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ABSTRACT  54	

Selection acts on heritable individual variation in behaviours. Both behavioural and cognitive 55	

processes play important roles in mediating an individual's interactions with their environment. 56	

Yet, while there is a vast literature on repeatable individual differences in behaviour, relatively 57	

little is known about the repeatability of cognitive performance. To further our understanding 58	

of the evolution of cognition we gathered 44 datasets on individual performances of 25 species 59	

and used meta-analysis to evaluate whether cognitive performance is repeatable across six 60	

animal classes. We assessed repeatability (R) in performance (1) on the same task presented at 61	

different time intervals (temporal repeatability), and (2) on different tasks that measure the same 62	

putative cognitive ability (contextual repeatability). We also addressed whether R estimates are 63	

influenced by seven extrinsic factors (moderators): type of cognitive task, type of measurement, 64	

delay between tasks, origin of the subjects, experimental context, taxonomic class and if the R 65	

value was published or unpublished. We found support for both temporal and contextual 66	

repeatability of individual variation in cognitive performance, with significant mean R 67	

estimates ranging between 0.15 and 0.28. R estimates were mostly influenced by the type of 68	

cognitive performance measures and the fact that R values was published, none of the other 69	

moderators showed consistent and significant impacts on repeatability estimates. Our overall 70	

findings highlight the widespread occurrence of consistent inter-individual variation in 71	

cognition which, like behaviour, may have fitness implications.     72	

 73	

Keywords: cognitive repeatability; consistency; evolutionary biology of cognition; individual 74	

differences; learning; memory; attention. 75	

 76	

	  77	
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INTRODUCTION 78	

 79	

Cognition has been broadly defined as the acquisition, processing, storage and use of 80	

information [1], and hence plays an important role in mediating how animals behave and 81	

interact with their environment. While comparative studies have broadened our understanding 82	

of how socio-ecological selection pressures shape cognitive evolution [2–4], relatively little is 83	

known about the adaptive significance of inter-individual variation of cognitive abilities [5,6]. 84	

There is however some evidence that learning may be under selection if it influences fitness [6-85	

19]. Opportunities to learn have been linked to increased growth rate [7], and individual 86	

learning speed can correlate with foraging success [8,9]. Greater cognitive capacities may allow 87	

individuals to better detect and evade predators [10,11] and may also influence their 88	

reproductive success [12–15]; but see [16]. Finally, rapid evolutionary change in learning 89	

abilities have also been shown by experimentally manipulating environmental conditions, 90	

revealing trade-offs between fitness benefits and costs to learning [17–20]. Accordingly, we 91	

might expect selection to act on individual differences in cognitive ability in other species and 92	

contexts.  93	

 94	

As selection acts on variation, a fundamental prerequisite to understanding the evolution of 95	

cognition in extant populations requires an assessment of individual variation in cognitive traits 96	

[21]. The approach most commonly used in evolutionary and ecological studies to estimate 97	

consistent among-individual variation has its origin in quantitative genetics [22,23]. This 98	

approach compares the variation in two or more measures of the same individual, with variation 99	

in the same trait across all individuals to distinguish between variation due to “noise” and 100	

variation among individuals. The amount of variation explained by inter-individual variation 101	

relative to intra-individual variation is termed the “intraclass correlation coefficient” or 102	

“repeatability” (R). Repeatability coefficients are often used to estimate the upper limit of 103	

heritability [23] but see [22], and thus quantifying repeatability is a useful first step in 104	

evolutionary studies of traits [24].  105	

  106	

 107	

Assessing the repeatability of behavioural or cognitive traits is, however, challenging, because 108	

the context of measurement can influence the behaviour of animals, and thus, the value 109	

recorded. Contextual variation can come from the internal state of the organism (e.g. hunger, 110	

circadian cycle, recent interactions, stress) or the external environment, which may differ 111	
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between trials [25]. Moreover, behavioural and cognitive measures may suffer further variation 112	

between measures as experience with one type of measure or test can influence subsequent 113	

measures via processes such as learning and memory [26]. While this issue has been recognised 114	

and discussed in recent research on animal personality [27], it may be particularly relevant 115	

when assaying the repeatability of cognitive traits. Consequently, we might therefore expect 116	

higher within-individual variation in behavioural or cognitive measures compared with 117	

morphological or physiological measures, due to greater differences in the context (internal or 118	

external) of repeated sampling.  119	

 120	

Research on animal personality has provided a broad understanding that individual differences 121	

in behaviour are repeatable (average R = 0.37) across time and contexts [28], hence revealing 122	

an important platform for selection to act on [29–32]. Yet, relatively little is known about the 123	

stability of inter-individual variation in cognitive traits, such as those associated with learning 124	

and memory [26]. Some examples of repeatability estimates suggest that children show good 125	

test–retest reliability on false-belief tasks used to assess theory-of-mind [26,33]. Consistent 126	

individual differences in performance on cognitive tasks have also been documented in a few 127	

non-human animals, such as guinea pigs, Cavia aperea f. porcellus [34,35], zebra finch, 128	

Taenopigya guttata [36], Australian magpies, Gymnorhina tibicen [37], mountain chickadees, 129	

