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Abstract 22 

Fragmentation by artificial barriers is an important threat to freshwater biodiversity. Mitigating the 23 

negative aftermaths of fragmentation is of crude importance, and it is now essential for environmental 24 

managers to benefit from a precise estimate of the individual impact of weirs and dams on river 25 

connectivity. Although the indirect monitoring of connectivity using molecular data constitutes a 26 

promising approach, it is still plagued with several constraints preventing a standardized and 27 

individual quantification of barrier effects. Indeed, observed levels of genetic differentiation depend 28 

on both the age of the obstacle and the effective size of the populations it separates, making difficult 29 

comparisons among obstacles. Here, we developed a standardized index of genetic connectivity 30 

(CINDEX), allowing an absolute and independent assessment of the individual effects of obstacles on 31 

connectivity. The CINDEX is the standardized ratio (expressed as a percentage) between the observed 32 

genetic differentiation between pairs of populations located on either side of an obstacle and the 33 

genetic differentiation expected if this obstacle completely prevented gene flow. The expected genetic 34 

differentiation is calculated from simulations taking into account both the age of the barrier and the 35 

effective size of the targeted populations. Using both simulated and published empirical datasets, we 36 

explored and discussed the validity and the limits of the CINDEX. We demonstrated that it allows 37 

quantifying genetic effects of fragmentation only a few generations after barrier creation and provides 38 

valid comparisons among populations (or species) of different effective populations sizes and 39 

obstacles of different ages. The computation of the CINDEX requires a minimum amount of fieldwork 40 

and genotypic data, and solves some of the difficulties inherent to the study of artificial fragmentation 41 

in rivers and potentially in other ecosystems. This makes the CINDEX a promising and objective tool for 42 

managers aiming at restoring connectivity and at evaluating the efficiency of restoration programs.  43 

 44 

Keywords: Riverscape connectivity, Artificial fragmentation, Genetic differentiation, Simulations, 45 

Bio-indicator, Dams, Weirs, Freshwater fish  46 
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Introduction 47 

Heavily impacted by human activities, rivers are at the heart of biodiversity conservation issues 48 

(Dudgeon et al., 2006; Reid et al., 2018). Among the various threats to these ecosystems, river 49 

fragmentation by artificial barriers is considered as the most widespread and worrying (Couto & 50 

Olden, 2018; Nilsson, 2005; Turgeon, Turpin, & Gregory‐Eaves, 2019). Weirs and dams, but also 51 

pipes and culverts, have long been, and are still, constructed for flow regulation and/or hydropower 52 

supply but they often imply a loss of habitat and a reduction in riverscape functional connectivity (that 53 

is, species-specific) in freshwater organisms (Birnie-Gauvin, Aarestrup, Riis, Jepsen, & Koed, 2017; 54 

Jansson, Nilsson, & Malmqvist, 2007). For fish, artificial fragmentation is known to impact key 55 

biological processes such as migration, dispersal and recruitment, and thus viability and productivity 56 

of populations and communities (Blanchet, Rey, Etienne, Lek, & Loot, 2010; Poulet, 2007; Turgeon et 57 

al., 2019). Given the central role of hydropower as a source of energy, mitigating these negative 58 

aftermaths is now of crude importance (Couto & Olden, 2018; Gibson, Wilman, & Laurance, 2017).  59 

Different restoration and mitigation measures may be considered to enhance longitudinal river 60 

connectivity, including the removal of obstacles, periodic turbine shutdowns and fishpasses setting 61 

(Bednarek, 2001; Poff & Schmidt, 2016; Silva et al., 2018). However, these measures may all result in 62 

unintended outcomes (e.g., McLaughlin et al., 2013), or unsatisfactory trade-offs between 63 

conservation of biodiversity, preservation of historical and cultural legacy and the maintenance of 64 

services provided by obstacles (Gibson et al., 2017; Hand et al., 2018; Roy et al., 2018; Song et al., 65 

2019). Benefiting from a precise estimate of the impact of an obstacle on river connectivity, or from a 66 

precise estimate of the gain in connectivity resulting from a restoration action, is therefore essential for 67 

environmental managers and for conservation planning (Cooke & Hinch, 2013; Januchowski-Hartley, 68 

Diebel, Doran, & McIntyre, 2014; Raeymaekers, Raeymaekers, Koizumi, Geldof, & Volckaert, 2009). 69 

The direct monitoring methods conventionally used in rivers to quantify the functional permeability of 70 

an obstacle or the efficiency of a restoration action are video-counting, telemetry and capture-71 

recapture protocols. Although efficient (e.g., Cooke & Hinch, 2013; Hawkins et al., 2018; Junge et al., 72 

2014; Pracheil et al., 2015), these methods are yet associated with technical constraints. In particular, 73 
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ecological studies based on video counting or telemetry are often conducted on a limited number of 74 

obstacles, whereas robust capture-recapture protocols imply repeated and exhaustive capture sessions, 75 

ideally over several years, which involves the mobilization of substantial human and financial 76 

resources (Cayuela et al., 2018).  77 

Indirect monitoring based on molecular data constitutes a promising alternative approach, allowing 78 

multi-specific studies of dam-induced fragmentation (Selkoe, Scribner, & Galindo, 2015). Among the 79 

many analytical procedures developed in recent years to quantify the mobility of organisms on the 80 

basis of genetic or genomic data, assignment methods and parentage analyses (Jombart, Devillard, & 81 

Balloux, 2010; Pritchard, Stephens, & Donnelly, 2000; Städele & Vigilant, 2016; Wilson & Rannala, 82 

2003) allow the detection of „real-time‟ non-effective movements (that is, not necessarily followed by 83 

a reproduction event; e.g., Junge et al., 2014; Raeymaekers et al., 2009; Saint-Pé et al., 2018) but they 84 

require an extensive sampling of individuals and moderate to high genetic differentiation between 85 

populations (Broquet & Petit, 2009; Cayuela et al., 2018). 86 

An alternative method to quantify the permeability of an obstacle from molecular data is simply to 87 

measure the level of neutral genetic differentiation between populations located in the immediate 88 

upstream and downstream vicinity of an obstacle (“adjacent sampling strategy”), an approach that 89 

does not necessarily require large sample sizes or heavy computation: any drop in local functional 90 

connectivity due to the creation of a barrier to gene flow is expected to translate into an increase in 91 

neutral genetic differentiation (Raeymaekers et al., 2009). However, measures of genetic 92 

differentiation may only be considered as correct estimates of barrier effects when comparing 93 

obstacles of the same age and/or separating populations of similar effective size. This is because 94 

genetic differentiation primarily stems from genetic drift, that is, from the random fluctuation of allelic 95 

frequencies naturally occurring in all populations (Allendorf, 1986). When populations are separated 96 

by an obstacle to gene flow, these fluctuations tend to occur independently in each population, leading 97 

to a differential distribution of allelic frequencies on either side of the barrier. This process is yet 98 

progressive, taking place over several generations (Landguth et al., 2010), and is all the more slow as 99 

effective population sizes are large  (Broquet & Petit, 2009; Cayuela et al., 2018; Prunier, Dubut, 100 

