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Ecology and evolution unfold in spatially structured commu-
nities, where dispersal links dynamics across scales. Because
dispersal is multicausal, identifying general drivers remains
challenging. In a coordinated distributed experiment spanning
organisms from protozoa to vertebrates, we tested whether
two fundamental determinants of local dynamics, top-down
and bottom-up control, generally explain active dispersal.
We show that both factors consistently increased emigration
rates and use metacommunity modelling to highlight conse-
quences on local and regional dynamics.

Dispersal is a life-history trait' that fundamentally impacts
spatial population and community ecology*’. By linking dynam-
ics between local and regional scales via gene flow, dispersal also
strongly determines evolutionary change’. Dispersal is especially
relevant in the context of current global changes™: increasingly
fragmented landscapes, as well as shifting climatic conditions, may
force organisms to disperse to survive and maintain metacommu-
nity and food web properties®. However, dispersal is often grossly
oversimplified in models’, a representation at odds with the grow-
ing awareness that dispersal must be considered in sufficient detail
for a better understanding of ecology and evolution as well as for
improving biodiversity forecasts>’.

Understanding the causes and consequences of dispersal is chal-
lenging because dispersal is a highly plastic trait that depends on
multiple factors at both the intra- and interspecific level*', such
as resource availability'>'?, intraspecific densities'>'* or interspe-
cific interactions'>'¢, as illustrated by empirical work. Theoretical
work has shown that context-dependent dispersal has important
consequences in the context of intraspecific competition'”'¥, pred-
ator-prey interactions'””” and species coexistence’’, to name but
a few examples.

The challenge is to uncover fundamental proximate drivers of
dispersal, which are relevant to population and community dynam-
ics, while simultaneously maintaining generality and tractability.
We argue that dispersal is best understood and investigated within
the relevant community setting where it is probably a function of
the fundamental ecological forces that determine local population

dynamics, including bottom-up (resource availability) and top-
down (predation risk) impacts that regulate the demography of
focal species.

To investigate this hypothesis, and to provide a general test of
the ubiquity of context-dependent dispersal (CDD), we need syn-
thetic data sets covering multiple species. Such data sets should be
obtained using comparable methodology and, most importantly,
should include responses to multiple drivers of dispersal simulta-
neously since these may interact, which can lead to non-additive
effects””. Such data sets have hitherto been largely lacking for
dispersal®’. Therefore, we conducted a coordinated distributed
experiment™** involving 7 laboratories across Europe and 21 spe-
cies ranging from protozoa to vertebrates to test for bottom-up and
top-down effects on dispersal, more specifically on the emigra-
tion phase of dispersal®, in experimental two-patch systems. By
designing the two-patch systems with connections between them
to be ‘hostile matrices, incompatible with sustained population sur-
vival, we test emigration decisions rather than routine movement
(see Supplementary Information for details). The emigration phase
is crucial because it initiates dispersal, is readily controllable by
behavioural decisions and therefore strongly determines the course
of subsequent dispersal phases®.

We found that resource availability and predation risk, that is,
the perceived presence of a predator based on chemical, visual and/
or auditory cues, impacted emigration decisions across all study
species (Fig. 1 and Supplementary Table 2). The most parsimoni-
ous statistical model suggests that the effects of resource availability
and predation risk were additive (Supplementary Table 2). While
resource limitation led to a clear increase in emigration across all
focal species (on average from approximately 9 to 16% without pre-
dation; relative importance of resource availability, that is, sum of
Akaike information criterion corrected (AICc) weights of models
in which the parameter occurs: 1.00), the effect of predation risk
was overall weaker (on average from approximately 9 to 12% with-
out resource limitation; relative importance of predation risk:
0.88). The interaction between predation risk and resource avail-
ability suggested by the second-ranked model (AAICc=2.07; AICc
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Fig. 1| Effect of bottom-up resource limitation and top-down predation risk on emigration across 21 species, ranging from protists to vertebrates.

a-d, AlCc-based model selection on binomial generalized linear mixed models suggest an additive effect of predation risk and resource limitation

(see Supplementary Table 2; intercept (resource availability (RA) low, predation risk (PRED) no: —1.65 + 0.69; RA standard: —0.64 + 0.11; PRED yes

