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Abstract

A key question in molecular evolutionary biology concerns the relative roles of mutation and selection in shaping
genomic data. Moreover, features of mutation and selection are heterogeneous along the genome and over time.
Mechanistic codon substitution models based on the mutation–selection framework are promising approaches to sep-
arating these effects. In practice, however, several complications arise, since accounting for such heterogeneities often
implies handling models of high dimensionality (e.g., amino acid preferences), or leads to across-site dependence (e.g.,
CpG hypermutability), making the likelihood function intractable. Approximate Bayesian Computation (ABC) could
address this latter issue. Here, we propose a new approach, named Conditional ABC (CABC), which combines the
sampling efficiency of MCMC and the flexibility of ABC. To illustrate the potential of the CABC approach, we apply it
to the study of mammalian CpG hypermutability based on a new mutation-level parameter implying dependence across
adjacent sites, combined with site-specific purifying selection on amino-acids captured by a Dirichlet process. Our proof-
of-concept of the CABC methodology opens new modeling perspectives. Our application of the method reveals a high
level of heterogeneity of CpG hypermutability across loci and mild heterogeneity across taxonomic groups; and finally, we
show that CpG hypermutability is an important evolutionary factor in rendering relative synonymous codon usage. All
source code is available as a GitHub repository (https://github.com/Simonll/LikelihoodFreePhylogenetics.git).

Key words: Markov chain Monte Carlo, synonymous substitution, nonsynonymous substitution, posterior predictive,
phylogenetics.

Introduction
The mutational process, a main basis of genetic variability,
itself varies according to the environment (e.g., abiotic:
Maharjan and Ferenci 2017; biotic Krasovec et al. 2017) and
along the genome (Hodgkinson and Eyre-Walker 2011). One
example of this mutational heterogeneity is the case of cyto-
sine being much more mutable when followed by guanine in
the genomes of vertebrates (Bird 1980), a phenomenon
known as CpG hypermutability. As a result, a biased variability
is subjected to selective processes, leaving a signal that seems
clear in the cases of parallel adaptation (Stoltzfus and
McCandlish 2017). Features of selection are probably even
more heterogeneous along the genome and over time than
those of mutation. Selection acts at multiple levels (e.g., DNA,
RNA, protein, cell, tissue, organism, population, community,
and ecosystem), and conflicts can exist between levels or
because of fluctuations in the environment. The heterogene-
ity of selection is obvious when examined at a fine scale, for

instance within a protein, where each site typically displays a
strong preference for a small subset of amino acids (Halpern
and Bruno 1998; Lartillot and Philippe 2004; Rodrigue and
Lartillot 2012; Tamuri et al. 2012; Rodrigue 2013; Rodrigue and
Lartillot 2014; Tamuri et al. 2014; Echave et al. 2016; Hilton
et al. 2017; Rodrigue and Lartillot 2017; Wang et al. 2018).

In comparative genomics, these complexities make it dif-
ficult to separate the effects of selection from the bias induced
by mutational features. Codon usage (CU) in mammals pro-
vides a good illustration of this problem. Some authors argue
that selection is acting on CU (Yang and Nielsen 2008; Kessler
and Dean 2014) to favor efficiency of translation (Drummond
and Wilke 2008; Cannarozzi et al. 2010; Tuller et al. 2010),
whereas others argue that population sizes are too small to
allow selection of such a minor advantage, particularly in
Primates (Duret 2002; Pouyet et al. 2016; Laurin-Lemay
et al. 2018; Galtier et al. 2018), and therefore that CU is the
result of neutral evolution (Ohta 1973). In agreement with
the latter view, CU in mammals mostly reflects GC3 content
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(Sueoka 1961, 1962; Muto and Osawa 1987; Ermolaeva 2001;
Knight et al. 2001; Chen et al. 2004; Li et al. 2015) or isochore
structure (Filipski et al. 1973; Bernardi 2000), suggesting that it
is determined by the mutational pressure and by fixation
biases likely related to GC-biased gene conversion (Duret
2002; Duret and Galtier 2009; Katzman et al. 2011; Glemin
et al. 2015).

