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a b s t r a c t

Dispersal of organisms has large effects on the dynamics and stability of populations and communities.

However, current metacommunity theory largely ignores how the flows of limiting nutrients across

ecosystems can influence communities. We studied a meta-ecosystem model where two autotroph–

consumer communities are spatially coupled through the diffusion of the limiting nutrient. We

analyzed regional and local stability, as well as spatial and temporal synchrony to elucidate the impacts

of nutrient recycling and diffusion on trophic dynamics. We show that nutrient diffusion is capable of

inducing asynchronous local destabilization of biotic compartments through a diffusion-induced

spatiotemporal bifurcation. Nutrient recycling interacts with nutrient diffusion and influences the

susceptibility of the meta-ecosystem to diffusion-induced instabilities. This interaction between

nutrient recycling and transport is further shown to depend on ecosystem enrichment. It more

generally emphasizes the importance of meta-ecosystem theory for predicting species persistence and

distribution in managed ecosystems.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Our mechanistic understanding of communities has benefited
from the integration of species interactions with the study of
dynamical coupling between nutrients and species (Lotka, 1956;
Tilman, 1980; Andersen et al., 2004; Sterner and Elser, 2002) and
with spatially structured local communities (Levin, 1992; Wilson,
1992; Tilman and Kareiva, 1997; Leibold et al., 2004; Van de
Koppel et al., 2005). Surprisingly, there is a paucity of theoretical
studies on how the spatial structure of ecosystems interacts with
nutrient fluxes and recycling to influence community dynamics.
Here, we address the current lack of integration across scales
between spatial fluxes of nutrient and local trophic dynamics
controlled by species interactions and recycling processes. By
using the framework outlined by Loreau et al. (2003), we
investigate the stability and synchrony of two coupled ecosys-
tems (a meta-ecosystem) to elucidate the importance of interac-
tions between nutrient recycling and diffusion on community
stability and spatiotemporal heterogeneity.

The study of spatial subdivisions among communities and of
limited dispersal by organisms has led to a diversity of theoretical
results. For example, it has been emphasized that dispersal can
stabilize the dynamics of regional communities by rescue effects,
non-linear spatial averaging and statistical stabilization (Briggs
ll rights reserved.
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and Hoopes, 2004). However, dispersal can destabilize local steady
states and spatially homogeneous solutions, though the resulting
dynamics may be more stable regionally through asynchronous
regional dynamics (Segel and Jackson, 1972; Okubo, 1980; Jansen,
1995; Ermentrout and Lewis, 1997; Rohani and Ruxton, 1999;
Jansen, 2001). The synchronization or lack thereof due to dispersal
is dependent on which biotic compartment is dispersing
(Vandermeer, 2004; Koelle and Vandermeer, 2005).

The application of this body of non-equilibrium theory ranges
from the creation of marine and terrestrial reserves (Carr et al.,
2003; Guichard et al., 2004; Hughes et al., 2005) to the community
assembly and habitat selection of beetles (Resetarits et al., 2004).
Equilibrium theories of metapopulations and metacommunities
have already motivated managers to create wildlife corridors to
link disparate communities and may help reduce local extinctions
(Chetkiewicz et al., 2006). However, these theories are limited by
their implicit considerations of ecosystem processes, which are
vitally important to the structure and dynamics of communities
(e.g. Tilman, 1980). One such ecosystem process is the cycling of
nutrients within ecosystems (Vitousek, 2004).

The importance of nutrient cycling for community dynamics
has been studied in both theoretical and empirical studies
(DeAngelis, 1992). In well-mixed and closed model food chains,
recycling of a single limiting nutrient has no distinct role and
dynamics is equivalent to the simpler open consumer–resource
model (Gurney and Nisbet, 1998). In contrast, spatial flows of
nutrients have large impacts on primary productivity and a variety
of community measures, though most of the results have been
derived from empirical studies (Romme and Knight, 1982; Peterjohn
and Correll, 1984; Polis et al., 1997; Pace et al., 1998, 2004;
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Fig. 1. A diagram describing the various sub-models of the nutrient-explicit meta-

ecosystem model. Symbols are those used in the equations: consumer and

autotroph abundance (C,A), nutrient concentration (N), consumer and autotroph

consumption (fC, fA), autotroph and consumer mortality rate (dA, dC), recycling

coefficients (eA, eC), coefficients of diffusion (dN, dA, dC) and inputs and outputs of

nutrients (IN, EN): (a) Well-mixed, closed, (b) Well-mixed, open, (c) meta-

ecosystem, closed and (d) meta-ecosystem, open.

Table 1
Parameters and variables of the model.

Parameters and

variables

Definitions and units

Parameters

a Maximum uptake rate (1/time)

b Half-saturation constant (mol nutrient)

d Mortality rate constant (1/time)

e Portion of nutrients from mortality recycled

d Diffusion rate constant (1/time)

IN Inputs of nutrients into the ecosystem (mol nutrient/

time)

EN Outputs of nutrients from the ecosystem (1/time)

Variables

N Diffuse limiting nutrients (mol nutrient)

A Nutrient stock of autotrophs (mol nutrient)

C Nutrient stock of consumers (mol nutrient)
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but see Leroux and Loreau, 2008). The few theoretical studies that
have dealt with explicit spatial flows of nutrients have reported
both stabilizing and destabilizing effects of nutrient diffusion
(Sjoberg, 1977; Okubo, 1978) and emphasized the lack of a general
understanding of recycling in spatially structured ecosystems. Here
we explore the importance of recycling for trophic dynamics with
spatial structure through the existence of feedbacks between local
nutrient recycling and diffusive transport among communities.