0.26 +0.11)). We show posterior predictive distributions (continuous lines and coloured shaded areas; the dots represent the medians of the distributions)
of the most parsimonious, that is, additive model (lighter shades indicate resource limitation (b,d); blue: without predator cues (a,b); red: with predator
cues (c,d)). For pairwise differences between the posterior distributions, see Supplementary Fig. 1. For comparison, all panels include the distribution of
the reference scenario. a, Standard resources and no predation (dark blue). Additionally, we plotted the posterior predictive distributions of the model
including the interaction between resource limitation and predation risk (dashed lines), which completely overlaps with the prediction of the additive
model. Below the model predictions, we show the observed median emigration rates (black animal symbol) and quartiles (corresponding black error line)
per study species, as well as box plots across all species (grey; showing the median and quartiles, the whiskers extend beyond the quartiles by 1.5 times

the interquartile range).

weight=0.23; see Supplementary Table 2) appeared to be only of
marginal importance, as illustrated by the high overlap of distribu-
tions in Fig. 1.

In accordance with our results (Fig. 1b), we generally expected
resource limitation to increase emigration rates to escape from
low-fitness environments’. A post hoc exploration of emigration
responses for each species, estimated usinglog OR, where OR is odds
ratios (Supplementary Fig. 2a and Supplementary Tables 3 and 4),
confirmed this finding overall (the best model only includes the
intercept; AICc weight=0.55), while tentatively suggesting that the
focal species’ feeding strategy*® might have modulated this response
(relative parameter importance: 0.23; second-ranked model with
AAICc=2; AICc weight=0.20). While sit-and-wait and active cap-
ture foragers tended to respond less, grazers clearly responded more
to resource limitation by increased emigration. We hypothesize that,
if grazers rely on resources of limited mobility, local resource limita-
tion reliably indicates low fitness expectations that should induce
emigration. For both of the other foraging strategies, resources
may be too mobile to reliably indicate (future) fitness expectations.
However, we warn readers not to draw firm conclusions on this spe-
cific point. The strength of the effect is relatively weak and species
are not evenly distributed across feeding strategies. By contrast, in
the literature, little consensus exists on possible responses to preda-
tion risk, which has been suggested to depend on space use behaviour
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of predators and prey"’. Again, using a post hoc exploration of emi-
gration responses to predation, the intercept model ranked first
(AICc weight=0.15; Supplementary Tables 5 and 6). However,
as suggested by the second-ranked model (AAICc=0.15; AICc
weight=0.14) and the averaged model predictions (Supplementary
Fig. 2b), the direction of the effect of predation indeed depended
somewhat on the relative space use of the focal species, that is, the
extent of space routinely used by the focal species (for example, a
home range) relative to the predator’s space use (Supplementary
Fig. 2b and Supplementary Table 5; relative importance of space
use: 0.26) and the mode of dispersal of the focal species (terrestrial,
aquatic or aerial dispersal, which imply characteristically differ-
ent dispersal costs;”” relative importance of dispersal mode: 0.33).
Finally, whether predators were generalists or specialists may also
have impacted emigration responses (relative importance: 0.38),
with specialist predators tentatively leading to higher emigration
rates. However, these effects have to be interpreted cautiously, as
the analysis is post hoc and the first ranking model consistently
included only the intercept.

Shifting our focus from causes of dispersal to its consequences,
we illustrate the potential impact of CDD in metacommunities
using a simple food chain model that includes a basal resource, a
focal consumer and a top predator in analogy to the experiment
(Fig. 2; for a sensitivity analysis, see Supplementary Tables 13, 14
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Fig. 2 | Consequences of CDD for local and regional metacommunity
dynamics. We show the dynamics of all three trophic levels. a, Top predator
inred, P. b, Focal species in black, N. ¢, Resources in blue, R. All three are
shown in both patches (patch 1: solid lines; patch 2: dashed lines). While
the random dispersal (RD) (light colours) and CDD (dark colours) scenarios
are characterized by the same model parameters, we compare the specific
scenarios in which the RD and CDD parameters minimize the focal species’
population dynamics coefficient of variation (CV), that is, the most locally
stable communities (see ref. %). The insets show the reduction (Rel. red.)