A promising solution to tease apart mutation and selec-
tion in coding sequences is to develop mechanistic codon
substitution models (Rodrigue and Philippe 2010) that oper-
ate in a mutation–selection framework. Such mutation–
selection models have previously been developed to study
the role of protein structure (Robinson et al. 2003; Rodrigue
et al. 2006, 2005, 2009; Kleinman et al. 2010), codon prefer-
ence (McVean and Vieira 2001; Nielsen et al. 2007; Rodrigue
et al. 2008; Yang and Nielsen 2008; Rodrigue and Philippe
2010; Pouyet et al. 2016), or site-specific amino acid prefer-
ences (Halpern and Bruno 1998; Rodrigue et al. 2010; Tamuri
et al. 2012; Rodrigue 2013; Tamuri et al. 2014). However, thus
far, the main focus has been on the modeling of complex
features of selection, whereas simple, homogeneous, param-
eterization were used for the mutational aspects of the model,
often the very simple HKY model (Hasegawa et al. 1985). Yet,
violations in the mutational part of the model can easily lead
to erroneous detection of selection (e.g., Lartillot 2013; Van
den Eynden and Larsson 2017; Laurin-Lemay et al. 2018). In
particular, the latter study shows erroneously inferred selec-
tion on CU when using simple models on sequence align-
ments simulated with mild CpG hypermutability, but
without any selection on CU.

To take full advantage of the mutation–selection models,
it may be necessary to incorporate more complexity (i.e.,
natural heterogeneity) in both mutation-level and
selection-level specifications of the model. However, hetero-
geneity often implies handling parameter vectors of high di-
mensionality and across-site dependency, both of which
create computational difficulties. High dimensionality can
lead to overfitting in a maximum likelihood framework. As
for across-site dependency, it leads to intractable likelihood
calculations (precluding the use of the pruning algorithm;
Felsenstein 1973, 1981). The Bayesian framework, thanks to
the use of Markov chain Monte Carlo (MCMC; Metropolis
et al. 1953; Hastings 1970), enables the study of rich models
accounting for across-site heterogeneity of amino acid pro-
files, as previously shown in the case of site-specific amino
acid preferences (Rodrigue et al. 2010). Approximate Bayesian
Computation (ABC) avoids the computation of the likeli-
hood (Pritchard et al. 1999; Beaumont et al. 2002;
Marjoram et al. 2003; Sisson et al. 2007), and could be a means
of addressing the across-site dependency issue, whether at the
level of mutation (e.g., CpG contexts; Pedersen et al. 1998;
Jensen and Pedersen 2000; Arndt et al. 2003; Huttley 2004;
Hwang and Green 2004; Siepel and Haussler 2004; Arndt and
Hwa 2005; Christensen et al. 2005; Christensen 2006; Hobolth
et al. 2006; Hobolth 2008; Duret and Arndt 2008; Lindsay et al.
2008; Misawa and Kikuno 2009; Suzuki et al. 2009; Keightley
et al. 2011; Misawa 2011; Ying and Huttley 2011; Berard and
Gueguen 2012; Huttley and Yap 2012; Lee et al. 2015, 2016) or

selection (e.g., on protein structure; Robinson et al. 2003;
Rodrigue et al. 2006, 2005, 2009; Kleinman et al. 2010).
Unfortunately, the classical rejection sampling (RS) ABC can-
not deal with complex models involving parameter vectors of
high dimensionality (Kousathanas et al. 2016). Here, we pro-
pose a new approach, named Conditional ABC (CABC),
which combines the advantages of MCMC and ABC. As a
proof-of-concept, we study the across-site dependent hyper-
mutability of CpG, while modelling the high dimensionality of
site-specific amino acid selection.