We first present a simple model based upon the meta-
ecosystem framework proposed by Loreau et al. (2003) in order
to investigate the importance of nutrient recycling and nutrient
diffusion on community dynamics. The general model is two
coupled nutrient–autotroph–consumer ecosystems with explicit
recycling. We then explore four general scenarios of spatial
structure and nutrient fluxes: (1) well-mixed, closed ecosystem,
(2) well-mixed, open ecosystem, (3) closed meta-ecosystem, and
(4) open meta-ecosystem (Fig. 1). Each scenario is then subjected
to analytical and numerical stability analysis to understand the
impacts of nutrient flows on ecosystem dynamics and stability. Our
results reveal the relative importance of nutrient recycling for the
onset of diffusion-driven instability and asynchrony of population
fluctuations. The results can be extended to coupled tritrophic food
chains and provide a starting point for the integration of ecosystem
processes into dynamical theories of metacommunities.
2. Materials and methods

2.1. Presentation and assumptions of model

In our study, we focus on a simple ecological model of two
coupled ecosystems. In this model, we concern ourselves with the
levels of a limiting nutrient (N) in the medium and the amount of
this nutrient bound in the two trophic levels explicitly modeled
here, autotrophs (A) and consumers (C) (Fig. 1). Nutrient in the
biota can be returned to the available pool of nutrient by means of
recycling. The general equations describing dynamics in ecosys-
tem i connected to ecosystem j are

dNi

dt
¼ IN�ENNiþeAdAAiþeCdCCi�fAðNiÞAiþdNðNj�NiÞ

dAi

dt
¼ fAðNiÞAi�dAAi�fCðAiÞCiþdAðAj�AiÞ

dCi

dt
¼ fCðAiÞCi�dCCiþdCðCj�CiÞ

fAðNiÞ ¼
aANi

bAþNi

fCðAiÞ ¼
aCAi

bCþAi

i,jA ½1,2�,ia j ð1Þ

where eC, eA are the proportions of nutrients recycled upon
mortality, dN, dA, dC are coefficients of diffusion between
ecosystems, dA, dC are the mortality rates, IN, EN are external
inputs and loss rates of nutrient, respectively, and fA, fC are the
functional responses of each trophic level (A and C) to its resource
(Table 1). Our meta-ecosystem model is similar to the one
proposed by Loreau and Holt (2004), but allows for partial
recycling and can be extended to multiple local ecosystems. Our
model also prevents external inputs and outputs to and from the
biotic compartments.

We use our model to control for openness of the meta-
ecosystem and for connectivity between ecosystems. Each local
ecosystem can be open or closed and can be unconnected or
connected. The openness of a meta-ecosystem is determined by
the values of IN, EN, eC and eA while the connectivity is determined
by the values of dN, dA and dC. We therefore investigate four types
of meta-ecosystems with respect to openness and connectivity:
closed and well-mixed, closed meta-ecosystem, open and well-
mixed, and open meta-ecosystem (Fig. 1 and Table 2). For the
open and well-mixed meta-ecosystem (Fig. 1b), the equations
governing the dynamics are

dN

dt
¼ IN�ENNþeAdAAþeCdCC�fAðNÞA

dA

dt
¼ fAðNÞA�fCðAÞC�dAA

dC

dt
¼ fCðAÞC�dCC ð2Þ



Table 2
Parameter values that define the model studied.

System Under Consideration Parameter Space

Well-mixed, Closed IN¼0, EN¼0, dN¼0, dA¼0, dC¼0, eC¼1, eA¼1

Meta-ecosystem, Closed IN¼0, EN¼0, dN40, dAZ0, dCZ0, eC¼1, eA¼1

Well-mixed, Open IN40, ENZ0, dN¼0, dA¼0, dC¼0, eCZ0, eAZ0

Meta-ecosystem, Open IN40, ENZ0, dN40, dAZ0, dCZ0, eCZ0, eAZ0
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When the well-mixed ecosystem is closed to external inputs
and outputs of nutrients (Fig. 1a), the system of differential
equations reduces from three to two

dA

dt
¼ fAðS�A�CÞ�fcðAÞC�dAA

dC

dt
¼ fcðAÞC�dCC

S¼NþAþC ¼ constant
ð2aÞ

where S is the total amount of nutrients in the ecosystem.
In order to simplify our analysis, we assume instant recycling

of nutrients lost from the biotic compartments and symmetric
diffusion between discrete patches. Furthermore, we parameter-
ize our model to achieve fixed point equilibrium under well-
mixed conditions, though many of our results apply to parameter
regimes that give rise to limit cycles under well-mixed conditions
(Supplementary Information). These simplifications allowed us to
use analytical tools that would not be available otherwise.
2.2. Focus and biological relevance of model

For the purpose of this study, we limit the scope of our general
model in order to accentuate the effects of nutrient diffusion and
recycling on biotic communities. To do so, we do not allow the
movement of autotrophs and of consumers between ecosystems
for the limited model (i.e. dA¼dC¼0). We justify such a focus by
the fact that the effects of movement of organisms between
ecosystems have been extensively studied (e.g. Briggs and
Hoopes, 2004), yet the movement of nutrients between ecosys-
tems is rarely modeled. Still, we did examine the robustness of
our results to non-zero values for dA and dC, with preliminary
results suggesting that the dispersal rate of organisms needs to be
small compared to the diffusion of nutrients for nutrient-diffusion
instabilities to occur (results not shown).

While our general and our limited model (i.e. dA¼dC¼0) are
highly abstracted, both can be applied to real-world ecosystems. For
example, the similarities between our general model and nutrient–
phytoplankton–zooplankton (NPZ) models suggest that our model
should be applicable to oceanic plankton communities (Franks, 2002).
For our limited model, we suggest Lake Tanganyika as an example of
a meta-ecosystem where the movement of nutrients between
ecosystems occurs frequently but the movement of organisms is rare.

Lake Tanganyika is nearly closed concerning flows of nutrients
and is dependent on biological nutrient recycling for high levels of
primary productivity (Kilham and Kilham, 1990; Langenberg
et al., 2003). The shoreline of the lake is divided into rocky and
sandy areas of various lengths (e.g. Wagner and McCune, 2009).
A major group of autotrophs in the rocky areas is periphyton that
is dependent on the substrate for their growth (McIntyre et al.,
(2008)). A number of herbivorous cichlid species specialize on the
periphyton and the cichlids rarely go over the sandy areas to
reach other rocky areas (Wagner and McCune, 2009; P. McIntyre,
pers. comm.). Therefore, both the autotrophs and their consumers
suffer from barriers to their potential dispersal between ecosys-
tems, while nutrients can easily mix. The degree of the mixing can
then be described using dN parameter of the model, with dN

approaching infinity being a perfectly well-mixed lake in terms of
nutrients.