Chikhi, & Blanchet, 2017). As a consequence, it is impossible to attribute the differences in levels of 101 
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genetic differentiation observed between obstacles varying in age and/or in the effective size of 102 

populations they separate to differences in their actual barrier effects; older obstacles or obstacles 103 

separating smaller populations should show higher genetic differentiation than more recent obstacles 104 

or obstacles separating larger populations, despite similar barrier effects. Given this drawback, there is 105 

an urgent need for the development of a standardized and absolute index of genetic connectivity that 106 

take into account the contribution of both the age of the obstacle and the effective size of populations 107 

to observed measures of genetic differentiation. Such an index might allow a quick and robust 108 

quantification of individual barrier effects whatever their characteristics, paving the way for informed 109 

management prioritization and proper evaluation of restoration measures, along with inter-basins and 110 

interspecific comparative studies. 111 

Here, we bridge that gap by developing a user-friendly and standardized index of genetic connectivity, 112 

allowing an absolute and independent assessment of the individual effects of obstacles on gene flow. 113 

The proposed index (CINDEX) is based on the relative comparison of observed measures of genetic 114 

differentiation resulting from an adjacent sampling strategy with theoretical machine learning 115 

predictions obtained from genetic simulations. Genetic simulations are here used to reflect the 116 

expected evolution of allelic frequencies resulting from the interplay between the age of the obstacle 117 

and the effective population sizes: the closer the observed measure of genetic differentiation from the 118 

one that would be expected in the worst-case scenario (total barrier to gene flow), the lower the index 119 

of connectivity. We first present the logic and principles underlying our index. We then use both 120 

simulated and published empirical genetic datasets to explore and discuss the validity and the limits of 121 

the proposed index. We finally propose several perspectives to use and further improve the index. 122 

  123 
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Material and methods 124 

 125 

Principle of the proposed index of genetic connectivity CINDEX 126 

The proposed index of genetic connectivity CINDEX is designed as a standardized estimate of the 127 

amount of gene flow that gets through an obstacle separating two adjacent populations. It simply 128 

consists in rescaling the observed measure of genetic differentiation       within its theoretical range 129 

of variation, taking into account the expected temporal evolution of allelic frequencies resulting from 130 

the interplay between the age of the obstacle and the averaged effective sizes of populations. This 131 

theoretical range of variation spans from       to      .       stands for the theoretical measure 132 

of genetic differentiation that would be expected if the obstacle was totally permeable to gene flow 133 

(migration rate m ≈ 0.5).       should theoretically equal 0 but the background noise resulting from 134 

the concomitant influences of genetic drift, mutations and random sampling may actually lead to 135 

positive –yet very low– measures of genetic differentiation. On the other hand,       stands for the 136 

theoretical measure of genetic differentiation that would be expected under the worst-case scenario, 137 

that is, under the hypothesis that the considered obstacle is a total barrier to gene flow (m = 0).       138 

is expected to increase with time since barrier creation and to decrease with the increase in effective 139 

population sizes (Gauffre, Estoup, Bretagnolle, & Cosson, 2008; Landguth et al., 2010). The index of 140 

connectivity CINDEX is then computed as follows (see Appendix S1 for details)  141 

 142 

        (
  (          ⁄ )

  (          ⁄ )
)      (

  (     )   (     )

  (     )   (     )
)        (eqn. 1) 143 

 144 

It thus ranges from 0 % (the observed measure of genetic differentiation is maximum and equals the 145 

expected value under the assumption that the considered obstacle acts as a total barrier to gene flow) to 146 

100 % (the observed measure of genetic differentiation is minimum- but not null- and equals the 147 

expected value under the assumption that the considered obstacle has no impact on gene flow).       148 

is directly calculated from observed genotypic data collected in populations located at the immediate 149 

upstream and downstream vicinity of the obstacle, whereas       and       are predicted from 150 



7 
 

theoretical datasets simulated according to three main parameters: the mutation rate µ of considered 151 

genetic markers, and (for       only) the effective population size Ne of the two considered 152 

populations and the age T of the total barrier to gene flow (expressed in number of generations; e.g., 153 

Landguth et al., 2010; Lowe & Allendorf, 2010).  154 

 155 

Expected measures of genetic differentiation 156 

We used QuantiNemo2 (Neuenschwander, Michaud, & Goudet, 2019), an individual-based simulator 157 

for population genetics, to simulate theoretical datasets that will in turn be used to predict       and 158 

      values. We designed a very simple meta-population composed of two adjacent demes, and we 159 

used forward simulations of gene flow between these two demes over 1000 non-overlapping 160 

generations. Each deme was initiated with Ne individuals and kept at a constant size over generations, 161 

with Ne taking 93 different values ranging from 30 to 2000 individuals. Genetic polymorphism was 162 

based on 15 microsatellite loci and 20 alleles per locus, which corresponds to the number of markers 163 

typically used in empirical study focusing on functional connectivity (e.g., Blanchet et al., 2010; 164 

Coleman et al., 2018; Storfer, Murphy, Spear, Holderegger, & Waits, 2010). The mutation rate µ, 165 

following a stepwise mutation model, was set to 5×10
-5

 or 5×10
-4

, so as to explore the natural 166 

variability observed in microsatellite markers (mutation rate ranging from 10
-6

 to 10
-2

; Li, Korol, 167 

Fahima, Beiles, & Nevo, 2002; Schlötterer, 2000; Yue, David, & Orban, 2007). Genotypes were 168 

randomly assigned to individuals at the beginning of simulations. The inter-deme migration rate was 169 

set to 0.5 for the first 400 generations, a value providing an optimal mixing of populations (panmixia) 170 

and mimicking a natural situation without barrier, and then dropped to zero for the last 600 171 

generations, mimicking the creation of a total barrier to gene flow, splitting a “single” population into 172 

two subpopulations. With populations being isolated for 600 generations, we made sure our 173 

simulations covered a realistic time frame: most artificial barriers in freshwater ecosystems were 174 

indeed built between the Middle Ages (12th–15th centuries) and today (Blanchet et al., 2010), which 175 

corresponds to a number of generations ranging from 0 to ~ 400 in aquatic organisms such as fish 176 

species (assuming a generation time of 2 years for fish species). For each deme size Ne and each 177 

mutation rate µ, we ran ten simulation replicates, and 30 genotypes were sampled every ten 178 
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generations from generation 300 to generation 1000, resulting in a total of 132060 simulated genetic 179 

datasets in the Fstat format (Goudet, 1995), further converted into the genepop format (Rousset, 2008) 180 

using R (R Development Core Team, 2014).  181 

For each dataset, we measured the two following pairwise metrics of genetic differentiation: the 182 