in the CVs of dynamics within patches, respectively covariance (COV)
between patches, under the CDD relative to the RD scenario, as well as the
differences between scenarios assuming CDD with respect to resources
and predators (B), only resources (R) and only predators (P). The strong
local effects are due to emigration being simultaneously resource- and
predator-dependent. If CDD is only resource- or predator-dependent, local
population fluctuations are reduced to a smaller degree, while the reduction
in synchrony may be stronger. The RD emigration rate that minimized

the focal species CV was m,=0.35. The corresponding CDD thresholds
were T,=956.94 and T,=0.12. Parameter values (see Methods): ®=0.5;
R,=1,000; ey=0.1; ay=0.01; dy=0.1; e,=0.005; a,=4;d,=0.1.

and Supplementary Figs. 3-5). Simultaneous resource- and preda-
tor-dependent emigration as found experimentally greatly reduced
local fluctuations of population dynamics through time. At a
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regional metacommunity level, CDD dramatically reduced cova-
riance between patch dynamics. Both of these effects are directly
relevant to local and regional metacommunity stability*, since
stability increases with smaller intrinsic fluctuations and less syn-
chronous patch dynamics. Interestingly, CDD in the focal species
did not only affect its own dynamics, but had cascading effects on
the other trophic levels; this highlights the importance of disper-
sal for driving species network dynamics®. These results suggest
that CDD could, via its stabilizing effect, reduce stochastic extinc-
tion risk in metacommunities, at least for lower and intermediate
trophic levels.

Given the general challenges of forecasting ecological dynam-
ics>¥, the absence of a strong interaction between bottom-up and
top-down emigration modulators (Fig. 1) has the advantage of mak-
ing the prediction of ecological metacommunity dynamics poten-
tially easier®. This finding, along with the general and predictable
responses of emigration to bottom-up and top-down influences,
is encouraging for projecting the dynamics of spatially structured
communities into the future. Of course, the dispersal process is
more complex than emigration® and future work should integrate
all three phases of dispersal®.

Our insights could only be gained using our coordinated dis-
tributed experimental approach?** with well-defined and unified
experimental protocols that allow us to achieve generality beyond
a meta-analysis. Here, we strongly advocate the widespread use of
such large collaborative efforts because they represent a unique pos-
sibility to collect high-quality mechanistic data urgently needed for
biodiversity forecasting’.

In conclusion, our work provides clear insights into the general-
ity of the resource- and predation-dependency of the first disper-
sal phase, emigration. We highlight the potential for far-reaching
consequences of the multicausal nature of dispersal, as well as its
cascading effects on regional metacommunity dynamics.

Methods

Study organisms. We used 21 focal study species: Armadillidium vulgare
(woodlouse; predator licence: 09-2016-02 and 2012-10 DREAL); Chilomonas sp.;
Colpidium sp.; Cornu aspersum (garden snail); Cryptomonas sp.; Deroceras
reticulatum (grey field slug); Dexiostoma sp.; Dikerogammarus villosus (killer
shrimp); Gammarus fossarum; Lissotriton helveticus (palmate newt; licence: 09-
2016-02); Paramecium caudatum; Phoxinus phoxinus (Eurasian minnows; licence:
E-2016-130); Pieris brassicae (large white butterfly; licence: 09-2016-02); Pirata
latitans (pirate wolf spider; licence: 2012-10 DREAL); Platycnemis pennipes (white-
legged damselfly; licence: 09-2016-02); Pteronemobius heydenii (Marsh-cricket;
licence: 09-2016-02 and 2012-10 DREAL); Tetrahymena elliotti; T. pyriformis;

T. thermophila; Tetranychus urticae (two-spotted spider mite); Zootoca vivipara
(common lizard; licence: 2012-10 DREAL). Species included aquatic, terrestrial
and aerially dispersing taxa of protists, algae, arthropods, molluscs and vertebrates.
The resources and predators of these focal species were chosen based on known
natural co-occurrences to allow for the possibility of a common evolutionary
history (see Supplementary Information for details).

Experimental set-up and treatments. Experiments across all study species
followed the same general experimental procedure. We used experimental two-
patch systems adapted to each study species (for example, species-specific patch
sizes, corridor size and positions) for experimental populations to reflect naturally
occurring densities and living conditions. Therefore, experimental conditions
ranged from connected microcosms™ to semi-natural connected mesocosms

(the Metatron*).

