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Although animal dispersal is known to play key roles in ecological and evolutionary

known about its genetic basis, particularly in vertebrates. Untapping the genetic basis
Handling Editor: David Coltman of dispersal should deepen our understanding of how dispersal behaviour evolves,
the molecular mechanisms that regulate it and link it to other phenotypic aspects
in order to form the so-called dispersal syndromes. Here, we comprehensively com-
bined quantitative genetics, genome-wide sequencing and transcriptome sequencing
to investigate the genetic basis of natal dispersal in a known ecological and evolu-
tionary model of vertebrate dispersal: the common lizard, Zootoca vivipara. Our study
supports the heritability of dispersal in semi-natural populations, with less varia-
tion attributable to maternal and natal environment effects. In addition, we found
an association between natal dispersal and both variation in the carbonic anhydrase
(CA10) gene, and in the expression of several genes (TGFB2, SLC6A4, NOS1) involved
in central nervous system functioning. These findings suggest that neurotransmitters

(serotonin and nitric oxide) are involved in the regulation of dispersal and shaping
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1 | INTRODUCTION

Dispersal is a cornerstone of ecological and evolutionary processes
(Clobert, Baguette, et al., 2012; Clobert, Massot, & Le Galliard, 2012)
but the genetic factors that underlie dispersal remain largely un-
known (Saastamoinen et al., 2018). Dispersal fuels meta-population
dynamics and channels gene flow among populations (Ronce, 2007).
Processes such as extinction, colonization, and local adaptation can-
not be fully understood without questioning how dispersal itself
evolves (e.g., Block & Levine, 2021). Despite dispersal having been
traditionally considered a stochastic process (Lowe & McPeek, 2014),
mounting evidence supports that traits such as dispersal propensity
or distance vary substantially among individuals of a population
(Bowler & Benton, 2009; Haag et al., 2005; Steyn et al., 2016). The
attention has shifted towards the need to understand how an indi-
vidual's internal factors such as its genetics or physiology influence
dispersal behavioural phases (departure, transience and settlement),
and towards the relative importance of genetic versus environmen-
tal factors in driving dispersal and its evolution (Clobert et al., 2009;
Saastamoinen et al., 2018). Yet, our current understanding of the
genetic and molecular pathways underpinning dispersal remains lim-
ited, particularly in vertebrates.

Unravelling the genetic basis of dispersal - identifying both the
contribution of genetic variation as well as the genes and genetic
variants associated with dispersal - is challenging for at least three
reasons. First, although some species present clearly distinct and
identifiable dispersal morphs (e.g., Caillaud et al., 2002), dispersalis a
cryptic phenotype in most species (Wheat, 2012). This makes it dif-
ficult to discern which individuals in a population will disperse and to
compare their genetic make-up with that of nondispersing individu-
als (i.e., residents). Second, dispersal propensity, distance and timing
are largely dependent on multiple environmental factors (population
density, predation, inbreeding, among others; Fronhofer et al., 2018;
Matthysen, 2005; Perrin & Mazalov, 1999). We can thus expect a
relatively small contribution of genetic factors to variation in disper-
sal, limiting the detection of its heritability and causal genetic vari-
ants. Moreover, different environmental factors may not necessarily
trigger dispersal through the same genetic pathways, which entails
that individuals phenotyped as dispersers may be a heterogeneous

dispersal syndromes. Several genes from the circadian clock (CRY2, KCTD21) were
also differentially expressed between disperser and resident lizards, supporting that
the circadian rhythm, known to be involved in long-distance migration in other taxa,
might affect dispersal as well. Since neuronal and circadian pathways are relatively
well conserved across vertebrates, our results are likely to be generalisable, and we
therefore encourage future studies to further investigate the role of these pathways

in shaping dispersal in vertebrates.

behaviour, circadian clock, dispersal, gene expression, genomics, neurotransmitters

pool in terms of causal genetics drivers. Third, dispersal is a com-
plex trait given that it often associates with a suite of physiological,
behavioural, morphological, and life-history traits (the so-called dis-
persal syndromes: Clobert et al., 2009), and these associations are
likely to change with the environmental context (Cote et al., 2017).
Such phenotypic complexity underlying dispersal is likely to multiply
the number of underlying molecular pathways, complexifying the
genetic basis of dispersal and consequently, its study.

Most of our understanding of the genetic basis of dispersal
comes from invertebrate species, even though only a few species
have been studied and a few candidate genes have been discovered
so far. In well-studied model systems such as Drosophila melanogas-
ter and Caenorhabditis elegans, genes found to underpin dispersal re-
late to different foraging strategies that ultimately entail differences
in dispersal propensity (the foraging gene, for, in D. melanogaster, and
the G protein-coupled receptor gene, NPR-1, in C. elegans: Edelsparre
et al., 2014; Gloria-Soria & Azevedo, 2008). Work on the Glanville
fritillary butterfly (Melitaea cinxia, a model system for studying
dispersal) strongly suggests that dispersal capacity in this species
associates to variation at a gene related to metabolism and flight
performance, the phosphoglucose isomerase gene, Pgi (Niitepold
& Saastamoinen, 2017). In the pea aphid Acyrthosiphon pisum, male
wingless (resident) and winged (disperser) morphs were mapped
to a narrow region in the X chromosome, the api locus (Caillaud
et al., 2002). In winged males, the api locus contains a duplication of
the gene follistatin, which functions in cell development and ecdysis
(Li et al., 2020).

