produce a potential growth rate TPC for
each population and value of Eε. The activation energy of potential growth
rates Er was estimated by fitting a Schoolfield–Sharpe model (Eq. 3) to the
growth rate TPC (with adjustments described in SI Appendix, section S7 to
ensure acceptable fits; also see SI Appendix, section S8). When estimating
the change in Er due to ε(T), potential growth rate TPCs which, due to
ε(T), declined only with temperature were excluded from this analysis. Simi-
larly, when estimating the change in Tpk,r due to ε(T), potential growth rate
TPCs that did not peak within the experimental temperature range were
excluded.

To test the robustness of our results, we also used an alternative approach
to parameterize ε(T) (Eq. 4 and SI Appendix, section S6); results for this
alternative parameterization are given in SI Appendix, section S12.

Real Growth Rate TPCs Across a Range of Phytoplankton Species. To com-
pare distributions of activation energies for the potential growth rates of
aquatic species against activation energies of real, measured growth rates,
we compiled a database of phytoplankton growth rate TPCs (taken mainly
from refs. 20 and 59–61). Growth rates were estimated under light- and
nutrient-saturated conditions. We removed curves that had an activation
energy greater than four, and for species with replicate activation ener-
gies we kept values corresponding to the fit with the highest R2. The
result was 165 estimates (each for an individual taxon) of activation energy
for phytoplankton growth rate TPCs. Activation energies are provided in
Dataset S1.

Statistical Methods. Fitting in all cases was performed using the “nlsLM”
function in the “minpack.lm” package in R (62), which uses the Levenberg–
Marquardt optimization algorithm for nonlinear least-squares fitting. To
ensure the best fit was found, the algorithm was run with 1,000 randomized
starting parameters, keeping the fit with the lowest corrected AIC (AICc)
score (63). The Sharpe–Schoolfield model was fitted to TPCs of metabolic
and growth rates on the ln scale, and all fits with R2 < 0.5 were excluded.

Model comparisons (between different combinations of model structures
and temperature dependences of ε(T); SI Appendix, section S11) were per-
formed on the basis of AIC scores. The population model was fitted on the
linear scale.
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