Hedrick‟s G‟‟st (Hedrick, 2005; Meirmans & Hedrick, 2011) and the Meirmans‟ φ‟st (Meirmans, 183 

2006), both computed using the R-package mmod (Winter, 2012). Other metrics were initially 184 

considered, but preliminary analyses indicated that some were dependent on sample size (e.g., the 185 

proportion of shared alleles or the Cavalli-Sforza and Edwards‟ Chord distance; Bowcock et al., 1994; 186 

Cavalli-Sforza & Edwards, 1967; see Appendix S2 for details), while others were sensitive to mutation 187 

rate and/or did not show enough variability (e.g., the Weir and Cockerham‟s θst or the Jost‟s D; Jost, 188 

2008; Weir & Cockerham, 1984; see Appendix S3 for details): they were thus discarded to avoid 189 

jeopardizing the validity of the proposed index. We found that the two retained metrics G‟‟st and φ‟st 190 

were robust to variations in mutation rate and increased quickly after barrier creation, especially in the 191 

case of small effective population sizes (Appendix S3), in accordance with theoretical expectations 192 

(Lowe & Allendorf, 2010; Meirmans & Hedrick, 2011). All negative G‟‟st and φ‟st values were set to 193 

0. In addition to these two measures of genetic differentiation G‟‟st and φ‟st, we also computed the 194 

averaged expected heterozygosity He over the 15 loci in each population. He was then averaged over 195 

the two populations and further considered as a proxy for effective population sizes. Both theoretical 196 

and empirical works indeed indicate that genetic diversity should increase with the increase in 197 

effective population sizes (Hague & Routman, 2016; Kimura, 1983; see also Appendix S4). We here 198 

focused on mean heterozygosity because, unlike metrics such as allelic richness, heterozygosity values 199 

are bounded between 0 and 1, which facilitates comparison between case studies. Moreover, this 200 

metric is much more straightforward to calculate for managers than the actual effective population 201 

size, since the latter is notoriously difficult to estimate in complex landscapes (Paz-Vinas, Comte, et 202 

al., 2013; Wang, 2005). These calculations resulted in a final dataset comprising 132060 lines and the 203 

eight following columns: the simulated mutation rate µ, the generation t at which genotypes were 204 

recorded, the age T of the barrier computed as   (     ) and expressed in number of generations 205 

(the barrier being created at generation 400 in our simulations), the replicate number, the effective 206 
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population size Ne of each simulated population, the mean expected heterozygosity He and the two 207 

metrics of genetic differentiation G‟‟st and φ‟st.  208 

A first subset of this final dataset was used as a training set in the regression implementation of a 209 

Random Forest machine-learning algorithm (Breiman, 2001). The objective was to establish 210 

theoretical distributions allowing future predictions of       values according to both time and 211 

effective population sizes (with He as a proxy). These theoretical distributions were designed so as to 212 

mimic the temporal inertia in the setting up of genetic differentiation after the creation of a total barrier 213 

to gene flow. For each mutation rate µ and each metric of genetic differentiation GD (either G‟‟st or 214 

φ‟st) computed after the creation of the barrier (i.e., for T > 0), we used the R-package randomForest 215 

(Liaw & Wiener, 2002) to fit the model          . We used 200 trees and a sample size of 500, as 216 

these values provided very good accuracy (mean squared errors lower than 0.4%). Created 217 

randomForest R-objects were saved in the form of .rda files (the usual file format for saving R 218 

objects) and were further used to predict the four possible expected measures of genetic differentiation 219 

      (two possible metrics of genetic differentiation and two possible mutation rates) between pairs 220 

of populations according to both the mean expected heterozygosity He (the proxy for effective 221 

population sizes) and the number of generations T elapsed since barrier creation, using the 222 

predict.randomForest function. 223 

A second subset of the final dataset was used to predict the four possible measures of genetic 224 

differentiation       (background signal) that may be expected under the influence of mutations, drift 225 

and random sampling between two adjacent populations not separated by any barrier to gene flow. For 226 

each of both mutation rates µ and each of both metrics of genetic differentiation GD (either G‟‟st or 227 

φ‟st) computed before the creation of the barrier (i.e., for T < 0),       was simply computed as the 228 

mean of simulated GD values. These four predicted       values were stored in the form of a .rda 229 

file.  230 

 231 

Computing the index of connectivity CINDEX 232 

Equation 1 allows computing a unique index of connectivity CINDEX for each combination of both a 233 

mutation rate µ (5×10
-5

 or 5×10
-4

) and a metric of genetic differentiation GD (G‟‟st or φ‟st). The four 234 
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indices are then averaged to get the final connectivity index CINDEX with a 95% confidence interval 235 

computed as        , with    the estimated standard error (i.e., the estimated standard deviation 236 

divided by √ ).  237 

Note that when several genotypic datasets are available for a same obstacle, for instance when several 238 

sympatric species are sampled on either side of the obstacle or when several replicates are considered 239 

(as is the case of all simulated data in this study), an overall CINDEX can also be estimated using an 240 

intercept-only mixed-effect linear model with the various indices   as the response variable and the 241 

genotypic dataset as a random effect (Bates, Mächler, Bolker, & Walker, 2015). This procedure allows 242 

taking into account the fact that indices of connectivity CINDEX computed from the same dataset are not 243 

independent and thus avoids biased estimates for standard error    (McNeish, 2014). The overall 244 

       is then obtained from the estimated intercept of the model (which simply amounts to 245 

calculating the average of indices   across datasets) and the corresponding 95% confidence interval is 246 

computed as        , with    the unbiased standard error as estimated by the mixed-effect model. 247 

 248 

The whole procedure was automated within a user-friendly R-function (see Appendix S10). Users are 249 

simply expected to provide an empirical genotypic dataset (in the genepop format) and a parameter file 250 

indicating for each considered obstacle the name of the two adjacent populations (as given in the 251 

genotypic dataset) and the number of generations elapsed since barrier creation. This number of 252 

generations is to be estimated from the life-history traits of the considered species. Figure 1 provides a 253 

flowchart allowing an overall visualization of the process. 254 

 255 

 256 

Validation of the connectivity index 257 

To assess the validity of the proposed        in response to different levels of obstacle permeability, 258 

we again used the program QuantiNemo2 to simulate gene flow between two demes over 1000 non-259 

overlapping generations. Demes were initiated with Ne = 50, 100, 250, 500 or 1000 individuals and 260 

kept at a constant size over generations. To mimic realistic genetic datasets, each microsatellite locus 261 
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was given a unique stepwise mutation rate µ randomly picked from a log-normal distribution ranging 262 

from 5×10
-5

 to 5×10
-3 

with a mean of 5×10
-4

 (see Appendix S5 for details). The inter-deme migration 263 

rate was set to 0.5 for the first 400 generations, and then dropped to m for the last 600 generations, 264 

with m ranging from 0 to 0.2 with an increment of 0.01 and from 0.2 to 0.5 with an increment of 0.05, 265 

mimicking the creation of a more or less severe barrier to gene flow (total barrier, m = 0; no barrier, m 266 

