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The DNA barcoding concept (Woese et al. 1990; Hebert

et al. 2003) has considerably boosted taxonomy research

by facilitating the identification of specimens and discov-

ery of new species. Used alone or in combination with

DNA metabarcoding on environmental samples (Taberlet

et al. 2012), the approach is becoming a standard for

basic and applied research in ecology, evolution and con-

servation across taxa, communities and ecosystems (Sch-

effers et al. 2012; Kress et al. 2015). However, DNA

barcoding suffers from several shortcomings that still

remain overlooked, especially when it comes to species

delineation (Collins & Cruickshank 2012). In this issue of

Molecular Ecology, Barley & Thomson (2016) demonstrate

that the choice of models of sequence evolution has sub-

stantial impacts on inferred genetic distances, with a

propensity of the widely used Kimura 2-parameter model

to lead to underestimated species richness. While DNA

barcoding has been and will continue to be a powerful

tool for specimen identification and preliminary taxo-

nomic sorting, this work calls for a systematic assessment

of substitution models fit on barcoding data used for spe-

cies delineation and reopens the debate on the limitation

of this approach.
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The establishment of gold-standard genomic regions (here-

after DNA barcodes) such as the ribosomal rRNA gene

regions for microorganisms, the mitochondrial cytochrome

c oxidase (CO1) for animals or the chloroplastic large sub-

unit of ribulose-1,5-biphosphate carboxylase for plants

(rbcL, reviewed in Taberlet et al. 2012) has revolutionized

taxonomy research by rendering possible an approximate

classification of most kinds of organisms in a standard and

time-effective way. The approach has a resolution that was

hitherto unreachable: while morphospecies are discrimi-

nated on the basis of tens of characters that may be some-

times subjective or invisible in cryptic species, a barcode

contains hundreds of unambiguous characters. Thanks to

next-generation sequencing, it is now possible to produce

barcodes from thousands of specimens or environmental

samples (e.g. soil or water, Taberlet et al. 2012). Hence,

DNA (meta)barcoding allows to rapidly characterize the

species composition and richness of communities at

unprecedented spatial/temporal scales and taxonomic

breadth. This opens promising perspectives in biodiversity

monitoring and management, for example for identifying

areas of high conservation value or threatened by anthro-

pogenic activities. More fundamentally, it unequivocally

improves our understanding of the processes that maintain

biodiversity, which is crucial if we are to better estimate

extinctions rates in the current era of biodiversity loss

(Scheffers et al. 2012; Kress et al. 2015).

Species can be defined as lineages that evolve separately

from each other (De Queiroz 2007). The DNA barcoding

concept relies on the idea that they can be differentiated

because barcode interspecific genetic distances exceed

intraspecific distances (Hebert et al. 2004; Puillandre et al.

2012). When used to affiliate specimens or sequences to

barcoded species, the approach is usually appropriate and

straightforward. The specimen is assigned to a given spe-

cies if its sequence identity (defined without accurate mod-

els of sequence evolution, Collins & Cruickshank 2012) to a

reference barcode is above a given threshold (usually 99%

of sequence identity, Ratnasingham & Hebert 2007). Identi-

fication success heavily relies on the comprehensiveness of

existing barcode databases (e.g. http://www.barcodinglife.

org) and their accuracy, but risk of misidentification is rela-

tively limited for many plants and animals. However, ref-

erence databases, albeit rapidly growing, remain far from

complete in most eukaryotic groups with high taxonomic

impediments (e.g. microfauna or microorganisms). A com-

mon approach to circumvent this problem is to delineate

species from barcoding data in an unsupervised way, that

is based on genetic variation. But this approach has been

repeatedly questioned (Collins & Cruickshank 2012;

Dupuis et al. 2012). First, because DNA barcoding studies

often consider only one locus, which precludes taking into

account the full evolutionary history of species (in particu-

lar introgression and hybridization). Second because parti-

tioning the genetic variation between species or specimens

constitutes a mathematical challenge on its own. This has

led to the development of numerous partition methods to

form operational taxonomic units (OTUs), which are usu-

ally considered as putative species. These methods are

based either on pairwise genetic distances (e.g. ABGD,
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nonultrametric phylogenies (e.g. GMYC, PTP), each with

their own pros and cons (see Coissac et al. 2012 for a

review).

Hence, genetic distances are central to the barcoding con-

cept, and should be generated with an appropriate model

of sequence evolution. This issue has been the focus of

active research in phylogenetics/phylogenomics (Philippe

et al. 2011a), but has been comparatively seldom consid-

ered by the barcoding community (Collins & Cruickshank

2012). In this issue of Molecular Ecology, Barley & Thomson

(2016) bridge this gap by assessing substitution model ade-

quacy in describing genetic variation and estimating spe-

cies richness from barcoding data. The work is mainly

motivated by the wide use of the simplistic Kimura 2-

parameter model (K2P, Kimura 1980) for generating dis-

tance matrices, although its underlying assumptions are

most likely violated by barcoding data (Galtier et al. 2009).