The genetic basis of dispersal in vertebrates has been studied in
less detail, and even estimates of heritability of traits directly linked
to dispersal such as dispersal propensity or distance remain rare
(Saastamoinen et al., 2018). A tandem repeat in the serotonin trans-
porter, SLCA4, was found in association with dispersal age in rhesus
macaques (Macaca mulatta) (Trefilov et al., 2000). Using a candidate
gene approach, Chakarov et al. (2013) provided evidence for an as-
sociation of variation at the genes of the circadian clock and natal
dispersal in the common buzzard (Buteo buteo). The involvement of
the circadian clock in dispersal was not echoed in a recent transcrip-
tomic study in yellow-bellied marmots (Armenta et al., 2019), where
mainly genes involved in metabolism and immune system were high-

lighted. The type of tissue used in this later transcriptomic study
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- blood - may be of limited representativeness of the transcriptomic
changes that causes dispersal. Arguably more appropriate tissues
were used in studies on cane toads (Rhinella marina) investigating
gene expression differences linked to dispersal in the brain and
skeletal muscle (Rollins et al., 2015; Yagound et al., 2021). Several
genes linked to metabolism and locomotor activity were highlighted
by such studies. Unfortunately, individual dispersal was not directly
assessed in these studies. Instead, individuals from populations at
different points in a colonization gradient were used as a proxy of
populations differences in dispersal capacity, making it difficult to
assess to what extent the highlighted genetic pathways are actu-
ally linked to dispersal or to general population and environmental
differences.

Here, we describe a holistic study in which we investigated
the genetic basis of natal dispersal in the European common lizard
(Zootoca vivipara). This species is a well-established model system
to study vertebrate dispersal in the wild as well as in semi-natural
experimental settings (reviewed in Clobert, Baguette, et al., 2012;
Clobert, Massot, & Le Galliard, 2012; Cote & Clobert, 2012). Here,
we combine the use of (i) animal models (Wilson et al., 2010) to de-
compose variation in natal dispersal into genetic and nongenetic
factors, (ii) restriction-site associated markers (RAD sequencing,
RADseq; (Baird et al., 2008) to search for genomic regions associ-
ated with natal dispersal, and (iii) transcriptome sequencing (RNA
sequencing, RNAseq; Mortazavi et al., 2008) to investigate gene
expression differences associated with natal dispersal. We assessed
natal dispersal of lizards originating from natural populations within
the Metatron; an experimental system of enclosed semi-natural
populations connected by corridors and conceived for the study of
dispersal and population dynamics in an ecologically realistic con-
text (Legrand et al., 2012).

2 | MATERIALS AND METHODS
2.1 | Species and population of study

The common lizard is a small ground dwelling lizard that inhabits
cold and humid habitats across Eurasia. In live bearing populations,
females lay on average five uncalcified eggs from which juveniles
emerge within one to 2h. Juveniles are independent at birth and
dispersal occurs mainly during the first months of life (Massot
et al., 2002). The multiple factors triggering dispersal in this spe-
cies include abiotic factors (humidity and temperature; (e.g., Bestion
etal., 2015, 20015b; Massot et al., 2002), social factors (e.g., density
and kin competition; Galliard et al., 2003), community factors (e.g.,
predation; Bestion et al., 2014), and internal factors (e.g., social be-
haviour; Cote & Clobert, 2007, stress level; Meylan, 2002).

Here, we used a database built from successive semi-natural ex-
periments to study dispersal and that took place between 2011 and
2017. Semi-natural populations were established in the Metatron:
a system of semi-natural enclosures connected together through
19 m long corridors divided lengthwise allowing lizards to disperse

and the bidirectional monitoring of their movements (Legrand
et al., 2012). The system successfully mimic natural dispersal (Cote
& Clobert, 2012). In wild populations, juveniles (body length of 1.5-
2.5cm), moving 30m or more away from their natal sites (i.e., the
distance between the centre of two enclosures connected by a 19 m
corridor) can be defined as dispersers as only small fraction of them
(2%) return back to the natal site (Clobert et al., 1994). Similar set-
ups have been repeatedly used to study dispersal in the common
lizard and successfully mimic natural dispersal decision in reaction to
main external and internal drivers (Boudjemadi et al., 1999; Cote &
Clobert, 2007; Le Galliard et al., 2005).

The populations were originally founded in 2010 with liz-
ards from natural populations in the Cevennes (France, 44°27’ N,
3°44'E). Between 2011 and 2017, different experiments were
conducted to study dispersal and how it is influenced by climatic
conditions or maternal effects (see Bestion et al., 2014; Bestion,
Clobert, & Cote, 2015; Pellerin et al., 2022). For each experiment,
we formed 10 to 16 populations by releasing adults, yearlings and
neonates into enclosed patches within a humid-prairie habitat in
early July (Legrand et al., 2012). Population density as well as age-
and sex-structure matched those of natural populations (Bestion,
Cucherousset, et al., 2015; Massot et al., 1992). Neonates were
born in the laboratory, marked individually by toe clipping, and re-
lease in the enclosures right after (no association between disper-
sal status and the number of clipped toes was found, tgg, = 0.90,
p = .37). Each year, we monitored natal dispersal between early July
and the end of September by keeping the corridors open. Between
2011 and 2013, we placed pitfall traps at the end of each 19 m (one-
way) corridor to capture and identify dispersers on a daily basis.
From mid-September to mid-October, we conducted three capture-
recapture sessions to assess summer survival (allowing us to cap-
ture ~93% of the survivors) and to identify juveniles that could be
classed as resident among those released in early July (i.e., to avoid
wrongly classifying nonsurviving juveniles as residents). Between
2014 and 2017, pitfall traps were removed allowing lizards to freely
disperse between pairs of enclosures through the two-way corri-
dors. During similar capture-recapture sessions conducted between
mid-September to mid-October, we identified juveniles as residents
when captured in the enclosure that they were released into in early
July and as dispersers when captured in a different one. For each
new experiment (each year between 2011-2015), lizard populations
were re-established by mixing individuals from different populations

avoiding inbreeding.