= 0.5). All other simulation parameters were similar to previous simulations. For each deme size Ne 267 

and each migration rate m, we ran 20 simulation replicates, and 30 genotypes were sampled at 268 

generations 405 (age of the barrier T = 5), 410, 415, 420, 425, 450, 500 and 700 (T = 300), resulting in 269 

a total of 21600 simulated genetic datasets in the Fstat format, further converted into the genepop 270 

format.  271 

For each simulated dataset, we computed the averaged expected heterozygosity He and the two 272 

pairwise measures of genetic differentiation G‟‟st and φ‟st. We then used parameters T and He to 273 

predict the corresponding measures of genetic differentiation       and       (for both G‟‟st and 274 

φ‟st) expected under various mutation rates (5×10
-5

 and 5×10
-4

) using the predict.randomForest 275 

function (Appendix S10) and the previously created .rda files. For each dataset, the four indices of 276 

connectivity   were then computed using equation 1. To average datasets across replicates, we finally 277 

used intercept-only mixed-effect models (with dataset as a random effect) to get the final mean        278 

(along with a 95% confidence interval) corresponding to each combination of N, T and m. 279 

 280 

Empirical data 281 

To assess the behavior of the proposed index of connectivity in real situations, we used two published 282 

empirical datasets. The first one is from Gouskov et al. (2016). In this study, authors assessed 283 

riverscape fragmentation induced by 37 hydroelectric power stations in the Rhine catchment in 284 

Switzerland using data from 2133 European chubs (Squalius cephalus) sampled across 47 sites and 285 

genotyped at nine microsatellite loci. We selected 23 pairs of populations according to the following 286 

criteria: upstream and downstream populations belonged to the same river, were separated by a single 287 

dam, were distant from a maximum of 16km (maximum migration distance observed in chub 288 

according to Fredrich et al., 2003) and were not separated by any confluence with tributaries. This 289 
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selection corresponded to 23 independent dams created between 1893 and 1970, all equipped with 290 

fishpasses (Table1; see also Appendix S6 for a map). We considered a generation time of 3 years, as 291 

reported in Gouskov et al. (2016) to compute the number of generations elapsed since barrier creation 292 

and ran our developed R-function to automatically compute        values. 293 

The second empirical dataset is from Prunier et al. (2018). In this study, authors assessed the influence 294 

of various anthropogenic stressors including riverscape fragmentation induced by weirs on patterns of 295 

genetic diversity and differentiation in two freshwater fishes from two distinct rivers in southwestern 296 

France. They used data from 1361 Eurasian minnows (Phoxinus phoxinus) and 1359 Languedoc 297 

gudgeon (Gobio occitaniae) sampled across 47 sites (22 in the Célé River and 25 in the Viaur River) 298 

and genotyped at 11 and 13 microsatellite loci, respectively. We selected 8 pairs of populations 299 

according to the following criteria: upstream and downstream populations belonged to the same river, 300 

were separated by a single weir, were distant from a maximum of 1km, were not separated by any 301 

confluence with tributaries and were sampled for both species. This selection corresponded to 8 302 

independent weirs (~1 to 3 meters high) created between the 16th and the 20th century (Table 1; see 303 

also Appendix S6 for maps). We considered a generation time of 2 years in P. phoxinus and 2.5 years 304 

in G. occitaniae to compute the number of generations elapsed since barrier creation and again ran 305 

developed R-function (Appendix S10) to automatically compute        values for each obstacle, each 306 

species and across species. 307 

  308 
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Results 309 

 310 

Expected measures of genetic differentiation 311 

The first set of simulations was designed to predict       and       values, that is, the lower and 312 

upper limits of the theoretical range of variation of      . Data simulated before the creation of the 313 

barrier (m = 0.5; T < 400) were used to predict       values whereas data simulated after the creation 314 

of the barrier (m = 0; T > 400) were used to predict       values. As expected with a migration rate 315 

allowing panmixia,       values were always very close from 0, ranging from 5.53 10
-3

 to 7.17 10
-316 

3
 for G‟‟st and from 7.46 10

-3
 to 8.51 10

-3
 for φ‟st. These values represent the predicted background 317 

levels of genetic differentiation, resulting from the sole influences of random processes such as genetic 318 

drift, mutations and sampling biases (Figure 2).  319 

      values were on the contrary designed to mimic the temporal inertia in the setting up of genetic 320 

differentiation after the creation of a total barrier to gene flow. They were predicted from time since 321 

barrier creation and averaged expected heterozygosity (a proxy for effective population size) using a 322 

Random Forest algorithm, simulated data being used as training sets. With explained variance ranging 323 

from 86.8 to 94.2 %, Random Forest models accurately captured variations in measures of genetic 324 

differentiation across the parameter space, whatever the considered mutation rate or the considered 325 

metric of genetic differentiation (Appendix S7). As expected in absence of gene flow (Figure 2), 326 

      increased with time since barrier creation and decreased with effective population size (He). 327 

With predicted       values ranging from 0.031 to 0.898 for G‟‟st and from 0.042 to 0.968 for φ‟st, 328 

both metrics displayed similar distribution patterns across mutation rates, although φ‟st systematically 329 

showed higher values at low He.  330 

 331 

Validation of the connectivity index 332 

The second set of simulations was designed to assess whether the CINDEX correctly reflected the actual 333 

level of gene flow between two populations separated by an artificial barrier, beyond the temporal 334 

inertia in the setting-up of genetic differentiation. The mean CINDEX values computed over simulated 335 
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replicates for each combination of Ne (effective population size), T (number generations since barrier 336 

creation) and m (migration rate) showed –as expected- an overall increase with the increase in 337 

migration rate, whatever the effective size of populations or the age of the barrier (Figure 3A-H; see 338 

Appendix S8 for a visualization against the number Nm of effective dispersal events per generation). 339 

As expected when population are connected with high migration rates after the barrier setting (m > 0.2, 340 

a migration rate of 0.5 ensuring panmixia), the 95% confidence intervals for the CINDEX always 341 

included values higher than 90% (Figures 3A-H). On the contrary, in absence of gene flow after the 342 

barrier setting (m = 0), the 95% confidence intervals always included values lower than 10%, except 343 

within the first 5 generations after barrier creation (Figure 3A), or within the first 10 generations for 344 

very large effective population sizes (Figure 3B, Ne ≥ 1000). In these cases, the CINDEX was slightly 345 

biased upwards, which indicates that we could not totally rule out the noise associated with the 346 

measurement of genetic differentiation within the 5-10 first generations after barrier creation (Figure 347 