Poecile gambeli [38],  bumblebees, Bombus terrestris [39] and snails, Lymnaea stagnalis [40]. 130	

While the paucity of repeatability measures of cognitive performance may stem from the 131	

recency of interest in the evolutionary ecology of cognitive traits [41,42], it may also suggest 132	

that it is difficult to accurately capture repeatable measures of cognitive ability [43]. 133	

  134	

Recent advances in analytical techniques, such as the use of mixed-effect models, have 135	

facilitated the assessment of repeatability of behavioural traits, by accounting for the potential 136	

confounding effects of both internal and external contextual variations [44,45]. Such 137	

approaches can help provide more accurate estimates of repeatability of cognitive traits and 138	

could provide new insights to the influence of internal and external factors on cognitive 139	

performance. For example, we can now explicitly address the effect of time, or an individual’s 140	

condition, on the repeatability of traits of interest such as learning performance. Likewise, we 141	

can examine the effect of external factors, for example by modeling the environment (e.g. group 142	

size at testing) or the type of test employed (e.g. spatial vs. colour cues in associative learning). 143	

Adopting these methods (i.e. adjusted repeatability [46]) could therefore facilitate studies that 144	
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generate repeatability estimates of cognitive performance and provide greater clarity into the 145	

sources of variation in measures of cognition in this rapidly expanding field. 146	

 147	

In this study, we use meta-analysis to (1) estimate average repeatability of cognitive 148	

performance across different taxa, and (2) discuss the implications of these results for how we 149	

measure cognition and the importance of internal and external factors on the repeatability of 150	

cognition. To do this we assessed individual performances from 14 different cognitive tasks 151	

from 25 species of six animal classes. For each of the 14 tasks, we assessed multiple 152	

performance measures, such as trials to criterion or success-or-failure for the same task. We 153	

then assessed temporal repeatability by comparing individual performances on multiple 154	

exposures of the same task, and contextual repeatability by comparing individual performances 155	

on different tasks that measure the same putative cognitive ability. We then used meta-analysis 156	

to investigate whether there are general across-taxa patterns of repeatability for different tasks 157	

and which factors (type of cognitive performance measurement, type of cognitive task, delay 158	

between tasks, origin of the subjects, experimental context, taxonomic class, and whether the 159	

R value was published or unpublished) might influence the repeatability of cognitive 160	

performance.    161	

 162	

 163	

 164	

  165	

METHODS 166	

 167	

Data collection 168	

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 169	

(PRISMA) approach for the collation of the datasets used in the current study [47]. We first 170	

collected published repeatability estimates of cognitive performance (Figure S1). We did not 171	

include studies reporting inter-class correlations (Pearson or Spearman) between cognitive 172	

performances on tasks measuring different cognitive abilities (i.e., general intelligence) as we 173	

considered these outside the scope of this meta-analysis. Although we acknowledge that results 174	

from the literature on test-retest [48,49] or convergent validity [50] in psychology would be 175	

relevant to compare with the present study, we also considered them beyond the scope of this 176	

paper as their inclusion would have led to a heavy bias towards studies on humans. We only 177	

found 6 publications reporting repeatability of cognitive performance (R) in 6 different species: 178	
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1 arachnid [51], 2 mammals [52–54] and 3 birds [15,55,56], with a sample size ranging from 179	

15 to 347 (mean: 54.66, median: 33) and number of repeated tests varying from 2 to 4 (mean: 180	

2.5, median: 2). 181	

 182	

To complement our data set from published studies, we used an ‘individual-patient-data’ meta-183	

analysis approach commonly used in medical research [57] in which effect sizes are extracted 184	

using the same analysis on primary data [57]. We invited participants from a workshop on the 185	

‘Causes and consequences of individual variation in cognitive ability’ (36 people), as well as 186	

25 colleagues working on individual differences in cognition, to contribute primary datasets of 187	

repeated measurements of cognitive performance. From this approach, we assembled 38 188	

primary datasets from unpublished (9 datasets: 6 studies were fully unpublished while 3 had 189	

similar methods published from the same laboratory group) or published sources (29 datasets 190	

but the data needed to calculate repeatability were not provided in the publications), from which 191	

we could compute repeatability using the same analytical methods (Figure S1, see shared 192	

repository link). These datasets comprised 20 different species of mammals (humans included), 193	

insects, molluscs, reptiles and birds (Table S1 and Table S2). Details about subjects, 194	

experimental context and cognitive tasks for each dataset can be found in electronic 195	

supplementary material (ESM methods).  196	

 197	

Each dataset included 4 – 375 individuals (mean: 46.6, median: 29), that performed 2 – 80 198	

(mean: 7.9, median: 2) repetitions of tests targeting the same cognitive process, either by 199	

conducting the same task presented at different points in time (temporal repeatability, see Table 200	

S1), or different tasks aimed at testing the same underlying cognitive process but using a 201	

different protocol (contextual repeatability, see Table S2). Tasks considered to assess 202	

contextual repeatability differed by stimulus dimension (e.g. spatial vs. colour reversal learning 203	

in Cauchoix- great tit dataset), sensory modality (e.g. visual vs. olfactory discrimination in 204	