New Approaches: CABC
We consider the general situation where we have a model
with parameters (k, h) and a data set D under study. The
parameter h represents the (potentially high-dimensional)
nuisances. The parameter k, on the other hand, is our param-
eter of interest. Computationally, the model is assumed to be
intractable by classical MCMC in the generic case, except
under a reference value for k (e.g., k¼ 1). Here, we can think
of k as the relative rate of CpG mutation—a feature that
implies across-site dependency—such that, for k¼ 1, the
model reduces to the usual site-independent model.

Ideally, we would like to sample from the joint posterior:

ðk; hÞ � pðk; hjDÞ; (1)

and then conduct inference on k (e.g., by visualizing the mar-
ginal posterior distribution of k and computing the mean and
95% credible interval). Noting that the joint posterior can be
factorized as follows:

pðk; hjDÞ ¼ pðkjD; hÞpðhjDÞ; (2)

the sampling procedure denoted by equation (1) could equiv-
alently be done in two steps:

h � pðhjDÞ; (3a)

k � pðkjD; hÞ; (3b)

that is, by first sampling h from its marginal posterior (mar-
ginal over k) and then sampling k from its conditional pos-
terior (conditional on h).

Neither of the two sampling steps described by (3a) and
(3b) can be performed exactly. Accordingly, the CABC ap-
proach proposed here relies on two main approximations.
First, the marginal posterior (3a) is approximated by the pos-
terior on h under the reference model, that is, pðhjD; k ¼ 1Þ,
using MCMC; we denote this approximated posterior distri-
bution as pMCMCðhjD; k ¼ 1Þ. Second, sampling k condi-
tional on h (3b) is done by classical ABC, denoted
pABCðkjD; hÞ. Provided that the nuisance parameters and k
are weakly correlated under the true posterior, these approx-
imations should be relatively accurate.

In summary, the approach proceeds in two steps:

h � pMCMCðhjD; k ¼ 1Þ; (4a)

k � pABCðkjD; hÞ; (4b)

or equivalently:
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ðk; hÞ � pCABCðk; hjDÞ; (5)

where:

pCABCðk; hjDÞ ¼ pABCðkjD; hÞpMCMCðhjD; k ¼ 1Þ: (6)

Comparing (2) and (6), the two approximations in-
voked by the CABC are the use of ABC, instead of exact
Bayesian inference on k conditional on h, and the fact
that h is not from its marginal posterior (marginal on
k), but is instead from its reference posterior (with
k¼ 1).

In practice, some of the nuisance parameters collectively
denoted by h might be strongly correlated with k, in which
case the approach will be inaccurate. Let us further subdivide
the parameterization, by defining:

h ¼ ðhsc; hwcÞ; (7)

where hsc is strongly correlated, and hwc weakly correlated,
with k under the joint posterior. Provided that hsc is suffi-
ciently low-dimensional, we can resample it by ABC, along
with k:

hwc � pMCMCðhwcjD; k ¼ 1Þ; (8a)

ðk; hscÞ � pABCðk; hscjD; hwcÞ; (8b)

or equivalently:

ðk; hsc; hwcÞ � p0CABCðk; hsc; hwcjDÞ; (9)

where:

p0CABCðk; hsc; hwcjDÞ ¼ pABCðk; hscjD; hwcÞpMCMCðhwcjD; k
¼ 1Þ:

(10)

Working with (10) instead of (6) will decrease the im-
pact of the approximation implied by using the reference
marginal posterior, as opposed to the true marginal pos-
terior, on a smaller component of the parameter vector,
although at the cost of an increase in the impact of the
approximation entailed by conducting the ABC on a
higher dimensional parameter ðk; hscÞ. Note that we do
not have a theoretical basis from which to establish which
nuisance parameters are to be considered as weakly or
strongly correlated to kCpG. This problem is to be
addressed empirically, exploiting our knowledge of the
underlying biology and modeling system, and ultimately
studied through simulations.