3I; Appendix S9). Nevertheless, the CINDEX showed valid and consistent values for both lowest and 348 

highest migration rates, the two thresholds of 10% (total barrier to gene flow) and 90% (full gene 349 

flow) providing robust benchmarks for future interpretation of the index, whatever the age of the 350 

obstacle (from generation 15 at least) or the effective size of populations. 351 

For low migration rates (0 < m ≤ 0.05), the CINDEX showed higher variability, with two noticeable 352 

trends. First, all effective population sizes being combined, the CINDEX slightly increased with the 353 

increase in time since barrier creation (from generation 15 to generation 300), with a 10 to 20% 354 

increase for lowest migration rates (but not for m = 0; Figure 3I). Secondly, all generations > 10 being 355 

combined, the CINDEX slightly increased with the increase in effective population sizes, with again a 10 356 

to 20% increase for lowest migration rates from Ne = 50 to Ne = 1000 (Figure 3J). For instance, for m 357 

= 0.05 after the barrier setting and for the most extreme cases, CINDEX values ranged from 31.1 in 358 

smallest populations to 50.1 in largest populations (mean = 41.2) at generation 15 (Figure 3C), and 359 

from 55.7 in smallest populations to 86.0 in largest populations (mean = 70.8) at generation 300 360 

(Figure 3H).  361 

 362 

Empirical data 363 
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In the first empirical dataset (Gouskov et al., 2016), monitored dams were created from 1893 to 1970, 364 

which corresponds to approximately 13 to 39 generations in S. cephalus (Table1). Averaged levels of 365 

expected heterozygosity were high and showed little variability (ranging from 0.69 to 0.77), whereas 366 

observed measures of genetic differentiation were pretty low, ranging from 0 to 0.032 for φ‟st and 367 

from 0 to 0.018 for G‟‟st. We found that six dams showed a CINDEX  value ranging from 64% to 75%, 368 

suggesting from 25 to 36% decrease in genetic connectivity since barrier creation (Figure 4A). The 369 

other 17 dams all showed CINDEX values higher or equal to 90% (as indicated by confidence intervals), 370 

indicating that populations located on either side of the barrier are properly connected by gene flow. 371 

Importantly, CINDEX values were independent from both time since barrier creation (spearman 372 

correlation test, ρ = -0.18, p = 0.42) and averaged heterozygosity (ρ = 0.22, p = 0.32) whereas both 373 

φ‟st and G‟‟st values tended to covary negatively with averaged heterozygosity (p < 0.09) and G‟‟st 374 

values to covary positively with time since barrier creation (p < 0.09). 375 

In the second empirical dataset (Prunier et al., 2018), monitored weirs were built between the 16th and 376 

the 20th century, that is approximately from 20 to 204 generations in G. occitaniae and from 25 to 255 377 

generations in P. phoxinus. As previously, averaged levels of expected heterozygosity were high and 378 

showed little variability (ranging from 0.58 to 0.72), whereas observed measures of genetic 379 

differentiation were pretty low, ranging from 0 to 0.034 for φ‟st and from 0 to 0.026 for G‟‟st. The 380 

impact of weirs was variable across space and species (Table 1; Figure 4B). In P. phoxinus, all weirs 381 

were found as highly permeable (CINDEX > 90%) with 7 out of 8 weirs showing a CINDEX  of 100%. In G. 382 

occitaniae, four weirs were found as responsible for a decrease in genetic connectivity since barrier 383 

creation (CINDEX  < 90%), with CINDEX values ranging from 83.9 (± 1.3%) in the case of barrier CAP in 384 

the Viaur River to 49.2 (± 3.8 %) in the case of barrier SCC in the Célé River. When computed across 385 

species, none of the weirs were identified as obstacles to overall genetic connectivity (CINDEX  ranging 386 

from 77.2 to 100 %, with 95% confidence intervals systematically including the 90% threshold; Table 387 

1). As previously, CINDEX values were independent from both time from barrier creation (ρ = 0.21, p = 388 

0.41) and averaged heterozygosity (ρ = 0.18, p = 0.47), but so were φ‟st and G‟‟st values (p > 0.29). 389 

 390 

  391 
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Discussion 392 

 393 

Restoring riverscape functional connectivity is of crude importance in terms of biodiversity 394 

conservation and it is now often subject to regulatory obligations (e.g. in Europe, the Water 395 

Framework Directive 2000/60/EC). However, rivers are subject to many and sometimes contradictory 396 

uses (Reid et al., 2018): for practitioners to be able to propose informed trade-offs between restoring 397 

riverscape connectivity and maintaining infrastructures and their associated socioeconomic benefits 398 

(Hand et al., 2018; Roy et al., 2018; Song et al., 2019), new tools have to be developed, allowing a 399 

rapid and reliable quantification of the relative impacts of obstacles to freshwater species movements. 400 

Our objective was here develop an operational tool allowing such thorough quantification from a 401 

minimum amount of data (Figure 1; see Box 1 for user guidelines).  402 

The proposed index of genetic connectivity CINDEX can be easily and automatically computed from a 403 

simple set of upstream and downstream genotypes collected once and in the direct vicinity of a 404 

putative barrier, provided the number of generations elapsed since barrier creation is known. Based on 405 

two complementary metrics of genetic differentiation (G‟‟st and φ‟st) preliminary chosen so as to limit 406 

any possible bias, the CINDEX simply scales the observed level of genetic differentiation (     ) with 407 

respect to a theoretical range of variation spanning from the background noise expected in the absence 408 

of any barrier to gene flow (         , CINDEX = 100%) to the maximal level of differentiation 409 

expected if the obstacle was a total barrier to gene flow (     , CINDEX = 0%), the latter taking into 410 

account both the time since barrier creation and the effective population size. Using numerous 411 

simulations to explore the interplay between time since barrier creation, mutation rate and averaged 412 

expected heterozygosity (a proxy for effective population size), we were able to obtain       values 413 

for a large range of biologically realistic parameters (Figure 2). As expected,       values 414 

progressively increased with time since barrier creation and decreased with averaged expected 415 

heterozygosity. Mutation rate also influenced       patterns: as expected, higher mutation rates 416 

accelerate genetic differentiation through time when population sizes are small to medium.  417 
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The CINDEX showed constant patterns of increase with the increase in migration rates (from m = 0 to m 418 

= 0.2), whatever the number of generations since barrier creation and the effective population size 419 

(Figure 3). For lowest migration rates (m ≤ 0.05), we yet found that it could underestimate barrier 420 

effects in the first 5 to 10 generations after the creation of the obstacle. As a conservative strategy, we 421 

suggest that the CINDEX should not be used to assess the permeability of obstacles separating 422 

populations for less than 10 generations. It is yet noteworthy that the CINDEX can be applied to any type 423 

of organisms and thus that species with low generation time (such as some invertebrate species) may 424 

be considered as good candidates to investigate the impact of recently built barriers. For lowest 425 

migration rates (m ≤ 0.05), we also found that CINDEX values slightly increased with both time since 426 

barrier creation (from generations 15 to 300) and effective population sizes (from Ne = 50 to Ne 427 