Henke- v.d. Malsburg -microcebus dataset), change in experimental apparatus (e.g. colour 205	

discrimination on touch screen and on solid objects in Chow-squirrel lab dataset) or could be a 206	

different task designed to measure the same cognitive process (i.e. Mouse Stroop Test and the 207	

Dual Radial Arm Maze to measure external attention in Matzel-attention mice dataset).  208	

 209	

Repeatability analysis for primary data 210	

All analyses were performed in the R environment for statistical computing version 3.3.3 [58]. 211	

We performed the same repeatability analysis for all primary data provided by co-authors:  212	
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(1) We first transformed cognitive variables if necessary to meet assumptions of normality.  213	

(2) To understand if taking into account the number of repetitions, test order, and/or an 214	

individual’s sex and age (hereafter, individual determinants) played a role in repeatability of 215	

cognitive performances, we then computed 3 types of repeatability values with a mixed-effects 216	

model approach using the appropriate link function in the ‘rptR’ package [59]. Specifically, we 217	

calculated unadjusted repeatability (R), repeatability adjusted for test order (Rn), and 218	

repeatability adjusted for test order and individual determinants  (Rni) and we calculated each 219	

of these metrics for temporal and contextual repeatability separately.  220	

(3) For cases with unadjusted R close to 0 (< 0.005), we computed the R estimate using a least 221	

squares ANOVA approach as advised in [60–62] using the ‘ICC’ package [63]. 222	

(4) Finally, we removed R estimates from further analyses when residuals were not normal  or 223	

overdispersed (Poisson distribution) and data could not be transformed to achieve normality. 224	

See ESM general methods for more details. 225	

 226	

Meta-analysis and meta-regression 227	

We collated the 178 R values computed from primary data with the 35 from published R values, 228	

to obtain a total of 213 estimates of cognitive repeatability. We didn’t compute repeatability de 229	

novo for published study as the statistics used in these papers are the same or similar to the one 230	

we used here for primary data (e.g. mixed-model approach with or without ‘rptR’ package). We 231	

then used a meta-analytic approach to examine average across species repeatability of cognitive 232	

performance. This approach allowed us to: (1) take into account sample size and number of 233	

repeated measure associated with each R value in the estimation of average cognitive 234	

repeatability, (2) control for repeated samples (i.e., avoid pseudoreplication) of the same species 235	

(taxonomic bias), the same laboratory group (i.e., same senior author; observer bias) or the 236	

same experiment (measurement bias) by including these factors as random effects, and (3) ask 237	

whether other specific factors (fixed effects called “moderators” in meta-analysis, see below) 238	

could explain the variation in repeatability of cognitive tests.  239	

 240	

For each of the 6 type of R analysis (unadjusted temporal R, adjusted temporal R for test order, 241	

adjusted temporal R for test order and individual determinants, unadjusted contextual R, 242	

adjusted contextual R for test order, adjusted contextual R for test order and individual 243	

determinants), we performed 3 different multilevel meta-analyses, by fitting Linear Mixed 244	

Models (LMMs) using the ‘metafor’ package [64]: (1) a standard meta-analytic model 245	

(intercept-only model) to estimate the overall mean effect size, (2) 7 univariate (multilevel) 246	
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meta-regression models to independently test the significance of each moderator. For each 247	

model, we used standardized (Fisher’s Z transformed) R values as the response variable. 248	

Finally, we conducted (3) a type of Egger’s regression to test for selection bias.  249	

 250	

In the intercept only model, overall effects (intercepts) were considered statistically significant 251	

if their 95% CIs did not overlap with zero. To examine whether the overall effect sizes of the 6 252	

different analyses were statistically different from each other, we manually performed multiple 253	

pairwise t-tests by comparing t values calculated from meta-analytic estimates and their 254	

standard errors. 255	

 256	

In meta-regression models, we accounted for variance in repeatability of cognitive traits by 257	

adding both fixed and random effects. We accounted for variation in repeatability related to 258	

fixed effects by including moderators. We considered 7 moderators (detailed in ESM general 259	

methods and Figure 1 and 2 captions): type of cognitive performance measurement (e.g. success 260	

or failure, latency, the number of trials before reaching a learning criterion); type of cognitive 261	

task (e.g. reversal learning, discrimination learning); median delay between tests; experimental 262	

context (conducted in the wild or in captivity); the origin of subjects (wild or hand raised), 263	

taxonomic class, and if the R value was published or unpublished. In addition to fixed effect 264	

moderators, we also took into account non-independence of data by including a series of 265	

random effects. We included random effects for species (multiple datasets from the same 266	

species), laboratory group (experiments conducted by the same PI), and experiment 267	

(experiments on the same subjects; see ESM general methods for more details).  268	

 269	

We controlled for the possibility that phylogenetic history influences the repeatability of 270	

cognitive abilities (i.e. similar species have more similar repeatability of cognitive abilities) by 271	

using a covariance matrix based on an order-level phylogenetic tree (using Open Tree of Life 272	