To illustrate the potential of the CABC approach, we apply
it to the estimation of the well-established hypermutability at
CpG sites—which involves dependence across sites—in the
context of a complex reference model combining site-
independent mutation, handled by a general-time-reversible
nucleotide level parameterization, (Lanave et al. 1984),
denoted M[GTR], along with purifying selection on amino-
acids (i.e., site-specific amino-acid preferences) captured by a
Dirichlet process prior (Rodrigue et al. 2010), denoted

S[NCatAA*]. In this specific application of CABC, the param-
eter of interest (denoted above as k) is kCpG, the ratio of the
mutation rate of transitions at CpG sites to the mutation rate
of transitions at nonCpG sites. The reference model (without
CpG hypermutation, or equivalently, with kCpG ¼ 1) is
denoted by M[GTR]-S[NCatAA*], whereas the complete
model (with CpG hypermutation) is referred to as
M[GTRþts-CpG]-S[NCatAA*].

The high-dimensional parameter vector of the reference
model was partitioned into strongly and weakly correlated
components, as discussed above, by reasoning as follows. On
one hand, the estimation of the site-specific fitness profiles
and of relative branch lengths should be robust to the specific
model used for the mutation process (whether or not CpG
hypermutation is included). On the other hand, the context-
independent component of the mutation process (the GTR
process) is expected to be strongly correlated with kCpG under
the true posterior distribution. Accordingly, the high-
dimensional amino-acid profiles and the branch lengths
were estimated by MCMC under the reference posterior dis-
tribution, with kCpG ¼ 1 (i.e., were included in hwc), while the
10 GTR parameters (8 degrees of freedom), as well as three
modulator parameters (meant as correcting factors for total
tree length, mean nonsynonymous/synonymous rate devia-
tion, and relative position of the root along the branch sep-
arating the in- and the out-group, see Materials and Methods
for details) were re-estimated at the ABC step, along with
kCpG (i.e., were therefore included in hsc). We study the ap-
proach using simulations, and apply it to 137 real protein-
coding genes from 39 mammals (see Materials and Methods
for details).

Results and Discussion

Validation of the CABC Procedure
We validated the CABC approach using simulations. We
simulated 5,000 alignments, using various values for kCpG

(ranging from 0.5 to 8) combined with empirically esti-
mated parameter values for the reference model. Then,
we applied the CABC approach to these simulated align-
ments, and evaluated the relative mean square error
(RMSE) of the approximated posterior and the coverage
properties of the posterior credible intervals. For the ABC
step, we used two alternative approaches: either a simple
ABC RS algorithm (Pritchard et al. 1999), or a more so-
phisticated approach based on the use of a linear regres-
sion model (LRM) for getting closer to the true posterior
distribution (Blum and Francois 2010). Note that the ABC
step itself relies on simulations, with numerous summary
statistics (SS) computed and compared between this
step’s simulated data sets and the data set under analysis.
Only a small percentages of these simulations are retained
by the procedure, as controlled by the tolerance level. We
used 13 SS related to the frequency of certain states and
the counts of specific pairwise differences between
sequences (see Materials and Methods for details). We
explored empirically different sample sizes and tolerance
levels.
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All the approximate posterior distributions obtained by
running the CABC procedure with the RS algorithm alone
were inaccurate: the global RMSE ranged from �4 to �34
depending on the value of kCpG (tables 1 and 2). The global
RMSE decreases when the tolerance level is decreased (from
1% to 0.1% of the simulated samples), but remains high even
under the most stringent settings, suggesting that much
smaller tolerance levels (implying a much larger total number
of simulated samples) would still be needed in order for the
simple RS approach to yield a reasonable approximation to
the true posterior distribution (Barber et al. 2015).

In contrast, the global RMSE obtained when using the LRM
of Blum and Francois (2010) fall under 1 (tables 1 and 2). The
accuracy of CABC with LRM rose when the sampling effort is
increased and the tolerance level is reduced (tables 1 and 2).
The global RMSE remained very similar, around 0.70, when
using the best 1% of the 105 simulations compared with the
best 1% of 106 simulations. A reduction of the tolerance level
(0.1%), however, decrease RMSE, by�20% (table 2). We note
that, in spite of performing well here, the behavior of LRM in
presence of model violations has been shown to be poten-
tially misleading (Frazier et al. 2017, unpublished data). Given
our simulation results, however, all RS results were corrected
using the LRM unless stated otherwise.