=1000; Figure 3I-J). These trends have to be kept in mind when comparing intermediate CINDEX values, 428 

ranging from ~15 to ~70% (see Box 1 for an illustration). 429 

 430 

Nevertheless, the CINDEX provides a promising individual quantification of both the short- and long-431 

term genetic effects of dam-induced fragmentation, allowing robust comparisons among species or 432 

populations with different population sizes, and obstacles of different ages (from generation 15 at 433 

least) and types. When applied to empirical data, the CINDEX allowed identifying several obstacles 434 

partially limiting gene flow in at least two freshwater fish species (Figure 4): six out of the 23 dams 435 

monitored by Gouskov et al. (2016) and four out of the eight weirs monitored by Prunier et al. (2018) 436 

showed a CINDEX lower than 90%, in chubs and gudgeons, respectively. In each dataset, computed 437 

CINDEX values were systematically independent from both time from barrier creation and averaged 438 

heterozygosity, indicating that the CINDEX properly takes into account the differential evolution of 439 

allelic frequencies on either side of the barrier. Interestingly, the two most recent weirs in Prunier et al. 440 

(2018; the SCC weir on the Célé River and the CIR weir on the Viaur River, both built in the 1960‟s, 441 

i.e. 20 gudgeon generations ago; Table 1) showed contrasted results in gudgeons: the SCC weir was 442 

identified as the most impactful obstacle (CINDEX  = 49.2 ± 3.8%), whereas the CIR weir was found as 443 

highly permeable to gene flow (CINDEX  = 86.7 ± 15.1%). These contrasted results suggest that distinct 444 

typological features (height, slope, presence of a secondary channel, etc.) may differently affect fish 445 
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mobility (Baudoin et al., 2014). Furthermore, none of the monitored weirs were identified as barriers 446 

to gene flow in minnows, in accordance with personal field observations and previous findings on the 447 

same two rivers (Blanchet et al., 2010). Although understanding how obstacle typological features and 448 

fish traits might interact and shape riverscape patterns of functional connectivity was beyond the scope 449 

of this study, these results suggest that future comparative studies based on the proposed CINDEX might 450 

provide thorough insights as to the determinants of dam-induced fragmentation in various freshwater 451 

organisms (Richardson, Brady, Wang, & Spear, 2016), including fish but also other taxa such as 452 

macro-invertebrates that display very contrasting traits related to dispersal (e.g., Alp, Keller, Westram, 453 

& Robinson, 2012).  454 

 455 

Despite its strong operational potential, the CINDEX does not come without some limitations. First of all, 456 

it is important to remember that this index is a measure of genetic connectivity, not demographic 457 

connectivity (Lowe & Allendorf, 2010), and thus cannot directly provide any counting of the actual 458 

number of crossing events. If immigrants do not reproduce, the actual crossing of dozens of 459 

individuals, although suggesting high permeability, might not translate into high migration rates, 460 

resulting in low CINDEX values (Figure 3). Furthermore, a migration rate has to be interpreted in regard 461 

of effective population size: a migration rate of 0.05 actually corresponds to 2.5 effective dispersal 462 

events per generation in populations of size 50, but to 50 effective dispersal events in populations of 463 

size 1000 (Appendix S8). Despite higher permeability in the latter case, the contribution of these 50 464 

immigrants to local recruitment might still be limited when compared to the contribution of residents  465 

(Lowe & Allendorf, 2010). Although this is more of an inherent characteristic of the index than a real 466 

limitation, it is important to keep this specificity in mind when interpreting it.  467 

 468 

Secondly, the computation of the CINDEX relies on the assumption that, beyond the background signal 469 

of genetic differentiation that is expected under the sole influences of genetic drift, mutations and 470 

random sampling (     ), the observed measures of genetic differentiation       only stem from 471 

dam-induced fragmentation. This assumption is only valid when sampling adjacent populations, 472 

located at the immediate upstream and downstream vicinity of the considered obstacle (Figure 1). It 473 
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thus implies the exclusion of migratory fish species, though at the heart of great conservation issues 474 

(e.g., Junge et al., 2014; Klütsch et al., 2019): complex life-cycles such as anadromy (“river-sea-river” 475 

migrations), catadromy (“sea-river-sea” migrations) or potamodromy (“river-lake-river” migrations) 476 

indeed preclude the delineation of upstream and downstream populations and do not allow proper 477 

estimates for the CINDEX. In non-migratory fish species, this assumption also limits the use of the CINDEX 478 

in large-scale studies, in which the distance between the upstream and the downstream sampling sites 479 

lies beyond the dispersal capacities of the studied species. It certainly leaves room for manoeuvre, as 480 

illustrated with the empirical dataset from Gouskov et al. (2016): we could for instance select pairs of 481 

populations located up to 16km apart, but this was only possible because of the high mobility of 482 

chubs, and performed in an illustrative purpose. In low-mobility species for instance, a non-adjacent 483 

sampling might bias the CINDEX downwards and hence overestimate the measure of fragmentation, as 484 

observed measures of genetic differentiation would result from dam-induced fragmentation but also 485 

from other processes such as Isolation-by-Distance (e.g. Coleman et al., 2018). We thus strongly 486 

encourage practitioners to consider an adjacent sampling design as often as possible, although we 487 

readily acknowledge that this may not always be an easy task given safety and accessibility 488 

considerations. Furthermore, fish may not always be found in the direct vicinity of obstacles. For 489 

instance, the conversion of a river into a reservoir after the creation of a dam often leads to major 490 

habitat modification and shifts in species composition (Bednarek, 2001), which can force adapting the 491 

sampling design. A solution might be to capture the resultant background signal of genetic 492 

differentiation by simulating       values under various scenarios of isolation (Isolation-by-Distance, 493 

Isolation-by-Resistance, etc.; McRae, 2006) in a way similar to the simulation of       values in this 494 

study (Figure 2). We yet believe that the variety, the complexity and the specificity of such scenarios 495 

would preclude the computation of standardized CINDEX scores, comparable among obstacles, species 496 

and studies. Although it might in some instances be considered a technical constraint, we argue that 497 

only a strict adjacent sampling design can warrant unbiased and reliable CINDEX estimates.  498 