[65] and “rotl” R package [66] ) but only in the intercept only model as meta-regression models 273	

failed to converge with this additional information. We ran the intercept only meta-analysis 274	

with and without controlling for the effect of phylogeny and found that phylogenetic 275	

relationships had negligible effects on average repeatability of cognitive abilities (Table S5), 276	

justifying its exclusion in subsequent meta-regression models. 277	

 278	

For meta-regressions, we report conditional R2 (sensu [67]) which quantifies the proportion of 279	

variance explained by fixed (moderators) and random effects along with p-values from omnibus 280	
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tests [64] wich test the significance of multiple moderator effects. When omnibus tests were 281	

significant (p < 0.05) we ran the same meta-regression model but without the intercept to 282	

compute and plot beta coefficients associated with each level of the moderator (Figure S10 and 283	

S11), and performed multiple pairwise comparisons to estimate statistical differences between 284	

all combinations of moderator levels. We corrected for multiple comparisons using a false 285	

discovery rate adjustment of p-values [68]. 286	

 287	

We assessed the extent of variation among effect sizes in each meta-analytic model (intercept 288	

only) by calculating heterogeneities (I2). Along with the overall heterogeneity (I2
total), which 289	

represents between-study variance divided by the total variance [69], we also provide estimates 290	

of heterogeneity for each random factor (species, laboratory and experiment) following [70]. I2 291	

values of 25%, 50% and 75% are generally considered to be low, moderate and high levels of 292	

heterogeneity, respectively [69]. 293	

 294	

Finally, we statistically tested for selection bias in the dataset by conducting a type of Egger’s 295	

regression [71]. Given that our effect sizes were not independent from each other, we employed  296	

a mixed-model version of Egger’s regression using the full models (7 moderators as fixed 297	

effects) with the sampling standard errors (SE) of each effect size as a moderator [72,73]; a 298	

regression slope of the SE significantly different from zero indicates selection bias [71]. Such 299	

a significant effect usually means that large effect sizes with large sampling variance (small 300	

sample size) are more prevalent than expected, potentially overestimating the overall effect size 301	

(i.e., R).  302	

 303	

RESULTS 304	

Dataset summary 305	

Repeatability estimates computed from primary data are presented together with published R 306	

values in Table S1 for temporal repeatability and Table S2 for contextual repeatability. For 307	

temporal repeatability, we used 22 studies on 15 species in which 4 to 375 (mean: 56.31, 308	

median: 40) individuals performed a median of 2, 95%CI [1.91, 2.11] repeated tests, leading to 309	

a total of 106 repeatability analyses (40 R; 40 Rn; and 26 Rni). For contextual repeatability, we 310	

used 27 studies on 20 species in which 4 to 297 (mean: 41, median: 24) individuals performed 311	

a median of 2, 95%CI [1.80, 2.15] repeated tests, leading to a total of 107 repeatability analysis 312	

(38 R; 32 Rn; and 37 Rni).  313	

 314	
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Repeatabilities for individual studies  315	

Repeatability of cognitive performance varied widely between studies and was distributed from 316	

negative (i.e. higher within-individual than between-individual variability, computed for 317	

unadjusted R only) to highly positive repeatability (close to 1) for unadjusted R (Figure 1-2 and 318	

Figure S2). Confidence intervals also varied greatly among species and cognitive tasks, 319	

particularly for unadjusted R of temporal repeatability (Figure 1) and contextual repeatability 320	

(Figure 2). Such heterogeneity in R between datasets, wide confidence intervals, as well as high 321	

variation in sample size and number of repetitions, suggest that mean estimates would be better 322	

assessed through meta-analysis regression. 323	

 324	

Meta-analysis: overall repeatability estimates, heterogeneities and publication bias 325	

We first used meta-analysis (intercept-only) models to compute mean estimates of cognitive 326	

repeatability while taking into account variation in sample size and repetition number between 327	

studies. Intercept-only models reveal significant low to moderate [0.15 - 0.28] mean estimates 328	

of cognitive repeatability across analyses (Table 1, Figure 3). Performing the same analysis 329	

with or without controlling for phylogenetic history suggests that class-level phylogenetic 330	

relationships had little influence on mean cognitive repeatability estimates (Table S4).  331	

 332	

While confidence intervals of mean repeatability estimates (Figure 3 and Table 1) indicate 333	

considerable variability in the repeatability of cognitive performance between studies,  334	

inconsistency between effect sizes is better captured by heterogeneity I2 for meta-analysis [74]. 335	

We found moderate to high total heterogeneity (32% < I2 < 88%, Table 1) as in other across 336	

species meta-analyses [74]. Indeed, a considerable proportion of the total heterogeneity (I2 337	

total), is due to variations between species (I2 species). Using repeatability from different 338	

cognitive measurements in the same experiment (I2  experiment) also produced a moderate level 339	

of heterogeneity, suggesting that the type of cognitive measurement plays a role in repeatability 340	

estimation. 341	

 342	

We investigated whether our meta-analysis model showed any bias in data publication or 343	

selection using a type of Egger’s regression. Egger’s regressions suggest significant bias for 344	

unadjusted temporal R. Such bias is probably related to the high number of low sample size 345	

studies. To further evaluate the robustness of our mean estimates, we ran a sensitivity analysis 346	

using a “leave one out procedure” (ESM general methods) in which we computed mean 347	