2.2 | Quantitative genetics

Pooling the data from all experiments conducted in the Metatron
between 2011 and 2017, we built a pedigree containing 3656 lizards.
The pedigree included 404 founders (309 females and 101 males
of unknown maternal and paternal origin captured directly in natu-
ral populations of the Cevennes). Maternal identity was known in
most cases because juveniles were born directly in the laboratory.
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Paternities were assigned by genotyping each juvenile, its mother
and all reproductive males in the populations for a panel of eight
microsatellite markers (Richard et al., 2012). Paternity was resolved
by subtracting the mother's alleles from a juvenile's genotype and
by matching the remaining alleles with those of the potential father
candidates. Mother identity was not known in seven cases only
(0.2%) for neonates directly born in the experimental populations.
Father identity was missing in 803 cases (24.9%) because juveniles
born from gravid females captured in natural populations were regu-
larly introduced in the Metatron. Individuals with unknown mothers
or fathers were assigned a dummy mother or father (Charmantier &
Réale, 2005). When individuals were known to come from the same
clutch, the same dummy parents were given to each of them.

We used a threshold animal model (i.e., binomial model with a
probit link function) to estimate the heritability of natal dispersal
from the pedigree. The threshold model assumes the existence of
a latent continuous quantitative trait (liability) underlying a binary
trait (here, natal dispersal). Change from one discrete state to the
next (e.g., from being resident to disperse) is expected to result from
the accumulation of genetic and/or environmental variation until the
quantitative trait overpasses a threshold (Reid & Acker, 2022). For
the threshold animal model, we used data on 888 juvenile lizards
whose dispersal status (N = 123 dispersers, N = 765 residents) was
monitored during their first month of life as explained above (i.e.,
they were alive in mid-September). For the individuals of known dis-
persal status, mother identity was known in 99.3% of the cases and
father identity in 92.3%. Mean maternal and paternal sibship size
was 3.7 and 4.3 juveniles, respectively, and the maximum pedigree
depth was five generations.

We used the R package nadiv (Wolak, 2012) in R (version 4.0.3,
R Core Team, 2019) to derive the additive genetic relationship ma-
trix from the pedigree and used it to estimate the additive genetic
variance (V,) of natal dispersal by fitting an animal model with the
R package MCMCglmm (Hadfield, 2010). We further decomposed
variance of natal dispersal by estimating maternal (V) and natal en-
vironment (V,) effects by fitting as random factors mother ID and
the enclosure in which a juvenile was released. As fixed factors, we
included sex and year. We used a ;(2 distribution with one degree
of freedom as priors for the random factors as suggested by De
Villemereuil et al. (2013) and fixed the residual variance (V,) to 1. We
let the MCMC run for 10.1 M iterations with a burnin of 0.1 M and a
thinning interval of 1000 iterations. The final effective sampling was
>9675 for all terms (Table S1). We tested whether the inclusion of an
additive genetic term in the animal model resulted in a substantially
better fit by comparing the DIC values of a model with and without
including a V, term. We used the same approach to test for improve-
ments in model fit in relation to V_ and V. We ran models twice to
verify that the level of variation between runs with the same model
specification was negligible (ADIC <0.1).

We calculated narrow sense heritability (h?) in the liability
scale as the ratio between V, and the sum of V_, V , V_, V,, and the
variance explained by the fixed factors (V). We calculated herita-
bility in the observed data scale using the function QGparams as

implemented in the R package QGglmm by accounting also for the
variance explained by the fixed effects (De Villemereuil et al., 2016).
We calculated the proportion of variance explained by V_, and V,

using the same approach.

2.3 | Genome-wide association study

2.3.1 | Tissue collection, DNA extraction, library
preparation, and sequencing

We extracted DNA from tail samples of 235 juveniles born in 2011
and 2013 (N = 55 dispersers, N = 180 residents) using the DNeasy
Blood & Tissue kit (Qiagen). The preparation of genotype-by-
sequencing, GBS, libraries was outsourced to Novogene (Tai Sun
Wai, Hong Kong). Between 0.3 and 0.6 pg of DNA were digested with
the enzymes Msel and Nlalll, fragments were ligated to barcoded
adapters, amplified by PCR, and size selected using the AMPure XP
kit (Beckman Coulter) according to the manufacturer's instructions.
Libraries were pooled and sequenced (150 bp paired-end) on 15
lanes in lllumina HiSeq machines. On average, we obtained 3.9 M

paired-end reads per individual (+ 0.9 M reads SD).

2.3.2 | Single nucleotide polymorphism (SNP) and
genotype calling

We used Trimmomatic (version 0.36, Bolger et al., 2014) to remove
Illumina-adapter sequences from the raw reads and to perform an
adaptive quality trimming of low quality bases (MAXINFO option
with strictness of 0.2 and target read length of 100 bp). We aligned
the trimmed reads to the reference genome of Zootoca vivipara
(GCA_011800845.1, Yurchenko et al., 2020) using bwa-mem?2 (ver-
sion 2.0, Vasimuddin et al., 2019) with default parameters and we
marked optical duplicates using picard (MarkDuplicates option, ver-
sion 2.20.7, Broad Institute, 2019). Mapping rate after removing
optical duplicates was high (mean [+ SD]: 97.5% +0.5, considering
only properly mapped pairs: 91.1% +1.0). Mean fragment size was
247.8bp +4.2, mean depth 10.8 +2.2, and the mean percentage of
bases of the reference genome covered was 6.2% +0.8.

We used the workflow of Genome Analysis Toolkit (gatk,
version 4.1.9, McKenna et al., 2010) to call for variants and gen-
otypes. We used gatk HaplotypeCaller function to call for vari-
ants from the individual raw alignments and then the function
GenotypeGVCFs to perform the joint genotyping of all samples.
We hard filtered the resulting variant file to retain only biallelic
SNPs with a quality by depth greater than 2.0, root mean square
mapping quality above 50, Fisher strand smaller than 60, and read
position rank sum test above -8. We further filtered the SNPs set
to retain those SNPs that could be genotyped in more than 80%
of the samples and for which mean depth was above 10 and below
four times the mean coverage of 16.43. The remaining 610,780
SNPs were used to recalibrate the base quality scores of the reads

85U8017 SUOWIWIOD 8AIIe81D Bedldde au Aq peusenob aJe Sspoie YO ‘88N Jo SN 10} AReiq 18Ul UQ 43| UO (SUORIPUOD-PUe-SWLRI W0 A3 1M ARe.d Ul juo//Sdny) SUORIPUOD pue swie | 8 88s *[£202/TT/9T] uo ArigiTauluo A8|IM ‘FINI SUNOA!G 1'BH0d AQ 9T69T 98W/TTTT 0T/I0p/L00 A8 1w AreIq1eul|uo//Sdny wolj pepeojumod ‘T ‘€202 ‘Xy6ZS9ET



SAN-JOSE ET AL.