2.3. Analysis

For the well-mixed ecosystems, we determine the stability
conditions of the possible equilibria using linear stability analysis.
We also use the dominant eigenvalue of the Jacobian matrix
(Eq. C.1) to determine the resilience of our well-mixed ecosystem,
where resilience is the return speed to the original ecosystem
state (Loreau et al., (2002)). We complement our analytical results
with numerical simulations to illustrate our model’s behavior.

For the meta-ecosystems, both ecosystems have identical
parameter values and we use parameter values that guarantee a
stable equilibrium in each ecosystem when there is no nutrient
diffusion. The equilibrium that both ecosystems achieve is called a
spatially homogeneous (flat) solution and we analyze its linear
stability using the analytical techniques developed by Jansen and
Lloyd (2000). To determine the linear stability of the flat solution,
one must determine the eigenvalues of a series of k matrices, V(k),
and all the eigenvalues of each matrix V(k) must have negative
real parts for the spatially homogeneous solution to be stable. The
formula for each V(k) matrix is

VðkÞ ¼ JþlkM ð3Þ

where J is the Jacobian matrix of the well-mixed ecosystem
evaluated at the flat solution, M is the ‘migration’ or diffusion
coefficient matrix and lk are the eigenvalues of the connectivity
matrix C, which describes the spatial arrangement of the
ecosystems. For our study, M, C and lk are

M¼

dN 0 0

0 dA 0

0 0 dC

0
B@

1
CA, C¼

�1 1

1 �1

� �
, l1 ¼ 0, l2 ¼�2 ð4Þ

The flat solution can also be a limit cycle or a chaotic attractor,
but we only investigated the stability of limit cycles numerically
(Supplementary Information).

To further understand our model beyond the stability analyses,
we utilize numerical simulations and statistical methods. The
dynamical regimes and the regional stability of meta-ecosystems
are examined by bifurcation plots (local extrema of time series)
and recording the minimum abundance of all trophic levels as we
vary dN. We use covariance to measure spatial synchrony between
ecosystems (N1–N2, A1–A2 and C1–C2), as correlation cannot be
used when the dynamical regime is a stable equilibrium (i.e. no
variance). Covariance is also used to quantify net coupling
between net autotroph growth and both nutrient diffusion and
recycling, in relation to diffusion rate dN.

Autotroph growth is key to the meta-ecosystem effect studied
here because it directly depends on both nutrient recycling and
diffusion. Its coupling can be predicted from direct feedbacks
imposed within our model (Eq. (1)): local net autotroph growth
increases with local nutrient load (IN�ENN1+eAdAA1+eCdCC1) and
in turn directly contributes to the nutrient gradient (dN(N2�N1)
that drives its diffusion into the local ecosystem. In contrast,
recycling rate increases with both net consumer growth and net
autotroph growth, but consumer growth negatively impacts net
autotroph growth. The direct feedbacks mean that under oscillat-
ing dynamics, autotroph growth is predicted to co-vary positively
with nutrient diffusion and could co-vary positively or negatively
with recycling. Covariance is used to study the net effect of these
feedbacks on meta-ecosystem dynamics.
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All numerical simulations were run on Matlab (MathWorks)
for 5000 time steps, and the first 2500 time steps were discarded
as transient prior to analysis, except when analyzing short-term
responses to perturbations.
3. Results

3.1. Properties of well-mixed meta-ecosystems

The behavior of the closed, well-mixed ecosystem (Eq. (2a)) is
nearly identical to that proposed by Gurney and Nisbet (1998).
Parameter values allow for the existence of one autotroph–
consumer fixed point, one autotroph-only fixed point, one
nutrients-only fixed point and a limit cycle with autotrophs and
consumers coexisting (Appendix A). The model’s behavior closely
resembles that of the Rosenzweig–MacArthur predator–prey
model and lead Gurney and Nisbet (1998) to conclude that an
explicit nutrient compartment could be replaced by a carrying
capacity for the autotrophs for a closed ecosystem. The validity of
this conclusion is shown to not hold when space is considered, as
seen below.
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inputs only (solid black), autotroph recycling and inputs (dashed black), consumer recy

Dynamics of recovery from perturbation with Sn
¼5 (for (b)) and Sn

¼10 (for (c)). Lines i

autotroph recycling and consumer recycling). Parameters values for the generation of
For the well-mixed, open ecosystem (Fig. 1b), we investigated how
differing sources of ecosystem enrichment (nutrient recycling and
external nutrient inputs) effect ecosystem resilience. We controlled
total nutrient stock of the ecosystem at equilibrium (Sn, which is equal
to Nn+An+Cn) by fixing recycling levels (eC, eN) and letting external
nutrient inputs (IN) vary such that Sn was the same across ecosystems.
Any differences between the types of recycling are not due to
differential allocation of nutrients between compartments (see proof
in Appendix B). Therefore, any impact of recycling on resilience is due
to changes of nutrient flows between compartments.

Recycling alters the range of enrichment in which the fixed
point can be stable and the resilience of the ecosystem (Fig. 2a).
Consumer recycling decreases stability for low values of
enrichment while increases stability and the range of stability
for higher enrichment values compared to an open ecosystem
with no recycling (Fig. 2a). Nutrients recycled by the autotrophs,
on the other hand, strictly decrease stability compared to the
open ecosystem with no recycling (Fig. 2a). Recycling by both
biotic compartments results in effects similar to that of consumer
recycling with greater resilience (Fig. 2a).