Importantly, all experimental metacommunities were characterized by the
presence of a ‘hostile matrix’ connecting the patches, which ensured that inter-
patch relocation was indeed dispersal*>*>*, that is, a change of habitat with
potential consequences for gene flow, and not routine foraging movement (see the
Supplementary Information for details).

We applied a full factorial design crossing two levels of resource availability
(RA) and predation risk (PRED). Resources were ad libitum (‘standard’ condition;
standard RA) or seriously limiting (low RA). PRED was represented by the
presence (PRED yes) or absence of cues (PRED no) belonging to a natural and
relevant (that is, shared evolutionary history) predator of the focal species.
Predator cues could be chemical, visual and auditory, depending on the biology of
the focal species. We manipulated predator cues instead of the physical presence
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of predators to avoid concurrent effects on population dynamics. The treatments
were always applied to one patch (‘origin’) that was initially populated by similar
densities of individuals of the focal species for each treatment. The second patch
(‘target’) always had reference conditions (standard resources, no predator cues)

and was initially empty.

After placing a population of individuals in the ‘origin’ patch, treatments were
applied at the beginning of an acclimation phase that took approximately one
quarter of the time of the subsequent dispersal phase. During the acclimation
phase no dispersal was possible. The absolute times of the acclimation and
dispersal phases were adapted depending on the focal species (see Supplementary
Information). All treatments were replicated five times, with the exception of a few
species where replication was lower (two replicates for P. brassicae and P. pennipes
respectively; four replicates for Z. vivipara) or higher (six replicates for A. vulgare,
L. helveticus, P. phoxinus, P. latitans and the protists, except T. thermophila; nine
and ten replicates for D. villosus and G. fossarum, respectively; eight replicates for
P. heydenii) due to experimental constraints (for details, see Supplementary Table 1).
For some species, the experimental design included a block, which always
included replicates of all treatments and was accounted for in the statistical
analysis (see later in the text). The coordinated distributed experiment on the
21 focal species was carried out in 7 different laboratories across Europe (see
Supplementary Table 1).

Data collection. Data on dispersal, more specifically emigration, that is,

the number of residents (individuals in the patch of origin at the end of the
experiment) and dispersers (individuals that had left their patch of origin and were
in the target patch at the end of the experiment) after the dispersal phase in each
replicate, were either collected using video recording and analysis* or by direct
observation. Using data from further analyses or literature surveys (specified in
the Supplementary Information), we collected species-specific information for the
focal species, resources and predators including: movement; space use; feeding
strategy; body size; predator specialization; and focal species escape strategies. The
latter information was either used directly or in relevant focal species to predator
ratios as potential explanatory variables for understanding the modulators of
resource and predator impacts on emigration (see Supplementary Table 1).

Statistical analysis. All statistical analyses were performed using the R language
and environment for statistical computing (version 3.4.4) and occurred in

two steps. We analysed overall treatment effects on all species together using
generalized linear mixed models on proportion counts of residents and dispersers
(aggregate binomial regression; binomial error structure with logit link function;
‘glmer’ function of the Ime4 package using the ‘bobyqa’ optimizer). As random
effects, we included experimental block within species within taxon. We used
taxon as a random effect to account for potential phylogenetic non-independence
and included the levels ‘protists, ‘algae’, ‘arthropods, ‘molluscs’ and ‘vertebrates’
(see Supplementary Table 1). We further included the laboratory in which

the experiment was performed as a random effect to account for potential
experimenter effects. Overdispersion was accounted for by additionally including
an observation level random effect. Model selection was performed on all models
from the full model, which included an interaction between resource availability
and predation risk, to the intercept model using AICc”. Besides identifying

the most parsimonious model, we also provide information on relative variable
importance, which is the sum of AICc weights of models in which the variable of
interest occurs.