 499 

Finally, the proposed CINDEX  does not take into account the possible asymmetric gene flow created by 500 

barriers, as fish might struggle or even fail to ascent an obstacle (sometimes despite the presence of 501 
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dedicated fishpasses; Silva et al., 2018) whereas dam discharge might on the contrary further increase 502 

or even force downstream movements (Pracheil et al., 2015). Although quantifying the asymmetric 503 

permeability of obstacles appears of crude importance for informed conservation measures, the 504 

proposed CINDEX currently relies on the use of classical pairwise measures of genetic differentiation 505 

that assume symmetric gene flow. Future developments will be required to allow the CINDEX to provide 506 

unbiased and distinct standardized scores for both upstream and downstream barrier effects. In the 507 

meanwhile, it may be interesting to also assess the validity of the CINDEX in quantifying the effects of 508 

terrestrial obstacles, since asymmetric gene flow is not necessarily as pronounced as in river systems: 509 

provided that populations are sampled in the direct vicinity of the obstacle, the CINDEX  might as well 510 

provide a standardized quantification of road-induced fragmentation. 511 

 512 

 513 

Conclusion 514 

We here laid the groundwork for an operational tool dedicated to the individual and standardized 515 

quantification of the impact of artificial barriers on riverscape functional connectivity from measures 516 

of genetic differentiation. The proposed index of genetic connectivity CINDEX is designed to take into 517 

account the temporal inertia in the evolution of allelic frequencies resulting from the interplay between 518 

the age of the obstacle and the effective sizes of populations. Provided only adjacent populations are 519 

sampled, the CINDEX allows a rapid and thorough ranking of obstacles only a few generations after their 520 

creation. The CINDEX in its current form still suffers from some limitations, and it should be seen as the 521 

preliminary version of a future powerful bio-indicator of habitat fragmentation, rather than as an end-522 

product. We call conservation and population geneticists to pursue the development of such an index, 523 

as we –as scientists– need to help managers resolve complex and urging social problems. Nonetheless, 524 

the CINDEX is robust, only requires a minimum amount of fieldwork and genotypic data and already 525 

solves several difficulties inherent to the study of dam-induced fragmentation in river systems, making 526 

it a promising tool for the restoration of riverscape connectivity. The CINDEX may allow practitioners to 527 

objectively identify obstacles that do not present any substantial conservation issue (from a 528 
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connectivity perspective) and help them target their efforts and resources towards the most impactful 529 

ones. Similarly, it may allow tracking the expected temporal decrease in genetic differentiation after 530 

obstacle removal or fishpass setting (Landguth et al., 2010; Schwartz, Luikart, & Waples, 2007) and 531 

thus help evaluate the success of local mitigations and restoration measures in response to regulatory 532 

obligations (Silva et al., 2018). Finally, it might as well provide a standardized quantification of road-533 

induced fragmentation, a critical issue in terrestrial ecology.  534 

 535 
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Box 747 

 748 

Box 1 : Guidelines for the use and the interpretation of the CINDEX. 749 

The CINDEX allows an individual and standardized quantification of the impact of artificial barriers on 750 

riverscape functional connectivity from snapshot measures of genetic differentiation. Here, we provide 751 

a guideline for practitioners: 752 

 Species: any freshwater species whose local effective population sizes are lower than 1000 can be 753 

considered. 754 

 Obstacle: any obstacle whose age corresponds to a minimum of 10-15 generations and a maximum 755 

of 600 generations for the studied species can be considered.  756 

 Sampling: populations are sampled in the immediate upstream and downstream vicinity of the 757 

obstacle, with a minimum of 20-30 individuals per populations. 758 

 Genetic data: Individual genotypes are based on a set of polymorphic microsatellite markers. 759 

 Computation: The CINDEX is computed in R thanks to a user-friendly script provided in Appendix 760 

S11 (see also Appendix S10 for a walkthrough). 761 

 Interpretation for CINDEX < 10%: A CINDEX value lower than 10% (or whose 95% confidence 762 

interval includes the 10% threshold) indicates no gene flow between populations (total barrier 763 

effect), whatever the age of the obstacle of the effective size of populations.  764 

 Interpretation for CINDEX > 90%: A CINDEX value higher than 90% (or whose 95% confidence 765 

interval includes the 90% threshold) indicates full genetic connectivity (no barrier effect), whatever 766 

the age of the obstacle of the effective size of populations.  767 

 Interpretation for intermediate CINDEX values: Intermediate CINDEX values can be used to rank 768 

obstacles according to their barrier effect. However, for CINDEX values ranging from ~15 to ~70%, 769 

the CINDEX tends to slightly increase with both the increase in time since barrier creation and the 770 

increase in effective population sizes (Figure 3I-J).  771 

 Obstacles with CINDEX values that do not differ by more than 15 to 20% but that are characterized 772 

by very different ages and / or population sizes (as indicated by expected heterozygosity) should be 773 
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considered as possibly having comparable barrier effects, except of course if the ranking of 774 

obstacles based on CINDEX values goes against these trends. Consider for instance an obstacle A of 775 

age 20 (in generations) and an obstacle B of age 300. If CINDEX(A) = 20% and CINDEX(B) = 40%, 776 

both obstacles should be considered as possibly having the same impact on gene flow. On the 777 

contrary, if CINDEX(A) = 40% and CINDEX(B) = 20%, obstacle B can be confidently considered as 778 

more impactful than obstacle A. 779 

  780 
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Table 781 

Table 1. Main characteristics and results for the obstacles selected from empirical datasets (Original 782 

publication: (1) Gouskov et al., 2016; (2) Prunier et al., 2018). For each obstacle, the table indicates 783 

the name of the river, the date of creation, the distance between upstream and downstream sampled 784 

populations, the considered species (Sc: Squalius cephalus; Go : Gobio occitaniae; Pp: Phoxinus 785 

phoxinus), the number of generations elapsed since barrier creation, the mean expected heterozygosity 786 

(He), and the computed CINDEX along with its 95% confidence inverval. In bold, obstacles that were 787 

found as significant barriers to gene flow in the considered species.  788 

  789 
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 790 

River Obstacle 
Creation 

date 

Upstream-

Downstream 

distance 

(km) 

Species 

Number of 

elapsed 

generations 

He CINDEX 95%CI 
Original 

publication 

Rhine Barr05 1966 12.02 Sc 14.67 0.76 85.50 16.53 (1) 

Rhine Barr06 1914 8.28 Sc 32.00 0.75 100 0 (1) 

Rhine Barr07 1933 7.19 Sc 25.67 0.75 100 0 (1) 

Rhine Barr08 1941 12.86 Sc 23.00 0.73 88.51 2.05 (1) 

Rhine Barr09 1920 6.38 Sc 30.00 0.73 90.02 4.31 (1) 

Rhine Barr10 1956 12.42 Sc 18.00 0.69 100 0 (1) 

Rhine Barr11 1964 4.79 Sc 15.33 0.69 74.98 13.82 (1) 

Aar Barr13 1902 1.91 Sc 36.00 0.76 64.21 8.21 (1) 

Aar Barr14 1953 10.75 Sc 19.00 0.76 63.59 5.58 (1) 