To understand these changes in resilience, we perturb the
system and see how flows of nutrients alter the return time
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Time
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C
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Time
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. (a) Examination of dominant eigenvalues for a well-mixed, open ecosystem with

cling and inputs (dashed grey), total recycling and inputs (solid grey). (b) and (c)

ndicate compartments (N, A, C) and colors indicate recycling regime (no recycling,

the figure are dC¼2, dA¼0.4, aA¼bA¼10, aC¼bC¼6, EN¼0.4.
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(Fig. 2b–c). Without any recycling, the open ecosystem exhibits
dampened oscillations when perturbed from the fixed point due
to overcompensation by the consumer under high autotroph
biomass (Fig. 2b–c). With only autotroph recycling, overcompen-
sation by the consumer increases since the autotroph population
can grow even larger (Fig. 2b–c). Consumer recycling, on the other
hand, reduces overcompensation by providing a source of
nutrients during periods of high mortality from consumers
(Fig. 2b–c). This reduction of overcompensation leads to greater
resilience only for high levels of enrichment (Fig. 2c).
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the stability of the flat solution (an equilibrium), we discovered
that there exists a positive value of dN, denoted as dN,crit, at which
the flat solution is no longer stable (Appendix C). This result is not
sensitive to the values of model parameters and occurs for both
the closed and open meta-ecosystem, though the value of dN,crit is
sensitive to parameter values (Appendix C). Numerical examina-
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system undergoes a Hopf bifurcation, which is a called a spatial
Hopf bifurcation as it is caused by diffusion (Appendix C).

Our numerical results revealed similar dynamical behavior,
spatial covariance and regional stability to increasing dN for the
meta-ecosystems whether they were closed (Fig. 3) or open with
no recycling (i.e. eA¼eC¼0; Fig. 4). Our bifurcation diagrams
indicate that increasing dN above its critical level destabilizes the
stable equilibrium in the local ecosystems and leads to stable
oscillatory dynamics with 2 local extrema (for consumers and
autotrophs) or 4 local extrema (nutrients) to emerge (Figs. 3a and
4a). These local oscillations in the meta-ecosystem followed a
pulse-relaxation pattern with much larger amplitudes and longer
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At the same critical dN required for destabilization of local
dynamics, we witness negative spatial (between ecosystem)
covariance across all trophic levels in the coupled-ecosystems
(Figs. 3b and 4b). As the coupling is further increased, the spatial
covariance of nutrients becomes positive and phase synchronous
while the spatial covariance of the autotrophs and the spatial
covariance of the consumers remain negative, indicating a nutrient-
induced anti-phase synchrony of biotic levels (Figs. 3b and 4b).
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meta-ecosystem (Figs. 3c and 4c). The transition from equilibrium
to a pulse-relaxation cycle is accompanied by a sharp decrease in
the minimum regional (summed across ecosystems) nutrient
stock of consumers and autotrophs, making stochastic extinction
more likely (Figs. 3c and 4c). This result suggests that the meta-
ecosystem is less stable regionally after the diffusion-induced
instability.

Greater understanding of spatiotemporal instabilities above
the critical dN value can be gained from the analysis of feedbacks
between nutrient flow and population growth across trophic
levels as measured by their covariance (see Analysis). In both the
closed and open meta-ecosystems, there is a positive covariance
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between net autotroph growth and nutrient diffusion when
spatiotemporal instabilities occur (Figs. 3d and 4d). In contrast,
nutrient recycling (in the closed meta-ecosystem) and nutrient
inputs (in the open meta-ecosystem with no recycling) co-vary
negatively with autotroph growth, though the effect is much less
for nutrient inputs (Figs. 3e and 4e). It should be noted that the
negative covariance associated with recycling is due to consumer
recycling for autotroph recycling must co-vary positively with
autotroph growth (result not shown).

The above results indicate a positive feedback (positive
covariance) induced by the spatial process of nutrient diffusion,
while recycling (or nutrient input) is linked to a negative feedback
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(negative covariance; Fig. 3d�e and 4d�e). An increase in
autotroph growth in one ecosystem depletes nutrients in that
ecosystem, allowing nutrient input from the second ecosystem
through diffusion, which positively feeds back on autotroph
growth (e.g. Fig. 5b). The negative feedback between autotroph
growth and nutrient recycling occurs through a top-down effect:
recycling of dead autotroph and consumer biomass is not able to
sustain autotroph growth because of increased consumer
consumption.

The feedbacks are somewhat weak at lower levels of nutrient
diffusion and results in complete asynchronous dynamics be-
tween ecosystems and small amplitude oscillations in closed
(Fig. 5a) and open (Fig. 5c) meta-ecosystems. Increasing diffusion
results in a strengthening of the feedbacks, which gives rise to
large amplitude cycles, and nearly complete spatial phase
synchronization of nutrients in closed (Fig. 5b) and open
(Fig. 5d) meta-ecosystems.

Overall, the movement of nutrients between ecosystems can
destabilize the local dynamics of each ecosystem and results in
asynchronous dynamics between ecosystems (Figs. 3 and 4). This
asynchrony does not allow greater stability at the regional scale
because we also observe greater variation and lower minimum
values in consumer and autotroph populations (Figs. 3 and 4). The
emergence of the spatiotemporal instability is due to the positive
feedback between nutrient diffusion and autotroph growth, but
recycling can play a role in determining the critical dN value, as
seen below.
3.3. The relative importance of recycling

The results from Section 3.2 suggest that the bifurcation to
spatiotemporal complexity is solely diffusion driven. However,
recycling strongly affects the strength of feedbacks – positive and
negative – between nutrient availability and growth that in turn
drive the critical diffusion rate leading to the spatial Hopf
bifurcation (Fig. 6). The specific effect of recycling on the
diffusive instability depends on enrichment. We created four
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regimes: a closed meta-ecosystem, an open meta-ecosystem with
perfect recycling, with imperfect recycling and with no recycling
(Fig. 6). To assess the impact of recycling on the diffusion-induced
instabilities while controlling for enrichment, we modified the
parameter S in the closed meta-ecosystem and the parameter IN in
the open meta-ecosystems such that Sn, the total amount of
nutrient stock in one ecosystem at equilibrium, was the same
across recycling regimes.

The results show that meta-ecosystems with no recycling are
more resistant to diffusion-induced instabilities when exposed to
weak enrichment (4oSno7) compared to strong enrichment
(Sn48; Fig. 6a). The open meta-ecosystem with perfect recycling
is always less stable than the closed meta-ecosystem due to the
loss of nutrients (Fig. 6a). In all cases, greater enrichment results
in lower dN,Crit values, so the gains instability are relative (Fig. 6a).