3064
—I—WI |l A& MOLECULAR ECOLOGY

to correct for any bias in quality assessment during sequencing.
After this, we repeated all the described process to call for vari-
ants. We applied the same hard filter to the new set of variants
and retained those SNPs that were genotyped in more than 80%
of the samples, with a mean depth above 10 and four times below
the mean coverage (22.03x), and for which the less common allele
was present in at least two samples. The final number of biallelic
SNPs retained was 411,921 with an average coverage of 23.06
(range: 10-88.01).

2.3.3 | Association test

We used gemma (version 0.98.4, Zhou & Stephens, 2012) to test for
associations between individual SNPs and dispersal status. To ac-
count for the potential effect of different covariables, we extracted
the residuals from a generalized linear mixed model where we mod-
elled dispersal status (binomial) as a function of sex (fixed effect) and
mother ID, and natal environment (enclosure ID) (random effects).
Models were run in R with the function glmer (Ime4 package, Bates
et al., 2015). We used gemma to estimate genome-wide relatedness
from the SNP data that was previously filtered to remove SNPs with
a minor allele frequency below 0.01 (249,452 SNPs were retained).
Information on relatedness and the residuals of dispersal status
were then used in gemma to run the association Wald's tests. To
account for multiple testing, we used the R package gvalues (Storey
et al., 2021) to estimate the g-values for the p-values yielded by
gemma. We fixed the false discovery rate at g<0.1.

2.4 | Differential gene expression (RNA-seq)

241 | Tissue collection, RNA extraction, library
preparation, and sequencing

In 2013, we selected six dispersers and six residents among the
juveniles recaptured in September. For the selected individuals to
be representative of all dispersers and residents in the populations,
we first chose six dispersers belonging to six different populations
of initial release and to six different populations of post-dispersal
release. Populations were subjected to two climatic conditions as
part of another experiment. Climatic treatments before dispersal
and after dispersal were both equally distributed (three individu-
als from the present-day and three from the warm treatment, see
Bestion, Clobert, & Cote, 2015; Bestion, Cucherousset, et al., 2015
for details about climatic treatments). It resulted into two dispersers
which moved from a present-day to a warm enclosure, two dispers-
ers which moved from a warm to a present-day enclosure, one dis-
perser moving from a warm to a warm enclosure and one disperser
moving from a present-day to a present-day enclosure. The sex-ratio
was similar to the population sex-ratio, meaning four female and two
male dispersers. These six dispersers were issued from six differ-
ent families and were not significantly different from nonselected

dispersers at several traits (date of birth, body size, body mass, natal
thermal preference and activity, sociability and exploration levels; all
pz.4,all R?<0.02). This procedure allows us to have the dispersers'
phenotypic characteristics representative to the entire pool of dis-
persers. Second, we choose residents among the pool of residents to
match the sex-ratio, the climatic treatments and the pre- and post-
dispersal populations of dispersers. Only one resident could not
match the populations of dispersers, but residents were still from six
different populations. Residents were also from six different fami-
lies, also different from those of the dispersers, and were chosen to
match nonselected residents on their date of birth, body size, body
mass, natal thermal preference and activity, sociability and explora-
tion levels (all p> .23, R?<0.01).

After their capture, the selected residents and dispersers were
kept for 1week in a laboratory common garden before euthaniz-
ing them to prevent immediate effects of enclosure conditions on
gene expression. The tissues of dispersers were therefore sampled
30.2+6.9 SE days after dispersal (range: 16-60days). We chose
this procedure rather than collecting samples right after dispersal
to focus on lasting, more constitutive differences among dispersers
and residents in gene expression and to be able to choose among the
entire pool of individuals without interrupting the main experiment.
This is probably a conservative choice because the delay between
dispersal and tissue collection to result in the homogenisation of
gene expression profiles of disperser and resident lizards. For eu-
thanasia, we chose the most humane method that would limit to the
minimum animal suffering without compromising gene expression.
We maintained lizards at 4°C for 4 h to put them in a lethargic state
before decapitated them. The head was immediately put into a ster-
ilized tube and flash frozen in liquid nitrogen. We then collected the
right hind leg and flash frozen it in liquid nitrogen. Samples were
stored at —-80°C until RNA extraction. Euthanasia and tissue collec-
tion lasted less than 20s. In order to minimize sampling time and
secure RNA quality, the entire head and hind leg samples were col-
lected. Each part contains tissues of direct interest in dispersal (brain
and skeletal muscle, respectively) and includes others that expected
to participate in dispersal as well (head: sensory visual, auditive and
chemoreception organs, hind leg: peripheral nervous system, bone
and bone narrow tissues).