In an exploratory, post hoc analysis, species-specific models were used to
extract log OR. Subsequently, these log OR were used to determine species-specific
modulators of the global CDD response. Model structure for obtaining log OR of
both bottom-up (resource availability) and top-down (predation risk) effects was
analogous to the global analysis described earlier. However, the only potential
random effect at the species level was ‘block. In case the specific experiment did
not include a block, we used a generalized linear model; potential overdispersion
was accounted for by using a ‘quasibinomial’ error structure. We only modelled an
additive effect of resource availability and predation risk, since the global analysis
suggested the absence of an interaction (see results). We nevertheless provide
the analysis of the species-level effects based on models including the interaction
between the two explanatory variables in Supplementary Tables 7-12. For the
subsequent analyses, one protist species (Chilomonas sp.) was excluded since the
log OR and the associated errors were meaningless due to zero emigration in the
reference treatment (standard resources, no predation).

The statistical analysis of the species-level log OR and potential explanatory
variables was executed in a meta-analysis framework to account for the uncertainty
associated with each species-specific log OR (‘rma.mv’ function of the ‘metafor’
package). Again, ‘taxon’ and ‘laboratory’ were included as random effects. Model
selection using AICc was performed on the additive models including all possible
combinations of explanatory variables, which can be found in Supplementary
Table 1. Specifically, we used ‘focal species ID;, ‘relevant taxon;, ‘dispersal mode,
‘focal species feeding strategy’ and ‘log(focal body size)’ for the effect of resource
limitation and ‘focal species ID; ‘relevant taxon, ‘dispersal mode;, ‘relative space
use, ‘predator mobility, ‘predator feeding strategy, ‘predator specialization, ‘escape
strategy, log(focal body size)’ and ‘log body size ratio’ for the effect of predation.

1862

For further information, see Supplementary Table 1. We included focal species
ID’ to test whether the responses were truly species-specific, that is, they varied
idiosyncratically between species, or were more readily explained by other
explanatory variables. For visualization, model predictions were averaged using
AICc model weights as proportions*.

A simple two-patch food chain model with CDD. To illustrate the consequences
of context-dependent, or more precisely resource- and predation-dependent
emigration, we explored the dynamics of a simple, two-patch food chain model
that captures the essence of our experimental setting. The basal resource (R) is
abiotic and flows in and out of the system at a given rate (). The focal species (N)
feeds on this resource and is itself subject to predation by a top predator (P). For
simplicity, we assume that both consumers follow a linear, that is type I, functional
response (feeding rate a) and that only the focal species can disperse (emigration
rate m,; see Supplementary Figs. 4 and 5 for an exploration of the consequences of
predator dispersal). The dynamics of this food chain in patch i are given by

dP.
d_tx = epapNP—dpP. (1a)
av,
& = exayRN—dyN—apPN;+my (N;_Ni) (1b)
R,
% =wRy—wR—ayNR, (1c)

where e is the assimilation coefficient, d is the death rate and R, is the resource
concentration flowing into the system. The subscripts either indicate the patch (3, j)
or whether the consumer parameters describe the focal species (N) or top

predator (P).

We compared the dynamics of this two-patch food chain model with RD and
CDD. In the earlier scenario, m, is an unconditional rate. For CDD, we assume
that the emigration reaction norm is a step function as derived by Metz and
Gyllenberg®. The probability to disperse in the latter scenario will be 0 if resources
are above a threshold resource density and 1 if they are below it. Simultaneously,
the emigration rate will be 0 if predators are below a threshold predator
density and 1 if they are above it. In summary, we assume negative resource-
dependent emigration and positive predator-dependent emigration, as we found
experimentally.

While the RD and CDD scenarios we contrast are characterized by the same
model parameters, we compare the specific scenarios in which the RD and CDD
parameters, respectively, minimize the focal species population dynamics CV as
a proxy for local population stability*. Alternatively, we compare RD and CDD
scenarios that have the same emigration rates as measured at the end of the
analysed time series (see Supplementary Fig. 3). In analogy to Wang and Loreau*,
we use temporal CVs within local communities as well as covariances between
communities as proxies for (meta)community stability.

The results we report here should be understood as an illustration of the
potential consequences of CDD. Although based on a sound mathematical
framework (equations (1a—c)) and accompanied by a sensitivity analysis
(Supplementary Tables 13 and 14, and Supplementary Figs. 3-5), the results are a
snapshot of possible dynamics because a full analysis of the model is beyond the
scope of this work.

Data availability
The data set and computer code generated and analysed during the current study
are available in the Zenodo repository, https://doi.org/10.5281/zenodo.1344579.
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