However, the above trend holds only when there is an equal
amount of recycling occurring for autotrophs and consumers.
When only consumers recycle nutrients, the meta-ecosystem is
more stable than a meta-ecosystem with no recycling for all
enrichment levels (Fig. 6b). In contrast, when only autotrophs
recycle nutrients, the meta-ecosystem is less stable than a meta-
ecosystem with no recycling for all enrichment levels (Fig. 6b).
These results hold for all parameter values that lead to a stable flat
solution when nutrient diffusion is not present (Appendix C). The
destabilizing effect of autotroph recycling predominates at low
enrichment while the stabilizing effect of consumer recycling
predominates at high enrichment in a meta-ecosystem with
perfect recycling (Fig. 6b). Recycling can thus facilitate or interfere
with diffusion-driven destabilization depending on enrichment
and source (Fig. 6).

Overall, the above results indicate that nutrient diffusion
rather than nutrient recycling is necessary to the development of
instabilities. However, recycling interacts with diffusion to control
the strength of its positive feedback with local autotroph growth
and hence the critical diffusion rate that marks the onset of
diffusion-driven instabilities. Furthermore, the outcome of the
recycling-diffusion reaction is dependent on the level of enrichment
and source of recycling.
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4. Discussion

We have shown that nutrient flows within (recycling) and
between (diffusion) ecosystems can interact to cause large shifts in
the dynamics and local stability of autotroph–consumer commu-
nities, contradicting previous conclusions derived from well-mixed
models (Gurney and Nisbet, 1998). We show how spatiotemporal
stability is lost through the positive feedback between nutrient
diffusion and autotroph growth. Nutrient recycling controls the
strength of this nutrient-growth feedback and determines the
critical diffusion rates at which diffusion-driven instabilities occur.
We finally show how the sign of the interaction between nutrient
diffusion and recycling is controlled by ecosystem enrichment. Our
results emphasize the importance of nutrient flows and of meta-
ecosystem theory in predicting species persistence and distribution.

4.1. The importance of the diffusion of nutrients on stability

Our results help reveal the nature of the interaction between
spatial structure and ecosystem processes. In well-mixed closed
ecosystems, the dynamics are not qualitatively different from that
of a simple predator–prey system, which led previous authors to
conclude that ‘‘strong similarities between this result and the
paradox of enrichment [sensu Rosenzweig (1971)] [y] suggest
that nutrient conservation within a closed system has little effect
on the unstable interaction between a consumer with a saturating
functional response and a producer with limited total population’’
(Gurney and Nisbet, 1998).

By introducing a simple spatial division and allowing only
nutrients to diffuse between the two ecosystems, we were able
destabilize the local dynamics of the biota in each ecosystem at
levels of total nutrients (e.g. Stot¼S1+S2¼10) that could not induce
such destabilization in a well-mixed ecosystem (Fig. 2; Fig. 6).
Such destabilization would never arise if one simply subsumed the
nutrient compartment into a carrying capacity, which would be
implemented as a natural corollary to the conclusions of the well-
mixed model. We suggest that explicit modeling of nutrients in a
meta-ecosystem framework is necessary to explain population
stability in spatially structured ecosystems.

Furthermore, our results add to previous studies on the
potential stabilizing (or destabilizing) effects of dispersal in
spatial predator–prey systems (Sjoberg, 1977; De Roos et al.,
1991; Jansen, 1995; Gurney et al., 1998; Rohani and Ruxton,
1999; Jansen, 2001; Gurney and Veitch, 2000; Holt, 2002; McCann
et al., 2005; Maser et al., 2007). In spatial predator–prey systems,
if the destabilization of local dynamics led to asynchronous
dynamics between communities, then one would obtain higher
regional densities of both predator and prey (Rohani and Ruxton,
1999; Jansen 2001). In our model, however, though the destabi-
lization of local dynamics due to nutrient diffusion did lead to
asynchronous dynamics between ecosystems, this lead to lower
regional densities of the biotic compartments (Figs. 3 and 4).
Therefore, asynchronous dynamics between ecosystems do not
guarantee greater regional densities of organisms.

Overall, our results show that nutrient diffusion can destabilize
local and regional community dynamics and therefore a more
holistic view of ecosystems must be considered by linking the
mechanistic understanding of species within communities with
flows of matter within and across ecosystems (Polis et al., 1997;
Loreau et al., 2003; Loreau and Holt, 2004).

4.2. Nutrient recycling, stability and enrichment

Nutrient recycling has been evoked as a mechanism of either
stabilization or destabilization of ecosystem dynamics (DeAngelis,
1980, 1992; DeAngelis et al., 1986; Loreau, 1994; Loeuille et al.,
2002; Scheffer and Carpenter, 2003). Some theorists have argued
that adding recycling to an ecosystem will add a positive
feedback, causing the ecosystem to be less stable (DeAngelis,
1980, 1992; DeAngelis et al., 1986). Others have noted that
recycling can increase stability if one considers resistance to
perturbation (Loreau, 1994). Even when recycling does not affect
stability, it can still alter results, such as the leading to an
evolutionary arms race in a model with recycling versus
evolutionary cycles in one without recycling (Loeuille et al., 2002).

Our results indicate that recycling has an ambiguous relation-
ship with ecosystem stability. This relationship is highly depen-
dent on the amount of enrichment within the ecosystem and the
source of the nutrients (Figs. 2 and 6). In well-mixed ecosystems
at low nutrient enrichment, ecosystem resilience is highest for
ecosystems with no recycling, but ecosystems with perfect
recycling have the highest resilience at high nutrient enrichment.
However, most of the benefits of recycling for ecosystem
resilience comes from consumer recycling. In meta-ecosystems,
increasing the relative contribution of consumer recycling vis-�a-vis
other nutrient sources will increase dN,crit at all enrichment levels,
while increasing the relative contribution of autotroph recycling
will decrease dN,crit at all enrichment levels. This pattern can be
explained by the fact that consumer recycling is temporally
asynchronous with autotroph growth, leading to attenuation of
consumer–autotroph cycles, while autotroph recycling is tempo-
rally synchronous with autotroph growth, leading to amplifica-
tions of consumer–autotroph cycles (e.g. Fig. 2c).