RNA was extracted using a RNeasy Plus Universal Mini Kit
(Qiagen) and immediately stored at ~80°C. Samples were sent to the
GeT Platform of Genotoul (Castanet-Tolosan) for library preparation
and sequencing. RNA quantity and quality were assessed with an
Agilent 2010 Bioanalyser (Agilent Technologies). All samples were of
good quality (RIN 27.6, Table S2). For each sample, cDNA stranded
libraries were prepared from isolated messenger RNA using TruSeq
RNA Sample Prep Kits version 2 (lllumina). Libraries were quantified
via real-time quantitative PCR using an ABI7900HT (ThermoFisher
Scientific) (Table S1). Thirty fmol of each of the 24 libraries were
pooled and sequenced (100 bp paired-end) together in 4 Hiseq2000
Illumina lanes, resulting in a total of 813 M paired-end reads (mean
[+ SD]: 29.5 M paired reads +8.8 for head samples, and 38.2 M
paired reads +6.4 for hind leg samples, Table S3).
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2.4.2 | Gene expression quantification

We used Trimmomatic (version 0.36, Bolger et al., 2014) to remove
lllumina-adapter sequences from the raw reads and to perform an
adaptive quality trimming of low quality bases (MAXINFO option
with strictness of 0.8 and target read length of 75 bp). We discarded
all the unpaired reads and reads that resulted shorter than 75 bp
after trimming, keeping a total of 730M paired-end reads (mean [+
SDJ: 26.4 M reads +8.1 for head samples, and 34.4 M reads +5.6
for hind leg samples, Table S3). We aligned the reads to the refer-
ence genome of Zootoca vivipara (GCA_011800845.1, Yurchenko
et al., 2020) using HISAT2 (version 2.2.1, Kim et al., 2015 see also
Pertea et al., 2016). The proportion of reads that aligned to the ge-
nome (excluding reads with multiple alignments) was high for both
head and hind leg samples (mean [+ SD]: 90.7% + 0.9 for head sam-
ples, and 93.% + 0.7 for hind leg samples, Table S3).

We quantified gene expression using two alternative methods.
On the one hand, we quantified transcript expression from the bam
alignments yielded by HISAT2 using stringtie (Pertea et al., 2016).
On the other hand, we used an alignment-free tool: kallisto (version
0.44.0, Bray et al., 2016) to quantify transcript expression via pseudo-
alignment of the trimmed reads. The correspondence between both
counting methods was high for highly expressed genes but decreased
substantially for lowly expressed genes (Figure S1). We accounted
for such methodological disparity in gene expression quantification
by running the subsequent differential expression (DE) analyses with
the count data yielded by both stringtie and kallisto.

For both counting methods, we restricted quantification to the
gene and pseudo-gene features already annotated in the Zootoca
vivipara's reference genome (Table S4). This comprised 22,184
genes and 647 pseudogenes. On average, 86.88% of the reads
aligned to the reference transcriptome (89.11% + 0.31 for the head
samples and 84.63% +0.59 for the hind leg samples) and were
used to quantify gene expression. We ran BUSCO (version 4.0.6,
Simao et al., 2015) to assess the quality of the transcriptome by
looking for the presence and completeness of known orthologues
of Metazoa (N = 954 orthologues) and Vertebrata (N = 3354).
Up to 99.3 and 98.7% of metazoan and vertebrate orthologues
were recovered from the reference transcriptome, with only few
of them fragmented (0.0 and 0.45% for metazoan and vertebrate
orthologues, respectively).

2.4.3 | Differential gene expression analyses

We used the R package DESeq?2 (version 1.28.1, Love et al., 2014) to
normalize gene expression counts and to estimate and test for DE be-
tween disperser and resident lizards. Before the analyses, we filtered
out genes with zero expression in the head or the hind leg tissues of
more 10 individuals and genes with mean raw count across all indi-
viduals and tissues below 7. A total of 16,972 genes and 17,382 genes
passed this filter for the stringtie and kallisto data sets, respectively.
We estimated size factors and dispersion using the default DESeq2

parameters and we used negative binomial GLM as implemented in
DESeq2 to test for DE. The models included dispersal status (disperser
vs. resident), body part (head vs. hind leg), their interaction, and the
effect of lizard ID nested within dispersal status. This last term was
added to account for the hierarchical structure of our design: two re-
peated measurements (body parts) per individual. Post hoc contrasts
were used to test for DE between dispersers and residents within each
body part. We also tested for DE using the R package edgeR, which
uses an alternative method of gene count normalization and estima-
tion of dispersion than DESeq2 (Robinson et al., 2010). We obtained
rather similar results with edgeR: 85%-94% of the DE genes detected
by edgeR were also detected by DESeq2 (Figure S2).

After the DE analysis, we applied a jackknife approach to control
for the bias that the expression profile of a single individual might
have had on detecting a DE gene. We reran the DE analyses ex-
cluding each individual at a time. For each body part and counting
method, we considered a gene as differentially expressed between
dispersers and residents if (i) the p-value (adjusted for multiple test-
ing using the method of Benjamini & Hochberg, 1995) was < .05
(two-tailed) and if (ii) the p-value after having excluded any of the
individuals was always < .05 (two-tailed). Approximately, one fourth
of the genes that were initially found to be differentially expressed
were discarded using the jackknife approach described (Table S5).
Finally, we controlled for the differences between stringtie and
kallisto in counting gene expression by reporting as differentially ex-
pressed genes only those genes that were found to be differentially

expressed using both counting methods (Figure S3).

2.4.4 | Gene ontology analyses

For each body part, we conducted a gene ontology (GO) analysis
of the set of differentially expressed genes to test for GO enrich-
ment in relation to the set of all genes tested for DE. GO terms
for each gene were retrieved by blasting the longest isoform of
each gene against the protein data base swissprot (downloaded 6
November, 2020; Boutet et al., 2007). We used blastx with an e-
value <0.01 and a maximum of 10 target sequences, keeping the
matching sequence with the highest bit score for each query (blast
version 2.10.1, Altschul et al., 1990). For each gene with a swissprot
annotation (91.4% of the genes), we search for its corresponding
GO annotations of biological processes using the QuickGo site of
the European Bioinformatics Institute, EMBL-EBI (www.ebi.ac.uk/
QuickGO, last access 17 November, 2020). A total of 20,200 genes
were successfully associated with at least one GO term (90.5% of
the transcriptome). GO analyses were conducted with the R pack-
age topGO (version 2.40.0, Alexa & Rahnenftiihrer, 2019). We tested
for enrichment of GO terms by scoring the GO terms with a mix-
ture of the algorithms elim and weight and using Fisher's exact tests
(Alexa et al., 2006). This approach reduces the false-positive rate
by accounting for the intercorrelated structure of GO terms (Alexa
etal.,, 2006). GO terms with scores <0.01 were considered as signifi-
cantly enriched.
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RESULTS