estimates by removing a single R value for each R value in the dataset and generating a 348	
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distribution of mean estimates. The distribution of “leave one out” mean estimates were 349	

concentrated around the original mean estimate, which suggests that meta-analytic results are 350	

not driven by one particular R value (Figure S10). Finally, we assessed whether mean estimates 351	

obtained for each type of R analysis was significantly different from each other using multiple 352	

t-test comparisons. We found that adjusted temporal R for test order was significantly lower 353	

than other types of R analyses before correcting for multiple comparisons (Table S5). However, 354	

we found no significant differences after correcting for multiple comparisons for all 355	

combinations of R analyses. 356	

 357	

Meta-regression: effects of moderators      358	

To better understand the factors that influence heterogeneity of repeatability, we included the 359	

type of cognitive performance measurement, the type of cognitive task, median delay between 360	

repetitions, experimental context, origin of the subjects, taxonomic class, and publication status 361	

as moderators in our models of repeatability. Effects of those factors on raw R values can be 362	

inspected visually in Figures S3-9. However, to assess the effects of these factors while 363	

accounting for variation in sample size and repetition number between studies, meta-analytical 364	

tools are necessary. The total number of repeatability values compiled for each type of R 365	

analysis (Table 1) was not sufficient to run a full model to assess the effects of all 7 moderators 366	

together. We therefore ran 7 independent univariate (multilevel) meta-regression models, which 367	

revealed that measures of cognitive performance significantly influenced all types of R 368	

analyses, except for temporal unadjusted values (Table 2), and accounted for 14 to 100% of the 369	

variance (R2c). The investigation of beta coefficients associated with each type of cognitive 370	

measurement (Figure S11) suggests that normalized index (score computed specifically for the 371	

study e.g. Matzel et al. dataset) and success measures are significantly more repeatable for 372	

contextual Rni estimates than other types of R analyses. However, as this pattern is not observed 373	

for other types of R analyses, results should be interpreted with caution. The publication of R 374	

values also significantly influenced contextual repeatability and accounted for 24 to 70% of the 375	

variance (Table 2), with published R values being significantly higher than R computed from 376	

primary data (Figure S12). 377	

 378	

We found that the type of cognitive task, median delay between tasks, experimental context, 379	

the origin of the subjects or taxonomic class did not show consistently significant effects across 380	

different types of R analyses. The significant effect of cognitive task type on unadjusted 381	

contextual R should be interpreted cautiously as it is present only for one type of R analysis and 382	



 

12 

	

is thus probably not robust (Table 1 and Figure 1). The same is also true for the marginally 383	

significant effect of median delay between tasks; its positive beta coefficient (0.06, see also 384	

Figure S3) suggests that repeatability increased with the delay between tests. This finding could 385	

be driven by high R values from the study by Barbeau et al. in humans (Table S1) despite a 386	

very long median delay between trials (540 days). Indeed, the p-value associated to median 387	

delay became non-significant when running the same meta-regression without those data.   388	

     389	

 390	

DISCUSSION 391	

We aimed to explore the repeatability of cognitive performance across six animal classes. We 392	

examined repeatability by assessing whether inter-individual variation in cognitive 393	

performance was consistent on the same task across two or more points in time (i.e. temporal 394	

repeatability) or whether performances were consistent across different tasks that are designed 395	

to capture the same cognitive process (i.e. contextual repeatability). Overall, our meta-analysis 396	

revealed robust and significant low to moderate repeatability of cognitive performance (R = 397	

[0.15-0.28]). We found that the type of cognitive performance measurement (e.g. the number 398	

of trials to reach a criterion, latency) affected most estimates of repeatabilities while the type of 399	

cognitive task (e.g. reversal learning, discrimination learning, mechanical problem solving), 400	

delay between task repetitions, the origin of animals (wild/wild-caught or laboratory-401	

raised/hand-raised), experimental context (in the wild or laboratory), taxonomic class, and 402	

origin of R values (published vs. primary data) did not consistently show significant effects on 403	

R estimates.  404	

 405	

Are measures of cognition repeatable? 406	

 407	

High plasticity of cognitive processes could have been expected to result in very low or null 408	

estimates of repeatability. Yet, we found a significant, but low average R estimate for 409	

unadjusted temporal repeatability of cognitive performance (R = 0.15). Our highest temporal 410	

repeatability estimate adjusted for test order and individual determinants attained R = 0.28. 411	

Although this estimate remains lower than that observed for animal personality (R = 0.37) [75], 412	

our findings suggest that inter-individual variation in performance on the same cognitive task 413	

is moderately consistent across time in a wide range of taxa. This result is particularly striking 414	

because internal and external influences on task performance are unlikely to be identical 415	

between trials; such influences should inflate intra-individual variation between trials, and 416	
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therefore reduce R. The results we obtained are in line with low to moderate heritability 417	

estimates of cognitive abilities collected on laboratory populations (reviewed in [76] see also 418	

(Sauce et al, this issue) and (Sorato et al, this issue)) , and with selectively bred animals that 419	

have shown large differences in, for example, numerical learning in guppies [77], oviposition 420	

learning in Drosophila [78] and butterflies [79], or maze navigation in rats [80]. These results 421	

should thus promote the investigation of individual variation in cognitive performance, ideally 422	

as a first step to assessing heritability, the effect of permanent environment and experience on 423	

this variation, and examining potential evolutionary consequences of this variation [6,81]. 424	