In meta-ecosystems with perfect recycling we see relatively
low dN,Crit values at low enrichment and relatively high dN,Crit

values at high enrichment compared to meta-ecosystems with no
recycling. This effect can be explained by the fact that the amount
of nutrient in autotrophs at the fixed point remains constant
independent of enrichment, while the amount of nutrient in
consumers increases. Therefore, the relative contribution of
nutrients from the biota moves from the autotrophs towards
consumers with increasing enrichment, which would then render
the meta-ecosystem relatively more stable.

Overall, our results predict that stability properties of ecosys-
tems depend on recycling and indicates need to integrate
meta-ecosystem dynamics with nutrient diffusion. Our results
provide a spatial mechanism to the contention that closed
ecosystems are not necessarily less stable than open ecosystems
(Loreau, 1994).
4.3. Potential for empirical testing of model results

Our model predicts that nutrient diffusion can cause destabi-
lization of simple food chains and that nutrient recycling and
enrichment can influence this effect. These predictions could be
tested experimentally using connected chemostats, i.e. a grado-
stat, which can allow the movement of nutrients, but not of
organisms, between chemostats. One of the main benefits of these
experiments is that physiological parameters of plankton species
(e.g. diatoms, Daphia) are well understood (e.g. Grover 2003).
With these parameters and control of nutrient flows, it should be
possible test the level of nutrient diffusion predicted to lead to
non-equilibrium population dynamics. There is also potential to
apply the model and the predicted patterns of phase synchrony
to meso-cosms and natural experiments, which has been recently
done for consumer–resource theory (Beninc�a et al., 2009). Using
time series analysis (e.g. wavelet, Beninc�a et al. ,2009), it is
possible to detect whether observed patterns of spatial phase
synchrony are compatible with predicted changes in phase
synchrony (full vs. phase locked) across trophic compartments.
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5. Conclusion

We have shown how nutrient flows can alter the dynamics and
the stability of a meta-ecosystem. Our study predicts that high rates
of nutrient diffusion between ecosystems destabilize equilibrium and
spatially homogeneous dynamics. We also show how nutrient
recycling and enrichment influence the critical diffusion rates needed
to induce such spatiotemporal instability. This model reinforces the
importance of spatial structure for the understanding of ecosystem
processes. The model presented here should be extended to larger
scales and to natural systems to give better ecosystem-level under-
standing of food webs in landscapes (Polis et al., 1997). Our
predictions can be tested experimentally in aquatic micro- and
meso-cosms where nutrients can be controlled independently from
population densities. Applied to managed systems, our results suggest
that greater emphasis should be put on exploring the connectivity of
ecosystems due to the interaction between nutrient flows and
recycling. Such understanding would, for example, impact the
management of watersheds that can result in greater community
instability due to increased nutrient diffusion and enrichment.
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Appendix A. Analysis of the closed, well-mixed ecosystem

In this section, we present our analysis of the closed, well-
mixed ecosystem (Eq. (2a)) in regards to the stability of the fixed
points. The overall conclusion from the analysis is that a closed
nutrient-autotroph–consumer ecosystem has similar properties
of a predatory–prey or consumer–resource model, which has been
noted by others (Gurney and Nisbet, 1998).

The model defined by Eq. (2a) has three possible fixed points.
The first fixed point, the nutrients-only fixed point (NN

¼S, AN
¼0,

CN
¼0), always exists and is stable if and only if the following

inequality holds:

dA4
aAS

bAþS
ðA:1Þ

This condition implies that the autotroph cannot maintain
positive growth at the level of nutrients present in the ecosystem.
If it can maintain positive growth, than the nutrients-only fixed
point is unstable. The second fixed point of interest is the
autotroph-only fixed point (NA

¼ f�1
A (dA), AA

¼S� f�1
A (dA), CA

¼0),
which exists when the autotroph can maintain positive growth at
the level of nutrients present in the ecosystem (i.e. flip the
inequality of (A.1)). For the autotroph only fixed point to be stable,
the following inequality must hold:

dC 4
aCAA

bCþAA
ðA:2Þ

The biological interpretation of this condition is that the
consumer cannot maintain positive growth at the level of
autotrophs present in the ecosystem at autotroph only fixed
point. Therefore, if the consumer can maintain positive growth,
then the autotroph only fixed point is unstable. The last fixed
point of interest is the autotroph-consumer fixed point, which is
quite complicated mathematically

N*¼ SþA*þC*

A*¼
bCdC

aC�dC

C*¼
�B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
�4aCX

q
2aC

B¼�aAðA*þbCÞ�aCðSþbA�A*ÞþdAðA*þbCÞ

X¼ aAðSA*þSbC�ðA*Þ2�bCA*ÞþdAðA*bCþðA*Þ2

�bAA*�SA*�bCbA�SbCÞ ðA:3Þ

The condition for existence of this fixed point is the
maintenance of positive growth of the consumer, which means
the inequality in Eq. (A.2) is reversed when met. The stability
conditions for the autotroph–consumer fixed point are not easily
presented and do not have simple biological interpretations,
though it becomes unstable with increasing ecosystem enrich-
ment (Fig. A.1). Other than fixed points, the dynamics of the
model can enter into limit cycles at high levels of enrichment, as
indicated by numerical simulations (Fig. A.1).

Therefore, the closed nutrient–autotroph–consumer ecosys-
tem model demonstrates the same dynamical regimes as a
predator–prey model (fixed points or limit cycles) and exhibits
similar responses to enrichment (Rosenzweig, 1971). Such results
suggest that little is gained by considering the dynamics of the
nutrients and it would be simpler to use a carrying capacity and a
predator–prey (or consumer–resource) formulation for closed
ecosystems with two trophic levels (Gurney and Nisbet, 1998).
Appendix B. Proof of invariance of Nn, An and Cn for given Sn

In this section, we show that the allocation of nutrients to the
three compartments (N, A and C) for a given total nutrient stock in
the ecosystem (S) at equilibrium must be the same independent
of the proportions of nutrients recycled (eA, eC) or the external
nutrient input (IN). This result is proved by postulating that the
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existence of two solutions to a particular equation, but then
showing that the solutions must be identical, resulting in a proof
by contradiction. The consequence of the result is that the origin
of the nutrients and the temporal patterns of these flows are what
explain the stability of the ecosystems, not the allocation of the
nutrients to different compartments.