3.1 | AQuantitative genetics of natal dispersal

The animal model including an additive genetic (V,) term resulted
in a substantially better fit (ADIC = 18.9) than a model consider-
ing no V, for dispersal (N = 888). The estimates of narrow sense
heritability were low-to-moderate and lower credible intervals (Cl)
were close to zero (h? on the liability scale = 0.35 [1.9 110797-0.58
95% Cl], h? on the observed scale = 0.17 [1.0 -107%7-0.29 95% ClI]).
Modelling maternal effects on dispersal did not improve the model's
fit (ADIC = 0.60) and had a trivial contribution to variation in dis-
persal (<0.01 [1.8 -107°7-0.09 95% CI] contrary to the effects of the
natal population (ADIC = 37.53, variance contribution: 0.14 [0.06-
0.27 95% Cl] on the liability scale, 0.08 [0.03-0.14 95% CI] on the
observed scale).

3.2 | Genome-wide association study of
dispersal behaviour

One SNP at the linkage group 2 of the common lizard reference
genome was significantly associated to natal dispersal (Figure 1a).
The SNP was found in an intronic region of the carbonic anhydrase
gene (CA10) (position 289,041 within the 309,442 bp of the gene)
(Figure 1b). The protein coded by CA10 is catalytically inactive and
recent findings point to an evolutionary conserved function as a li-
gand of neurexin in the presynapses of the central nervous system
(Sterky et al., 2017; Tao et al., 2019).

3.3 | Gene expression differences associated
to dispersal

We found 66 genes significantly upregulated and 85 genes signifi-
cantly downregulated in the head tissues of the disperser lizards
(Figure 2a,c, Table Sé). In the hind leg tissues, we found 198 genes

significantly upregulated in dispersers and 222 downregulated
(Figure 2b,d, Table S6). Around one third of the total variance in the
differentially expressed (DE) genes was associated with dispersal
status (Figure 2e,f). DE genes were evenly distributed along the ge-
nome (Figure 1c) and the number of DE genes per linkage group of
the genome was strongly correlated with the number of genes an-
notated in each group (r = .84, p<.001).

Among the genes with the largest expression differences
(Figure 2a,b, Table S5), we found genes with suspected functions
in development. This included transforming growth factor p-2
(TGFB2); Figure 3a): a pleiotropic cytokine that recent findings link
to the development of serotonergic neurons and the synthesis
and metabolism of serotonin (Chleilat et al., 2019), and potassium
channel tetramerization domain (KCTD21); Figure. 3b), which is ex-
pected to promote the degradation of HDAC1: an important pro-
tein regulating development via the Hedgehog pathway (De Smaele
etal.,, 2011) and also involved in the regulation of the circadian clock
(Takahashi, 2017). We also found genes linked to metabolism of sug-
ars including SLC2A1 (facilitatative glucose transporter member 1,
Figure 3c), which codes for the most important transporter of glu-
cose and thereby of energy to the brain (Koch & Weber, 2019), and
genes linked to the metabolism of lipids and steroids (e.g., CYP2G1,
which may be related to the metabolism of steroid hormones: Hua
et al., 1997, Figure 3d). We found genes related to the muscular
system: for example, parvalbumin like EF-hand containing (PVALEF)
(Figure 3e), a gene part of the parvalbumin family that functions in
muscle contraction, and genes related to the immune system: such
as TRIM27, involved in the regulation of CD4-T cells (Figure 3f, Cai
etal,, 2011), and MXRA5, involved in the anti-inflammatory response
(Figure 2g, Poveda et al., 2017).

The gene ontology (GO) analysis showed that DE genes in relation
to dispersal were enriched for a diverse suite of biological processes
(Table 1). In the head, enriched categories included some related to the
musculature (GO's: response to muscle activity, actin filament severing,
and sarcomere organization), immune response (phagosome acidifica-
tion, I-kappaB phosphorylation), and metabolism (negative regulation

of gluconeogenesis). In this latter category, we found a core circadian
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FIGURE 1 Genetic basis of natal dispersal behaviour in common lizards. Manhattan plot (a) showing the negative logarithms of the Wald
test p-values on the association between the residuals of dispersal status (see Materials and methods for more details) and polymorphic
variation at 249,452 single nucleotide polymorphisms (SNPs) of the 19 linkage groups of the reference genome of the common lizard. The
SNP within the gene CA10 with a g-value below 0.1 is shown in green. Detail of the region around the significant SNP within the gene CA10
is shown in (b). Positions along the genome of the genes differentially expressed in dispersers and residents including their -log2 fold change

(FC) (c).
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FIGURE 2 Differential gene expression
in the head and hind leg tissues of
disperser and resident common lizards.
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expression levels. Red dots indicate
significant differentially expressed (DE)
genes, labelled for the 20 most DE genes -4
(Table Sé, see also the explanation of

—_
(Y
~

log, - Fold change

(b)

log, - Fold change

significance thresholds to detect DE in 10
the methods section). Heatmaps showing
the expression levels across resident and
disperser lizards (columns) for each DE