The RMSE associated with each parameter (fig. 1 and sup-
plementary table S1, Supplementary Material online) appears
to be strongly linked to the amount of signal relevant to that
parameter. For instance, the RMSE for the transition exchan-
geabilities (.AG and .CT) were 4 times lower than for the
transversion exchangeabilities (.AC; .AT; .CG, and .GT).
Similarly, the four nucleotide propensities have the smallest
RMSE, being in fact the smallest for the two most frequent
nucleotides (C and G). The RMSE for kROOT (the correcting
factor for the relative position of the root along the branch
separating the in- and the out-group) is the highest ð> 0:30Þ;
indeed the posterior distribution of this parameter is almost
identical to its prior distribution, demonstrating that the sig-
nal provided by the nonreversibility of the context-
dependent mutation process is too tenuous to be captured
when analyses are conducted on single genes.

The improvement brought by a sample size of 106 and a
tolerance level of 0.1% applied mainly to kTBL and kx� (the
correcting factors for total tree length and dN/dS deviation),
as well as the transversion exchangeabilities. In contrast, the
improvement was minor for kCpG. Of note, the RMSE for kCpG

is smaller under high rates of CpG hypermutability, reflecting
the more abundant empirical signal (i.e., a higher number of

CpG hypermutation events) in this regime; thus, when the
true kCpG is equal to 8, the corresponding RMSE (0.0362) is
below that observed for transversion exchangeabilities and
close to the one obtained for transition exchangeabilities.
To explore the idea that more evolutionary signal leads to a
decreased in RMSE, we plotted the relation between the total
number of expected substitutions and the RMSE computed
on kCpG (supplementary fig. S1, Supplementary Material on-
line). As expected, we found a negative relationship between
the amount of evolutionary signal and the RMSE on kCpG.
Moreover, as the evolutionary signal for kCpG becomes more
prominent (panels S1: A–E), the fit of the regression become
higher: the r2 values go from 0.249 (lowest value of kCpG, 0.5)
to 0.797 (highest value of kCpG, 8). As a result, when applied to
real data, CABC will be precise if there is a high rate of tran-
sition in the CpG context. In conclusion, the computational
burden of 106 simulations is mainly useful if one wants to
study the effect of CpG on the transversion rates. Otherwise, a
less intense sampling effort ð105Þ, combined with a moderate
tolerance level (1%), gives reasonably accurate inference.

The coverage properties (i.e., the frequency at which cred-
ible intervals cover the true value) provide another interesting
perspective on the statistical properties of CABC. Here,
Probability–Probability (P–P) plots are used to investigate
the coverage properties for several parameters of interest.
On these plots, a straight line along the diagonal indicates
that the nominal and true coverage coincide, that is, 1� a
credible intervals cover the true value at a frequency equal to
1� a. If this is the case, then credible intervals are true fre-
quentist confidence intervals. Coverage is not necessarily
expected to be perfect for all aspects of the model (i.e., nui-
sance parameters), but is an important property when the
intention is to test a null hypothesis (e.g., kCpG ¼ 1), with a
frequentist control of the type I error (rate of false positive).

The coverage properties were poor for all parameters
when using RS alone (supplementary fig. S2, Supplementary
Material online). As for RMSE, the use of LRM greatly im-
proved the concordance between nominal and true coverage
(supplementary fig. S3, Supplementary Material online), while
the increase in sample size from 105 to 106 allowed a minor
improvement (supplementary fig. S4, Supplementary
Material online). The coverage properties were good for all
parameters but kx� , kTBL, and kROOT, and to a lesser extent for
nucleotide exchangeabilities when kCpG ¼ 8. The poor cov-
erage of .AG and .CT when kCpG is>1 (supplementary fig. S4,
Supplementary Material online) could be explained by the
rise of the uncertainty since a great amount of mutational

Table 1. Global Relative Mean Square Error (without kROOT) Computed for Different kCpG Values (1,000 Replicates per kCpG Value) under Two
Tolerance Levels, 10% and 1%, and over 105 Simulations.