The first step in the proof is to write out the formula for the
total amount of nutrients in the ecosystem at equilibrium (Sn)

S* ¼N*þA*þC* ðB:1Þ

Here, Nn, An and Cn are the amount of nutrients in the medium, in
the autotrophs and in the consumers at equilibrium, respectively.
The value of An is not dependent on the parameters controlling
nutrient recycling (eA, eC) or nutrient input (IN ; see Eq. A.3 for
expression). Therefore, An can be treated as a constant, meaning
Sn
�An will also be a constant, which we will call Snn, Nn and Cn, on

the other hand, are dependent on those parameters and can be
expressed as having a functional dependence on the nutrient
recycling and input parameters. The above facts lead to the
following equation:

S*�A* ¼ S** ¼N*ðIN ,eA,eCÞþC*ðIN ,eA,eCÞ ¼ constant ðB:2Þ

We can also remove Cn from Eq. (B.2) by noting it can be
expressed as a function Nn, which is clearly seen by solving for Cn

by setting dA/dt from Eq.(2) to zero

dA

dt
¼ 0¼ fAðN

*ÞA*�dAA*�fCðA
*ÞC*

3C* ¼
fAðN

*ÞA*�dAA*

fCðA*Þ
¼ hðN*ðIN ,eA,eCÞÞ ðB:3Þ

We can now express Snn solely as a function of Nn, which is
itself dependent on IN, eA and eC:

S** ¼N*ðIN ,eA,eCÞþhðN*ðIN ,eA,eCÞÞ ðB:4Þ

Now for a particular value of Sn and of An, there can be only one
value of Snn, but it may be possible to have multiple values of Nn

(and therefore Cn) that could result in having the same value of
Snn. We postulate that there exists one value of Nnand N*

1, that
satisfies a particular value of Snn. We now wish to know if there
can be a second value of Nn and N*

2, that can satisfy a particular
value of Snn. An important fact that will aid us in this task is noting
that since fA(Nn) is a strictly increasing function of Nn, then h(Nn) is
also a strictly increasing function of Nn.

If N*
2 is less than N*

1,then h(N*
2(IN,eA,eC)) is less than h(N*

1(IN,eA, eC)),
so Snn is greater than h(N*

2(IN, eA, eC))+N*
2(IN, eA, eC) and N*

2 fails
to satisfy the equality of Eq. B.4. If N*

2 is greater than N*
1, then

h(N*
2(IN, eA, eC)) is greater than h(N*

1(IN, eA, eC)), so Snn is less than
h(N*

2(IN, eA, eC))+N*
2(IN, eA, eC) and N*

2 fails to the equality of Eq. B.4.
Therefore, N*

2 must be equal to N*
1. Therefore, for all values of the

recycling parameters, Nn, Cn and An remain fixed for fixed Sn.
Appendix C. Derivation of dN,crit

The derivation of the critical value for dN in the case of a
spatially homogeneous fixed point solution was made possible by
a theorem proved by Jansen and Lloyd (2000). The theorem states
that for suitably defined connectivity and diffusion matrices, one
can determine the stability of the spatially homogeneous solution
by checking the eigenvalues of V(i) matrices as defined in the text
above (Jansen and Lloyd, 2000). If any of V(i) matrices have a
positive eigenvalue, then the spatially homogeneous solution is
unstable. A simple way of finding the signs of eigenvalues of a
matrix is using the Routh–Hurwitz conditions (Edelstein-Keshet
1988). Using Jansen & Lloyd’s theorem with the Routh–Hurwitz
conditions, we can derive value at which there will be a
bifurcation of some sort.

We start with the Jacobian of Eq. (2):

J¼

a11 a12 a13

a21 a22 a23

a31 a32 a33

0
B@

1
CA

¼

�EN�
aAbAA*

ðN*þbAÞ
2
�

aAN*

bAþN*
þeAdA eCdC

aAbAA*

ðN*þbAÞ
2

aAN*

bAþN*
�dA�

aCbCC*

ðA*þbCÞ
2
�

aCA*

bCþA*

0
aCbCC*

ðbCþA*Þ
2

0

0
BBBBBBBBB@

1
CCCCCCCCCA
ðC:1Þ

The Routh–Hurwitz conditions without diffusion are

1:�trðJÞ40

2:�detðJÞ40
3:�trðJÞ*ðJ11þ J22þ J33ÞþdetðJÞ40 ðC:2Þ

The Routh–Hurwitz conditons with diffusion are

1:�trðVðkÞÞ40

2:�detðVðkÞÞ40
3:�trðVðkÞÞ*ðVðkÞ11þVðkÞ22þVðkÞ33ÞþdetðVðkÞÞ40 ðC:3Þ

If the spatially homogeneous solution is stable without
diffusion, then conditions 1 and 2 with diffusion still hold. The
proof is as follows:

1:�trðVðkÞÞ ¼�ð tr|{z}
o0

ðJÞþ lk|{z}
o0

dNÞ

‘�trðVðkÞÞ40

2:detðJÞ ¼ a11ða22a33�a23a32Þ�a12ða21a33�a23a31Þ

þa13ða21a32�a22a31Þ

¼�a11a23a32|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
o0

þa13a21a32|fflfflfflfflfflffl{zfflfflfflfflfflffl}
40

‘ if detðJÞo0, then a11a23a324a13a21a32, a11o0

for detðVðkÞÞ ¼ ða11þlkdNÞða22a33�a23a32Þ

�a12ða21a33�a23a31Þþa13ða21a32�a22a31Þ

¼�a11a23a32|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
o0

þa13a21a32|fflfflfflfflfflffl{zfflfflfflfflfflffl}
40

�lkdNa23a32|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
o0

‘ if detðJÞo0, then detðVðkÞÞo0

‘�detðVðkÞÞ40 ðC:4Þ

If change in stability occurs, then it must be condition 3 that is
not satisfied. The critical diffusion coefficient value necessary for
it to occur in the system here studied can be calculated in the
following manner. First, we set the left-hand side of the condition
to be equal to zero:

�trðVðkÞÞðVðkÞ11þVðkÞ22þVðkÞ33ÞþdetðVðkÞÞ ¼ 0

-�ða11þa22þlkdNÞð�a23a32þa22lkdNþa22a11�a12a21Þ

�a11a23a32þa13a21a32�lkdNa23a32 ¼ 0 ðC:5Þ

We now gather like terms and solve for dN using the quadratic
formula

�a22l
2
k|fflfflfflffl{zfflfflfflffl}

A

d2
Nþð�2a11a22�a2

22þa12a21Þlk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

dN
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Fig. C1. Comparing the dynamics of the well-mixed limit cycles (dotted line) to

the diffusion-induced limit cycles (solid line) with the same parameter values

except for dN. Note the long periods of very low autotroph biomass followed by a

pulse of autotroph nutrient stock in the diffusion-induced limit cycle.
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þða11ð�a22a11þa12a21Þþa22ða23a32�a22a11þa12a21Þþa13a21a32Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C

¼ 0

dN,crit ¼
�B7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�4AC
p

2A
ðC:6Þ

We can prove there will only be one positive value for dN,crit. As
all parameters are positive and Nn, Cn, An40, then we can easily
determine the signs of most of the elements of the Jacobian

J¼

a11 a12 a13

a21 a22 a23

a31 a32 a33

0
B@

1
CA¼ � ? þ

þ ? �

0 þ 0

0
B@

1
CA ðC:7Þ

The sign of a12 can be determined by using the fact that
dA/dt¼0 at equilibrium for our model equations

dA

dt
¼ 0¼

aAN*A*

bAþN*
�dAA*�

aCA*C*

bCþA*

aCA*C*

bCþA*
¼
aAN*A*

bAþN*
�dAA* Now divide through by A* as A*40

aCC*

bCþA*
¼

aAN*

bAþN*
�dA )

aAN*

bAþN*
�dA40

aAN*

bAþN*
�dA40) �

aAN*

bAþN*
þdAo0) �

aAN*

bAþN*
þeAdAo0 as eAdArdA

‘ a12o0 ðC:8Þ

The sign of a22 can be determined from the same derivation as
a12 by seeing if aCC*=bCþA*4aCbCC*=ðbCþA*Þ

2is true for if it is,
a2240:

aCC*

bCþA*
¼

bCþA*

bCþA*

aCC*

bCþA*
¼

aCbCC*

ðbCþA*Þ
2
þ

aCC*A*

ðbCþA*Þ
2
4

aCbCC*

ðbCþA*Þ
2

‘ a2240 ðC:9Þ

We can now look at the signs of A, B and C of the dN,crit and
notice A is negative, B is positive (some algebra involving the non-
spatial Routh–Hurwitz conditions will show that 2a11a22 is larger
than a22a22+a12a21) and C is positive (also involves some algebra
with non-spatial Routh–Hurwitz conditions). Therefore,
(B2
�4AC)0.5 is real, Bo(B2

�4AC)0.5 and there is one negative
value and one positive value of dN,crit. The positive value is given
by the following:

dN,Crit ¼
�B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�4AC
p

2A
ðC:10Þ

What kind of bifurcation occurs was investigated by inspecting
the eigenvalues of V(i) matrix as dN. There was one real negative
eigenvalue and two complex eigenvalues which are complex
conjugates. The complex eigenvalues have real negative parts for
values less than dN,crit, but have real positive parts for values
greater than dN,crit. Such a change in eigenvalues indicates a Hopf
bifurcation (Edelstein-Keshet, 1988). This leads to the develop-
ment of limit cycles when the initial spatially homogeneous
solution is a fixed point for both the closed and open meta-
ecosystems. These limit cycles have a pulse-relaxation profile
unlike those found when the well-mixed ecosystem’s fixed point
loses stability (Fig. C.1).

We also investigated whether any discernible relationship
existed between dN,Crit and the recycling parameters when
ecosystem enrichment was fixed at an arbitrary value (i.e.
increasing eA and eC does not increase Sn). By fixing ecosystem
enrichment to some arbitrary value, we can take the partial
derivative of dN,Crit with respect to the recycling parameters
without having to worry about changes to Nn, An and Cn as the
recycling parameters increase or decrease. Before taking the
partial derivative of dN,Crit with respect to the recycling para-
meters, we examine the partial derivatives of A, B and C (as
defined in Eq. (C.6)) with respect to the recycling parameters

@A

@eA
¼ 0,

@B

@eA
¼ lidAA*a21o0,

@C

@eA
¼ dAA*a21ða11þa22Þo0

@A

@eC
¼ 0,

@B

@eC
¼ 0,

@C

@eC
¼ dCC*a21a3240 ðC:11Þ

The above partial derivatives combined with the knowledge of
the signs of A, B and C makes it fairly simple to determine the
signs of the partial derivatives of dN,Crit with respect to the
recycling parameters

@dN,Crit

@eA
¼

@

@eA

�B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�4AC
p

2A

 !
¼

1

2A

@

@eA
�B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�4AC

p� �

¼
1

2A
�
@B

@eA
�0:5

2B @B
@eA
�4A @C

@eAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�4AC
p

 !
o0

@dN,Crit

@eC
¼

@

@eC

�B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�4AC
p

2A

 !
¼�

1

2A

@

@eC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�4AC

p� �

¼�
1

4A

�4A @C
@eCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2�4AC
p

 !
40 ðC:12Þ

Therefore, to increase dN,Crit (i.e. make the meta-ecosystem
more ‘stable’ to diffusion-induced instabilities) one has to either
increase eC and/or decrease eA.
Appendix D. Supplementary material

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.jtbi.2010.06.022.
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