 425	

Contextual repeatability was assessed by examining performance on novel variants of the same 426	

task (e.g. change of stimuli dimension) or different tasks that we considered assessed the same 427	

cognitive process. Such an approach has been advocated to improve our understanding of the 428	

nature of cognitive processes involved [48], (Volter et al. This issue). In line with this, our 429	

estimates of contextual repeatability was moderate (R = [0.20-0.27]) and significant, indicating 430	

that the use of different stimuli dimension, perceptual dimensions, apparatuses and tests allows 431	

us to measure repeatable variation in individual cognitive performance. Of course, our 432	

interpretation of R values assumes that cognitive tests are conducted in a way that minimises 433	

the impact of other traits that could be repeatable as well, such as motor capacities, motivation 434	

or personality traits [48].   435	

 436	

Here, we suggest that investigators bear in mind that some possible confounds could lower 437	

contextual repeatability when deploying tasks that use different stimuli or perceptual 438	

dimensions. For instance, adaptive specialisations that result in differential attention to 439	

particular stimuli may result in high within-individual variation in performance over contexts, 440	

or in low between-individual variation in one or both contexts [82] (e.g. individuals of some 441	

species may show greater variation in their performance when learning shape discrimination, 442	

but relatively little variation when learning a colour discrimination task or vice versa for other 443	

species, even if both tasks were under the same principle of visual-cue learning e.g. [83],[84]). 444	

Using different tasks or apparatuses to examine the same putative cognitive process may also 445	

lead to low contextual repeatability if the salience of stimuli differs between apparatuses. For 446	

example, presenting stimuli on a touchscreen as opposed to presenting stimuli with solid objects 447	

may vary the salience of stimuli [85]. Such differences may inflate within-individual variance 448	

and thus decrease repeatability. Finally, while we may assume similar cognitive processes are 449	

involved in a variant of the same task, we may obtain low contextual repeatability if the variants 450	
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require different cognitive processes. One possible solution is to conduct repeatability analyses 451	

on the portion of variance likely due to a shared cognitive process by incorporating measures 452	

of ‘micro-behaviours’. For example, Chow and colleagues [86] used the response latencies to 453	

correct and incorrect stimuli to reflect inhibitory control, and the rate of head-switching (head-454	

turning between stimuli) to reflect attention, alongside using the number of errors in learning a 455	

colour discrimination-reversal learning task on a touch screen. Assessing micro-behaviours 456	

may therefore capture specific processes that are closely related to the general cognitive process 457	

than more classical approaches. Accordingly, the assay of repeatability of cognitive 458	

performances could then be examined by repeatedly recording a suite of micro-behavioural 459	

traits as well as traditional measures of performance in the same, or variants of the same, task. 460	

 461	

Test order and the repeatability of cognitive performance 462	

Animals may improve their performance with increased learning/experience on the same task 463	

or on a different but related task, and hence, controlling for time-related changes (i.e. the 464	

number of repetitions of the same task) or task presentation order (i.e. test order) may produce 465	

better estimates of repeatability [87]. However, our adjusted estimates of both temporal and 466	

contextual repeatability for test order did not increase although remained significant (Table 1, 467	

Figure 3). The lack of increase in the mean repeatability estimates may have indicated that 468	

repetition number or task order only has a mild influence on repeatability.  469	

 470	

Despite this, an examination of the analyses that provide estimates of temporal repeatability 471	

(Table S1) suggests that there may be an optimal number of repetitions when estimating 472	

individual variation in cognitive performance. Indeed, prolonged exposure to the same task may 473	

reduce most, if not all, between-individual variation in performance (i.e. individuals reach a 474	

plateau in performance with increased experience of the same task): high repetitions of the same 475	

task (ranging from 7 to 80 repetitions) produced moderate-low repeatability (mean R = 0.22) 476	

whereas analyses with low repetitions (ranging from 2 to 3 repetitions) produced a moderate-477	

high repeatability (mean R = 0.42). Increasing the number of measures of cognitive 478	

performance will strengthen memory and learning on a given task, which may increase within-479	

individual variance between tests as internal and external conditions change across repetitions. 480	

Likewise, memory and learning may increase within-individual variance between different 481	

tasks as a result of carry-over effects. Carry-over effects on repeatability may be controlled by 482	

running all tests in the same order for all subjects, and by including test number or test date for 483	

a given task [87]. The effect of test order on contextual repeatability should however be treated 484	
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with caution, as it may be affected by the number of R estimates based on small sample size 485	

studies, and may also have resulted from the fact that GLMM-based repeatability forces R to 486	

be positive, in comparison to unadjusted R. Nevertheless, this confound could be used to better 487	

understand how variation in the environment influences cognitive performance (i.e. plasticity) 488	

when examining the evolution of cognition across different contexts. 489	

 490	

Individual determinants of the repeatability of cognitive performance 491	

The addition of individual effects such as sex and age, when available, seemed to increase 492	

temporal but not contextual repeatability relative to models that only included test order (Table 493	