Method Tolerance Level kCpG50:5 kCpG51 kCpG52 kCpG54 kCpG58

RS 10% 34.30 6 3.09 15.06 6 3.13 10.25 6 3.6 9.49 6 3.89 9.87 6 4.10
RS 1% 18.20 6 4.03 10.02 6 1.73 6.78 6 1.84 6.06 6 2.20 6.53 6 2.55
RS 1 LRM 10% 0.86 6 0.19 0.86 6 0.14 0.89 6 0.13 0.89 6 0.12 0.86 6 0.16
RS 1 LRM 1% 0.70 6 0.19 0.69 6 0.14 0.71 6 0.13 0.72 6 0.12 0.71 6 0.13

RS: rejection sampling algorithm.
LRM: linear regression model.
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signal related to the GTR component is transferred to the
kCpG. Importantly, our parameter of interest, kCpG, had excel-
lent coverage properties (fig. 2), which is of prime importance
to test the hypothesis that kCpG is >1.

We further characterized the properties of CABC by trans-
ferring the parameters of the GTR mutation model from hsc

to hwc at the ABC step. The expectation is that CABC will be
inaccurate, because the hypermutability of CpG will lead to
an artifactual increase in the transition/transversion ratio and
the Aþ T content inferred under the reference model. To
investigate this point, we used simulations made with a kCpG

¼ 8 and a sample size of 105. Indeed, under these new set-
tings, the RMSE on kCpG was much increased (with a 2-fold
increase of the RMSE). Similarly, coverage was poor for kCpG,
as well as for all the GTR parameters (supplementary fig. S5,
Supplementary Material online). This is in sharp contrast to

the case where the GTR parameters are re-estimated (i.e.,
within hsc, supplementary fig. S3, Supplementary Material
online): in this case, kCpG and nucleotide propensities (except
uG) are well estimated. The estimation of relative nucleotide
exchangeabilities is equally poor in the two cases, suggesting
that these parameters might not be strongly correlated with
kCpG (see below), but probably just impacted by the lack of
signal under kCpG ¼ 8 for the GTR component, as previously
explained. The correcting factors, kTBL and kx� , are more
accurately inferred when the GTR parameters are not them-
selves re-estimated (supplementary figs. S3 and S5,
Supplementary Material online).

Finally, we evaluated the impact of the estimation of the
large number of nuisance parameters represented by branch
lengths and site-specific amino-acids profiles on the overall
accuracy of CABC, by running the entire procedure with all
these parameters fixed to their true values. Granting perfect
knowledge about these nuisances is expected to improve the
accuracy of the estimation of all other parameters. However, if
the improvement turns out to be minor, this will show that 1)
in itself, uncertainty about these nuisance parameters is not
detrimental, and 2) our approximation based on estimating
these nuisances under the reference model (and not under
the target model) does not compromise the overall quality of
the inference. We used simulations made with a kCpG ¼ 8
and a sample size of 105.

The RMSE for all parameters were very similar to the
results obtained under the standard validation procedure
(supplementary table S1, Supplementary Material online).
For instance, the estimation of kCpG was only weakly im-
pacted by the use of the true branch lengths and the true
site-specific amino acid preferences. The parameter most im-
pacted was kx� : its RMSE decreased from 0.100 to 0.053 (sup-
plementary table S1, Supplementary Material online),
accounting for 67% of the reduction of the global RMSE.
The P–P plots (supplementary fig. S6, Supplementary
Material online) are in agreement with RSME and are very
similar to the case where we drew hwc from pðhwcjD; kCpG

¼ 1Þ (supplementary fig. S3, Supplementary Material online).
In conclusion, the CABC procedure is reasonably accurate

as long as the parameters included in hwc are indeed weakly
influenced by kCpG. In particular, the accuracy suggested by
our simulation study is largely sufficient to test the hypothesis
that kCpG is equal to 1, with a good control of type I error, and
even to study the impact of the CpG hypermutability on the
GTR parameters (with a somewhat greater uncertainty con-
cerning the four transversion exchangeabilities). From here, all

Table 2. Global Relative Mean Square Error (without kROOT) Computed for Different kCpG Values (1,000 Replicates per kCpG Value) under Two
Tolerance Levels, 1% and 0.1%, and over 106 Simulations.