Aar Barr15 1945 7.50 Sc 21.67 0.75 86.49 15.39 (1) 

Aar Barr16 1929 5.61 Sc 27.00 0.77 100 0 (1) 

Aar Barr17 1893 3.14 Sc 39.00 0.77 100 0 (1) 

Aar Barr18 1917 15.55 Sc 31.00 0.76 96.60 4.09 (1) 

Aar Barr19 1896 1.93 Sc 38.00 0.76 74.49 4.06 (1) 

Aar Barr20 1896 6.82 Sc 38.00 0.75 69.41 3.90 (1) 

Aar Barr21 1970 6.00 Sc 13.33 0.76 100 0 (1) 

Aar Barr22 1970 9.51 Sc 13.33 0.77 100 0 (1) 

Aar Barr23 1939 9.22 Sc 23.67 0.76 100 0 (1) 

Aar Barr24 1900 11.67 Sc 36.67 0.76 100 0 (1) 

Aar Barr25 1968 5.81 Sc 14.00 0.76 100 0 (1) 

Aar Barr26 1963 4.84 Sc 15.67 0.75 100 0 (1) 

Limmat Barr32 1933 16.08 Sc 25.67 0.73 71.30 2.10 (1) 

Limmat Barr33 1933 3.24 Sc 25.67 0.72 100 0 (1) 

Célé CLA 1500 0.18 Go 204 0.60 82.03 5.28 (2) 

Célé SCA 1500 0.09 Go 204 0.63 92.73 3.88 (2) 

Célé SCC 1960 0.2 Go 20 0.64 49.23 3.78 (2) 

Viaur SEG 1600 0.11 Go 164 0.58 100 0 (2) 

Viaur CAM 1600 0.49 Go 164 0.62 100 0 (2) 

Viaur CAP 1700 0.55 Go 124 0.61 83.85 1.33 (2) 

Viaur SJU 1800 1.07 Go 64 0.62 81.98 3.98 (2) 

Viaur CIR 1960 0.97 Go 20 0.62 86.72 15.10 (2) 

Célé CLA 1500 0.18 Pp 255 0.54 90.29 5.14 (2) 

Célé SCA 1500 0.09 Pp 255 0.57 100 0 (2) 

Célé SCC 1960 0.2 Pp 25 0.58 100 0 (2) 

Viaur SEG 1600 0.11 Pp 205 0.63 100 0 (2) 

Viaur CAM 1600 0.49 Pp 205 0.61 100 0 (2) 

Viaur CAP 1700 0.55 Pp 155 0.67 100 0 (2) 

Viaur SJU 1800 1.07 Pp 105 0.70 100 0 (2) 

Viaur CIR 1960 0.97 Pp 25 0.70 100 0 (2) 

Célé CLA 1500 0.18 Go-Pp / / 86.16 8.10 (2) 

Célé SCA 1500 0.09 Go-Pp / / 96.37 7.12 (2) 

Célé SCC 1960 0.2 Go-Pp / / 74.61 49.76 (2) 

Viaur SEG 1600 0.11 Go-Pp / / 100 0 (2) 

Viaur CAM 1600 0.49 Go-Pp / / 100 0 (2) 

Viaur CAP 1700 0.55 Go-Pp / / 91.93 15.83 (2) 

Viaur SJU 1800 1.07 Go-Pp / / 90.99 17.66 (2) 

Viaur CIR 1960 0.97 Go-Pp / / 93.36 13.02 (2) 
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Figures 794 

 795 

 796 

Figure 1. Flowchart illustrating the major steps in calculating the index of genetic connectivity for two 797 

independent obstacles. This flowchart refers to a user-friendly script provided in Appendix S11 (see 798 

also Appendix S10 for a walkthrough). After the sampling of populations located at the immediate 799 

upstream and downstream vicinity of each obstacle, users only have to provide a file of genotypes in 800 

the genepop format and a file of parameters indicating, for each obstacle, the names of the sampled 801 

populations and the number T of generations elapsed since the creation of the obstacle. Observed 802 

measures of genetic differentiation       and mean expected heterozygosity He are automatically 803 

computed from provided genotypic data.       and       values, both delimiting the theoretical 804 

range of variation of      , are automatically predicted from pre-existing .rda files,       values 805 

depending on both He and T. The computation of the index basically amounts to rescaling       806 



36 
 

within its theoretical range (see main text for details), thus allowing standardized comparisons of the 807 

permeability of various obstacles, whatever their age, the considered species or the effective size of 808 

sampled populations. 809 

  810 
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 811 

 812 

Figure 2. For each mutation rate (panels A and B) and each metric of genetic differentiation (G‟‟st on 813 

the left and φ‟st on the right), predicted       variations across the parameter space defined by the 814 

time T elapsed since total barrier creation (from 0 to 600 generations) and the averaged expected 815 

heterozygosity (He, a proxy for effective population size, ranging from 0 to 0.93) for pairs of adjacent 816 

populations.       values are represented at the bottom of each graph.       and       surfaces 817 

together delimit the theoretical range of variation for any observed measure of genetic differentiation 818 

     .  819 
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 821 
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Figure 3. Panels A-H: CINDEX responses to the increase in migration rate (m, on a logarithmic scale) for 822 

five different population sizes Ne (colored lines) and from 5 to 300 generations after barrier creation 823 

(panels A to H). All CINDEX values were averaged over 20 simulated replicates and plotted with 95% 824 

confidence intervals. In each panel, the shaded pink surface and the black arrow indicate the range of 825 

variation of CINDEX values for a migration rate of 0.05 (mean value across effective population sizes, 826 

minimum and maximum values into brackets). Panel I-J: CINDEX responses to the increase in time since 827 

barrier creation (panel I) and to the increase in effective population size (panel J) for eight different 828 

migration rates m (colored lines). The mean CINDEX values computed over simulated replicates were 829 

here averaged over effective population sizes (panel I) or over generations (excluding generations ≤ 830 

10; panel J) and plotted with standard deviations. In all panels, shaded grey areas represent the ranges 831 

of variations in which the monitored obstacle can be considered as acting as a total barrier to gene 832 

flow (CINDEX < 10%) or, on the contrary, as allowing full genetic connectivity (CINDEX > 90%). 833 
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 835 

 836 

Figure 4. CINDEX values as computed from empirical datasets. Panel A: Results for the 23 dams 837 

selected from Gouskov et al. (2016), ranked according to their inferred impact on chubs‟ genetic 838 

connectivity (from the most impactful on the left to the less problematic ones on the right). Panel B: 839 

For each monitored species (Go: Gobio occitaniae; Pp: Phoxinus phoxinus), results for the 8 weirs 840 

selected from Prunier et al. (2018), ranked according to their date of creation (indicated by the number 841 

of generations elapsed since barrier creation in each species). 842 
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