1, Figure 3). This effect on temporal repeatability may partly be because the processes that 494	

underlie performance on cognitive tasks may differ between juveniles and adults. For example, 495	

immature freshwater snails, Lymnaea stagnalis, show impaired memory for the association 496	

between a light flash and the whole body withdrawal response until they reach maturity [88], 497	

juvenile Australian magpies, Cracticus tibicen, show poorer performance on a spatial memory 498	

task when tested 100 days after fledging than compared to those birds that were tested 200 and 499	

300 days after fledging [15], and honeybee workers, Apis mellifera L., showed impaired spatial 500	

memory when tested under 16 days of age as adults than compared to their counterparts that 501	

were older than 16 days [89]. Adult Eurasian harvest mice, Micromys minutus, also show higher 502	

repeatability than juveniles on a spatial recognition task [53]. Controlling for age and 503	

developmental life-stage, either experimentally (e.g. target one age group) or statistically, thus 504	

seems important when assessing repeatability of cognitive performance.  505	

 506	

Males and females may experience different selective pressures on given cognitive processes 507	

that reflect different fitness consequences. Examples of such sex differences include spatial 508	

orientation and reference memory in rodents [90], colour and position cues learning in chicks 509	

[91], and foraging innovation in guppies [92]. Sex differences in cognitive processes may also 510	

result from mating behaviours such as territory defense or mate searching, which may reduce 511	

between-individual variation within the same sex. Here, we have only examined and discussed 512	

a few of the individual factors that may influence the estimation of cognitive performance 513	

across individuals, and thus potentially impact the estimates of repeatability. We suggest that 514	

the choice of variables included in analyses of adjusted repeatability should reflect the goals of 515	

the study, and include explanations of what aspects are controlled for and more importantly, 516	

why [24]. 517	

 518	
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Moderators of the repeatability of cognitive performance 519	

Variation among studies used in a meta-analysis can cause heterogeneity in effect sizes that are 520	

directly attributable to the experimental approach, and accounting for such variation can 521	

provide insights into which factors influence the trait of interest [74]. For example, we might 522	

expect that repeated measurements that are obtained after shorter time intervals may produce 523	

better estimates of repeatability because the internal and external states of individuals may be 524	

more similar [75]. However, our results showed that the interval between two tasks did not 525	

significantly affect most estimates of temporal or contextual repeatability. Although animals 526	

may form memory associations on a given test, our finding suggests that carry-over effects may 527	

have minor effects on the relative extent of between vs. within-individual variation.  528	

 529	

Among the moderators that we examined here, the type of cognitive performance measurement 530	

had a strong effect on estimates of repeatability (Table 2). For contextual repeatability, the 531	

lowest estimated R values are obtained for latency measures with most confidence intervals of 532	

estimates overlapping with 0 (Figure S11). The very low repeatability of latency measures 533	

between performance using different apparatuses may be affected by ceiling effects (e.g. 534	

individuals may solve an easy task with similar latencies but show greater variation when 535	

solving a more difficult problem) and floor effects (e.g. individuals may use the maximum time 536	

that is given in a trial to solve a more difficult problem but show variation for an easy task) 537	

[93,94]. With this in mind, the effects of internal or external variables on repeatability may be 538	

minimised by using binary measures such as success-or-failure (SUC), which may ‘dilute’ the 539	

effects of  internal or external contextual variables. Our results indicate that certain types of 540	

measurement (e.g. latency or the number of trials) used in some cognitive tasks are more 541	

sensitive to internal or external contextual variables than others and thus, provide less reliable 542	

measures of R. However, we suggest that moderator effects should be interpreted with caution, 543	

as constraints on our sample size prevented us from controlling for other fixed effects when 544	

revealing each moderator effect as well as potential interaction effects. Our approach of 545	

univariate testing may thus have been more liberal than a full model approach. While our results 546	

as a whole suggest that most moderators did not explain variation in the repeatability of inter-547	

individual variation in cognitive performance across studies, these factors may still be important 548	

to consider when designing experiments for a particular species. 549	

 550	

Finally, because repeatability of cognitive performance as only recently received attention, we 551	

only found 6 studies reporting such estimate and had to ask around for primary dataset to 552	
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perform a proper cross-species meta-analysis. Such approach comes with the bias that we only 553	

asked people present in the workshop “Causes and consequences of individual variation in 554	

cognition” or that we knew was working on individual differences. Future meta-analysis on the 555	

topic should try to incorporate a wider range of study including test-retest literature in humans 556	

[33] and general intelligence studies (Dubois et al, this issue; Sauce et al, this issue). 557	

  558	

General conclusion and future research 559	

While we made an attempt at understanding the repeatability of cognitive performance, we 560	

admit that this is an emerging field. Accordingly, this study suffers some limitations, including 561	

a modest sample size (both for the number of studies included and for the number of subjects 562	

provided in each study) which reduces the robustness of the conclusions regarding the effect of 563	

potential moderators. Future studies may therefore benefit from the growing body of literature 564	

on individual differences in cognition [81],[82],[95], this volume]. Note that other studies 565	

collecting repeated measures from repetitions of a same test, or functionally-similar tests, could 566	

also offer valuable datasets. In order to facilitate future meta-analyses, we suggest that authors: 567	