Method Tolerance Level kCpG50:5 kCpG51 kCpG52 kCpG54 kCpG58

RS 1% 18.21 6 3.86 10.01 6 1.66 6.78 6 1.84 6.05 6 2.18 6.54 6 2.56
RS 0.1% 8.22 6 2.98 6.27 6 1.35 4.50 6 0.76 3.73 6 0.95 4.07 6 1.28
RS 1 LRM 1% 0.69 6 0.18 0.69 6 0.14 0.71 6 0.13 0.71 6 0.11 0.70 6 0.12
RS 1 LRM 0.1% 0.53 6 0.17 0.52 6 0.14 0.54 6 0.13 0.54 6 0.11 0.54 6 0.11

RS: rejection sampling algorithm.
LRM: linear regression model.

A

C

E

B

D

F

FIG. 1. Relative mean square error (mean over 1,000 replicates) under
different kCpG values (x axes). Two tolerance levels, 1% (left panels)
and 0.1% (right panels) over 106 simulations were used. Parameter
values were corrected using linear regression model. (A and B) Mean
RMSE of the six nucleotide exchangeabilities (.AC; .AG; .AT ; .CG;
.CT , and .GT). (C and D) Mean RMSE of the four nucleotide propen-
sities (uA; uC; uG , and uT). (E and F) Mean RMSE of kCpG, kTBL, and
kx� .
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the results we present below are obtained with the LRM (see
Materials and Methods) made on the 0.1% best of 106

simulations.

Estimation of the Mutation Rate in the CpG Context
Using CABC
We applied the CABC to approximate the posterior distribu-
tion of kCpG for a sample of 137 mammalian genes from 39
species (fig. 3). In agreement with previous observations
(Hodgkinson and Eyre-Walker 2011), CABC always inferred
a posterior mean transition rate in the CpG context greater
than one, with an average value of 7.45; none of the 137 genes
included kCpG ¼ 1 within their 99% credible intervals (sup-
plementary table S2, Supplementary Material online). The
bimodal shape of the marginal distribution (fig. 3) is due to
two genes (ARNT and KIAA0100) for which the transition rate
in the CpG context obtains a posterior mean of 18.8 and 19.5,
respectively (supplementary table S2, Supplementary
Material online). A total of 16 genes displayed posterior
mean values for kCpG >10, that is, outside the prior belief
[1/10, 10]. Values outside the prior were reached through the
use of the LRM approach. To further explore this result, new
CABC analyses were conducted over the 137 genes with a
broader prior (log-uniform over [1/50, 50]), using the same
sampling scheme and tolerance level. The impact of the prior
on the estimation of kCpG was minor (supplementary fig. S7,
Supplementary Material online), as indicated by the fact that
the posterior means are highly correlated between the two
alternative prior settings ðR2 ¼ 0:98Þ. Of note, the use of a
narrow prior (over [1/10, 10]), leads to an underestimation of
kCpG, making our approach conservative in the evaluation of
hypermutability in the CpG context.

We then applied CABC to investigate whether the value of
kCpG is homogeneous across the placental tree. We subdi-
vided our data sets into three clades: Glires (7 species),
Laurasiatheria (14 species), and Primates (12 species). The
gene-specific estimates of kCpG obtained for each of these
three clades (supplementary fig. S8, Supplementary Material
online) are well correlated with the ones obtained for placen-
tals (r2¼ 0.94, 0.96, and 0.96, respectively), indicating that the
hypermutability in the CpG context is relatively well con-
served along the placental tree. However, the slope of the

regression (passing through the origin) is below one (0.96 and
0.91) for Glires and Laurasiatheria, respectively, and greater
than one (1.14) for Primates. The higher level of CpG transi-
tion rate in Primates is congruent with the results of Keightley
et al. (2011), although heterogeneity across clades is less
marked here. This could be due to the fact that the analysis
of Keightley et al. (2011) is based on pairs of species, whereas
the present analysis relies on the information contributed by
39 placental species considered simultaneously.