T

Gene expression

T T T T T T
1000 10000 10 1000
Gene expression

T
10000

!
|
ﬁ

gene (rows) in the head (c) and hind leg (d) - =__ —e——— -—
tissues. Expression levels are standardized —= — = o5 !
across individuals for each gene and — i— E’g — =
top (side) dendrograms represent the - 5 _— —— =
clustering of lizard samples (DE genes) —_ " — e —
based on Euclidean distances. Results p— — I — e —
from principal component (PC) analyses ——— :— " — E;iﬁ
on the lizards' expression levels for the DE e == == ——
genes found in the head (e) and hind leg (f) — — —— e
tissues. Shown are the scores of resident = — p— = =
lizards (light green dots) and disperser — = ——
lizards (dark brown dots) for the first two = -— . e
PCs. — - £2 ————— ——
L — | ;’g £ — ==
e f
© e mwmm | ees b
10 : 157 :
10 4 i
3 5 ° < .
S . g :
p Tt DRSS L T
~ L ] ~ °
N N -5
8 -5 (X} &)_10# . °
=10 -15
T T T T T T T T T
-10 -5 0 5 -20 -10 0 10 20
PC1 (31.7%) PC1 (33.6%)
clock gene, CRY2 (Hazlerigg & Wagner, 2006; Vallone et al., 2007), an 4 | DISCUSSION

inhibitor of gluconeogenesis (Zhang et al., 2010) and promoter of li-
pogenesis (Machicao et al., 2016) that was upregulated in dispersers
(Figure 3h) as well as FAM3A, an inhibitor of gluconeogenesis and of
lipogenesis being downregulated in dispersers (Wang et al., 2014).
Other enriched categories were related to pigmentation (GO: endo-
some to melanosome transport) and the synthesis of polyamines (sper-
midine metabolic process, polyamine biosynthetic process), the latter
category including the gene SRM that produces spermidine (an aging
related polyamine in animals (Madeo et al., 2018)).

In the leg muscles, the enriched categories found relate to se-
rotonin uptake, including main genes of the central nervous system
(NOS1, SLC6A4, SLC22A3) (Figure 3i,j), all upregulated in the dispers-
ers, and to glucose (cellular response to hexose stimulus) and lipid
regulation (protein import into peroxisome matrix), calcium signal-
ling (regulation of ryanodine-sensitive calcium-release channel ac-

tivity), and immunology (positive regulation of peptide secretion).

In this study, we aimed to shed light on the genetic basis of ver-
tebrate dispersal, focusing on a well-studied model of natal dis-
persal, the European common lizard. We found support for a
low-to-moderate heritability of dispersal, with maternal and natal
environment effects having a smaller contribution than additive ge-
netic variation. Our genomic scan revealed that variation at the gene
carbonic anhydrase, CA10, associates with dispersal in this species
while our transcriptomic data indicated that gene expression differ-
ences in the head and hind leg tissues of dispersers versus residents
involve multiple biological functions related to metabolism as well
as the muscular and immune systems. We argue that some of the
highlighted pathways (those related to the circadian clock and differ-
ent neurotransmitters) constitute a promising avenue of research for
understanding how dispersal is proximally controlled (and ultimately
evolve) in vertebrates.
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FIGURE 3 Genes differentially expressed in the head and hind leg tissues of disperser and resident common lizards. Gene expression in
the head and hind leg tissues of resident (light green dots and box-and-whisker plots) and disperser lizards (dark brown dots and box-and-
whisker plots) for a subset of the genes (see Results). Asterisks indicate the significance (adjusted for multiple testing) of the differential
expression tests within each body part (n.s.: p>0.05, *: p<.05, **: p<.01, ***: p<.001).

Heritability estimates of dispersal in vertebrates are rare and
mainly focused on indirect proxies (such as performance traits:
sprint speed, swimming capacity) and on certain taxa such as birds
(Saastamoinen et al., 2018). To the best of our knowledge, we pro-
vide here with the first estimate of the heritability of dispersal pro-
pensity in a nonavian reptile. Our heritability estimates (h? = 0.35
in the liability scale) are within the range of those observed in birds
(0.2-0.49; Saastamoinen et al., 2018) with the exception of those
encountered in Sialia mexicana (h?> = 0.95 in the liability scale and

h? = 0.60 in the observed scale; Duckworth & Kruuk, 2009). They
are also in line with heritability estimates generally observed for be-
havioural traits (Dochtermann et al., 2019). A low heritability was
expected given that environmental factors substantially influence
dispersal decisions (Clobert, Baguette, et al., 2012; Clobert, Massot,
& Le Galliard, 2012). Yet, we found that, in our experimental pop-
ulations, variation due to maternal effects was negligible with the
natal environment contributing to dispersal variation but to a lesser
extent than additive genetic variation. Part of the residual variation
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(Continued)

TABLE 1

Downregulated genes in GO

category

Upregulated genes in
GO category

Genes in GO
category

Genes

Score

GO category

GO category ID

0 FKBP1B (+), NOS1 (+), JPH4 (+)

13

0.00395

Regulation of ryanodine-sensitive

G0:0060314

calcium-release channel

activity

MACF1 (LOC118089705) (-),

15

0.00606

Posttranslational protein targeting

G0:0006620

SEC61A2 (+), SEC63 (-)

to endoplasmic reticulum

membrane

TFR2 (+), S10A9 (LOC118076466)

125

0.00620

Positive regulation of peptide

G0:0002793

(~), S10A9 (LOC118076257) (-),

secretion

VAMPS (-), OXCT1 (+), TMEDA (-)

Note: The GO terms significantly enriched (score <0.01) are shown for each gene set. DE expressed genes within each gene category are listed, ordered by decreasing absolute fold-change values, with the

direction of the fold-change indicated between parenthesis (+,upregulated in dispersers; -, downregulated in dispersers).

may still be due to environmental factors for which the natal popula-
tions have none or little differences among them. Indeed, important
environmental factors differ among our semi-natural populations
(e.g., lizard density, climatic conditions), which nevertheless shared
similar (yet variable) conditions to a large extent (e.g., similar levels of
relatedness, social and habitat structure or food abundance). While
residual variation may include further variation of environmental or-
igin, we can also expect it to include further (nonadditive) genetic
variation originating from genotype-per-environment effects as well
as epistatic effects (Falconer & MacKay, 1996), both of which are
likely to be important in determining dispersal (Cote et al., 2017).
Thus, while our study suggests a low heritability of dispersal and
perhaps low evolvability (Queller, 2017), further studies are still
needed to better leverage the contribution that genetic factors may
have on dispersal.