(i) publish their datasets using the finest-grained information available (e.g. trial-by-trial instead 568	

of aggregate values, such as proportion of correct choices or trials); (ii) include information on 569	

potential moderators (e.g. date of test, subject’s origin) and other fixed effects (e.g. sex, age) 570	

that may need to be controlled for; and (iii) include and standardise the term ‘cognitive 571	

repeatability’ in their keywords.  572	

 573	

To summarise, we report low to moderate estimates for the repeatability of cognitive 574	

performance, suggesting consistent individual differences over a range of cognitive tasks and 575	

taxa. Measurements of cognitive performance in a given task are thus moderately consistent for 576	

individuals over time and can be studied much like other behavioral and morphological traits. 577	

Furthermore, different experimental paradigms that are used to assess the same underlying 578	

cognitive capacity are reasonably concordant. This suggests that different approaches can be 579	

used to estimate the same underlying cognitive capacity. Together, our results suggest that 580	

formally assessing individual variation in cognitive performance within populations could be a 581	

useful first step in research programs on the evolutionary biology of cognition. Future avenues 582	

for research may include: (1) studying the repeatability of reaction norms of cognitive 583	

performance (i.e. its plasticity [96],[97] over gradients of interest, for example, deprivation 584	

level or housing conditions), so as to assess the generality of the individual differences that are 585	

captured by cognitive tasks across different environments and physiological states; and (2) 586	
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partitioning the variance among and within individuals, by making use of multiple (>4) trials 587	

recorded for each individual [98]. By partitioning variance in cognitive performance at various 588	

hierarchical levels (within and between individuals) we may complement approaches that 589	

quantify variation at other levels (populations and species) and hence further our understanding 590	

of the evolution of cognition.  This approach may provide a greater understanding of the factors 591	

that influence repeatability estimates, which are based on a ratio, and thus do not allow the 592	

separation of variance that is due to different phenotypes (among-individual) from those due to 593	

the plasticity in the response of each animal (within-individual). Separating these values could 594	

provide a way to focus on the portion of variance that is expected to be heritable, and to test 595	

hypotheses on the factors that affect variation within-individuals between repeated trials.	596	
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 805	

Figure and table captions 806	

Figure 1: Temporal repeatability R (unadjusted) and 95% bootstrapped confidence intervals for 807	

each dataset. First author, species name, cognitive task and cognitive measurement are indicated 808	

on the y-axis. Cognitive performance measurement was the quantification of a cognitive 809	

process using: accuracy, e.g. proportion correct (ACC); the number of trials to reach a learning 810	

criterion (TTC); success-or-failure binary outcome (SUC); latency (LAT); normalised 811	

performance scores (NOR); the number of correct trials or errors over a fixed number of trials 812	

(NBT). Cognitive task type included: mechanical problem solving (PS); discriminative learning 813	

(DL); reversal learning (RL); inhibition (IN); memory (ME); use of human cue (HC); external 814	

attention (EA); internal attention (IA); learning (LE); Physical cognition (PC) that include 815	

visual exclusion performance; auditory exclusion performance and object permanence; social 816	

learning (SL), spatial orientation learning (SOL), spatial recognition (SR) and lexical fluency 817	

(LF). 818	

 819	

Figure 2: Contextual repeatability R (unadjusted) and 95% bootstrapped confidence intervals 820	

for each dataset. First author, species name, cognitive task and cognitive measurement are 821	

indicated on the y-axis. Cognitive performance measurement was the quantification of a 822	

cognitive process using: accuracy, e.g. proportion correct (ACC); the number of trials to reach 823	

a learning criterion (TTC); success-or-failure binary outcome (SUC); latency (LAT); 824	

normalised performance scores (NOR); the number of correct trials or errors over a fixed 825	
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number of trials (NBT). Cognitive task type included: mechanical problem solving (PS); 826	

discriminative learning (DL); reversal learning (RL); inhibition (IN); memory (ME); use of 827	

human cue (HC); external attention (EA); internal attention (IA); learning (LE); Physical 828	

cognition (PC) that include visual exclusion performance; auditory exclusion performance and 829	

object permanence; social learning (SL), spatial orientation learning (SOL), spatial recognition 830	

(SR) and lexical fluency (LF). 831	

 832	

Figure 3: Meta-analytic mean estimates of repeatability (R) for temporal and contextual 833	

repeatability, unadjusted, adjusted for test order and adjusted for test order plus individual 834	

determinants (sex and/or age). We present posterior means and 95% confidence intervals (CIs) 835	

of meta-analyses obtained from linear mixed-effects models (LMMs). All estimates are back-836	

transformed into repeatability (R).         837	

 838	

Table 1: Summary results from meta-analytic model: mean estimates, upper and lower 839	

confidence interval, sample size (total number of R value considered in the analysis), Egger’s 840	

regression significance (P-value), total heterogeneity, partial heterogeneity due to the 841	

laboratory, species and experiment.  842	

Table 2: Summary of meta-regression models. Conditional R2 and significance (P-values from 843	

omnibus test) of each moderator from the 7 univariate meta regressions are presented. 844	

 845	