For instance, the K2P model assumes that the equilibrium

frequencies of the 4 nucleotides are equal, whereas mito-

chondrial genomes are generally AT-rich. It also assumes

that the same substitution process applies to the first,

second or third codon position.

To evaluate substitution model adequacy, Barley &

Thomson (2016) used posterior predictive simulations

(Fig. 1, see Barley & Thomson 2016 for more details). The

analysis of posterior predictive distributions is widely used

in Bayesian statistics to assess model plausibility, but

remains underused in phylogenetics or in ecology (but see

e.g. Brown 2014, Kery & Royle 2015). Briefly, it is similar to

the parametric bootstrapping of maximum-likelihood

statistics, except that it integrates parameter estimation

uncertainties. Its principle consists in (i) simulating data

according to the model and data under study and (ii) com-

paring real and simulated data or any type of inference

based on them (Fig. 1). The more similar the real and sim-

ulated data are, the better the model is. The key to this

approach is to invent clever statistics that will allow

answering questions of interest.

Using posterior prediction and data-based test statistics,

Barley & Thomson (2016) demonstrate that the K2P model

fits poorly to DNA barcoding data sets especially when

data set complexity is high (e.g. diversified groups such as

arthropods), in agreement with previous observations

based on model selection procedures (Collins & Cruick-

shank 2012). But a poorly fitting model can still perform

well to infer some parameters. This is the case for phyloge-

netic trees under some circumstances (Yang 1997), for

instance because of a more reduced variance. Accordingly,

Barley & Thomson (2016) used the number of OTUs as the

inference-based test statistic, which were inferred with two

popular clustering methods and different genetic diver-

gence thresholds. They convincingly demonstrated that the

K2P model underestimates species richness (Fig. 1).

The study of Barley & Thomson (2016) is timely in an

era where DNA (meta)barcoding is becoming the tool of

choice for sensing biodiversity. It emphasizes the impor-

tance of choosing more complex models (e.g. GTR + Γ) that
better fit the data if we are to obtain reliable estimates of

species richness. This has major implications because high-

priority conservation areas and inferences of species extinc-

tion rates are based on species richness. The increasing size

of barcoding data sets offers the opportunity to use more

complex (and hopefully more realistic) models already

developed in phylogenetics. In particular, in barcoding

data, a nucleotide difference can reflect new neutral muta-

tions or mutations that have been fixed (i.e. substitutions).

New models should hence separate mutation rates and fix-

ation probabilities (see De Maio et al. 2013). However, these

models are computationally demanding, which is inade-

quate with the increasing size of barcoding data sets. Still,

model fit and model parameter values inferred from a sub-

set of randomly selected sequences will likely be accurate.

The computational burden of estimating evolutionary dis-

tances will not increase substantially when parameter val-

ues are fixed. Model selection should hence be applied to

species delineation based on barcoding data.

Using the best substitution model does not alleviate the

limits of single locus approaches for delineating species.
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Fig. 1 Model adequacy assessment using post-predictive simu-

lations. The approach consists in inferring the distribution of

parameters (posterior) of a given model, simulating new data

sets (posterior predictive) using parameters values selected

from the posterior distribution and comparing the observed

data to the posterior predictive data, either directly using data-

based test statistics (not shown here) or inference-based test

statistics (here the number of OTUs). (a) The use of the K2P

model tends to underestimate OTU richness while more com-

plex models (b) perform better. Using a multilocus approach

will undoubtedly refine estimates of species richness (c).
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Following the lineage species concept (De Queiroz 2007),

this requires having access to the full evolutionary history

of species, which results from multiple mechanisms (e.g.

disrupted gene flow, local adaptation, random drift, intro-

gression). This cannot be captured with single standard

barcodes (Dupuis et al. 2012). New directions such as gen-

ome skimming (Coissac et al. 2016) will undoubtedly refine

our ability to delineate species by giving access to more

informative sites in at least 2 or 3 loci (organelle genomes

and ribosomal genes for eukaryotes, as well as single copy

genes in certain cases). With the decreasing cost of high-

throughput sequencing, we foresee an extension of the

DNA barcode concept (1Dimension) to the DNA QRcode

(2Dimensions, Fig. 1) based on full (meta)genomes. This

will constitute a formidable step forward to identify spe-

cies in all their historical complexities and allow delineat-

ing evolutionary significant units, that is not only species

but also populations, both being relevant for conservation

purposes. It would require using coalescence- rather than

phylogeny-based models, and the posterior predictive

approach used by Barley & Thomson (2016) will be key to

validate these new approaches. However, these advances

will also come along with new needs and challenges in

bioinformatics and computational biology to adequately

handle the newly generated trillions of nucleotides. The

environmental footprint of these fascinating scientific

developments will be enormous, and it is unclear whether

the perspective of improvements in biodiversity conserva-

tion will compensate the certain destruction that they will

bring along (see Philippe 2011b for a more complete

discussion).
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