Our transcriptomic data suggests that different molecular path-
ways are related to dispersal. We found differences in the expres-
sion of genes related to metabolism as well as to the muscular and
immune systems. These findings are in line with previous transcrip-
tion studies in vertebrate and insects (Armenta et al., 2019; Brisson
et al.,, 2007; Kvist et al., 2015; Rollins et al., 2015; Vellichirammal
et al., 2014). They also reinforce the idea that dispersal entails costs
(e.g., energetic costs, elevated exposure to parasites and pathogens;
Bonte et al., 2012) and that dispersers differ from residents in vari-
ous aspects of their phenotype (e.g., locomotor morphology, activity
levels, social behaviour) forming the so-called dispersal syndromes
(Clobert et al., 2009). Our data does not allow to resolve whether the
observed gene expression changes have a causal or preparatory role
in dispersal or are the consequences of dispersal itself. Moreover,
we did not conduct the expression analysis on specific tissues, which
would have offered perhaps a clearer picture of potential causative
genetic pathways underlying dispersal. Nevertheless, we believe
that some of the highlighted pathways by our RNAseq study are
worthy of further studies aiming at investigating their central role as
regulators of dispersal. We found some evidence for an involvement
of genes influencing circadian rhythms in the regulation of dispersal,
consistent with previous findings in common buzzards (Chakarov
et al., 2013). Several genes involved in the circadian clock (CRY2,
KCTD21, DUSP26) were found to be differentially expressed in the
tissues of dispersers versus residents. The expression of genes of
the circadian clock regulates long-distance migration in insects and
birds (Kumar et al., 2010; Reppert & de Roode, 2018) and it is likely
that dispersal and migration will rely, at least in part, on overlapping
molecular pathways.

Interestingly, our results overall point towards a role of differ-
ent neurotransmitters of the central nervous system in dispersal.
We found that genes related to the serotonergic system were over-
expressed in dispersers relative to residents. This included TGFB2:
involved in the development of serotonergic neurons and in the
synthesis of serotonin (Chleilat et al., 2019), SLC6A4: the serotonin
transporter gene (Ramamoorthy et al., 1993), and SLC22A3: also a
transporter of serotonin as well as of other neurotransmitters (do-
pamine and norepinephrine: Zhu et al., 2010). This is in line with
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previous findings in rhesus macaques (Trefilov et al., 2000, see also
Kaplan et al., 1995) although our study suggests that other aspects
of the central nervous system might also be involved in dispersal.
We also found a higher expression in dispersers of NOS1, the nitric
oxide synthase 1 gene which synthesizes the neurotransmitter NO
(Alderton et al., 2001). Moreover, our genomic scan suggested that
dispersal in common lizards associates to variation around CA10,
which encodes a ligand of the neurexin proteins involved in neu-
rotransmitter release from the presynapses (Reissner et al., 2013;
Sterky et al., 2017). Other genes differentially expressed between
dispersers and residents such as KCTD21, TRIM27, MXRAS, as well as
SLC6A4 have been previously link to autism spectrum disorder in hu-
mans, which reinforces the idea that neurological differences under-
lie dispersal behaviour (Al-Mubarak et al., 2017; Nava et al., 2012; St
Pourcain et al., 2013; Warrier et al., 2015), see also (Crespi, 2017).

Neurotransmitters such as serotonin and NO regulate loco-
motor behaviour by acting on motoneurons (Foster et al., 2014;
Perrier et al., 2013) but they also regulate other phenotypic aspects
that often integrate dispersal syndromes (e.g., social behaviour;
Donaldson et al., 2014, aggressiveness; Krackow & Konig, 2008, im-
mune and inflammatory responses; Wu et al., 2019, or reproduction;
Prasad et al., 2015). Actually, recent theoretical work predicts that
the genetic integration between dispersal and social behaviour are
a consequence of their likely coevolution (owing to the evolution-
ary feedback between aspects such dispersal propensity and social
interactions; Mullon et al., 2018). We thus believe that placing the
focus on neurotransmitters is promising not only for understanding
how dispersal decisions are controlled but also how dispersal syn-
dromes develop and evolve.

In conclusion, here, we followed a holistic approach to unravel
the genetic basis of dispersal in a vertebrate model. We showed
that dispersal propensity has a genetic basis and we identified
some genetic pathways that might underlie the regulation of
dispersal and potentially, dispersal syndromes. Despite the chal-
lenges of studying the genetics of behaviour in nonmodel species
(Walton et al., 2020), further work is needed to identify the genet-
ics of dispersal to better understand how a trait of such relevance
for a species' population and evolutionary dynamics evolves. In our
GWAS, we could only find a single SNP in association to disper-
sal, despite an expected polygenic basis. Certainly, RAD markers
are not sufficiently powerful to detect genetic variants underly-
ing traits of limited heritability, given their low genome coverage
and its indirect capture of causal-variant effects through linkage
(Kardos et al., 2016). Increasing power using whole-genome ap-
proaches will help in clarify the genetic structure of dispersal
(although see Kardos et al., 2016). Yet, we discuss that potential
epistatic and genotype-per-environment effects probably mask
genetic variation of dispersal. Thus, the combination of whole ge-
nomic tools with experimental approaches (e.g., artificial selection
for dispersal propensity or the assessment of dispersal propensity
while manipulating main dispersal drivers: absence vs. presence of

predators or relatives, for instance) seems a promising approach to

achieve deeper insights. Alongside molecular analyses, substantial
knowledge may also be gained by conducting physiological studies
to test the role that different neurotransmitters and the circadian
clock play in dispersal decisions. Manipulation of serotonin levels
or the photoperiod are common and can be applied to different
species (e.g., Ossenkopp et al., 2005), opening avenues to inte-
grate the genetic and the physiological causes underlying disper-

sal behaviour.
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