Finally, we looked at the effect of taking into account CpG
hypermutability on the other parameters of the mutation
process of the model, M[GTRþts-CpG]. Overall, these
parameters were slightly affected by the inclusion of the
kCpG parameter, which is understandable given the relative
rarity of CpG in mammalian protein coding sequences (with
the mean observed/expected CpG ratio of 0.41). However,
comparison of the values of uG þ uC (fig. 4) shows that the
CpG hypermutability has a complex effect, strongly depen-
dent on the gene. This is congruent with our assumption that
the GTR parameters are strongly correlated with kCpG and
should be re-estimated at the ABC step. On average, a tenu-
ous increase in uG þ uC is observed (fig. 4), which is expected

A B C D E

FIG. 2. P–P plots of the kCpG recovered from the analyses of simulated alignments generated under kCpG values (0.5, 1.0, 2.0, 4.0, 8.0), corresponding
respectively to (A–E). Empirical probabilities were obtained using rejection sampling (the best 0.1% of 106 simulations) corrected with a linear
regression model. The frequency at which the true values of kCpG within each credibility intervals is uniformly distributed (two sided Kolmogorov–
Smirnov test: p¼ 0:848, p¼ 1, p¼ 0:999, p¼ 0:996, and p¼ 1 respectively). A diagonal line is added (black) to appreciate any deviation between
the expectations and the results.

FIG. 3. Aggregation of posterior distributions of kCpG recovered from
137 mammalian genes using the CABC methodology. Rejection sam-
pling (the best 0.1% of 106 simulations) with linear regression model
were used to approximate posteriors. The vertical blue dash line
represents the mean kCpG value (7.45) over all posterior values pooled.
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since the hypermutability of CpG tends to decrease GþC
content.

Posterior Predictive Checks to Analyze the Effect of
CpG Hypermutability on Some Sequence
Characteristics
Instead of looking at the GTR parameters, a more sensible
approach is to examine the predictions made by both models,
including and not including CpG hypermutability. First, we
compared the GC content observed at the third codon posi-
tions (GC3) in empirical data to the GC3 predicted by the two
models (fig. 5). The model not including CpG hypermutability
overpredicts GC3, as previously noticed by Mugal et al. (2015).
The model including CpG hypermutability gets closer to the
observed GC3, but with a small underprediction especially for
high values of GC3. The inclusion of the CpG hypermutability
by CABC therefore allows to improve the prediction of GC3, a
widely used measure to estimate mutational pressure
(Sueoka 1961, 1962; Muto and Osawa 1987; Ermolaeva
2001; Knight et al. 2001; Chen et al. 2004; Li et al. 2015).

Second, during the simulations conducted to generate the
posterior predictive alignments, we computed statistics on
the substitution histories over the tree (table 3). The number
of substitutions is higher for the model including CpG hyper-
mutability compared with the reference model
(6,342 6 3,202 vs. 5,214 6 2,511). Focusing on the relative fre-
quencies of substitution types, the model including CpG
hypermutability predicted more transitions relative to trans-
versions (77.3% vs. 71.3% for the reference model). The C->T
and G->A transition rates show the sharpest increase
(þ14.2% andþ10.7%), in agreement with the increased tran-
sition rate at CpG sites implied by CpG hypermutability, but

the T->C (þ7.1%) and A->G (þ1.0%) transition rates also
show a nonnegligible increase. The pattern is similarly com-
plex for transversions, with an important decrease for G->T
(–54.5%), G->C (–61.6%), C->G (–67.3%), and C->A
(–69.4%), the other types of transversions being relatively
unaffected. The complexity of the impact of the CpG hyper-
mutability on the relative frequencies of the 12 types of sub-
stitutions is difficult to interpret, being the result of an
interplay between the mutation process, the genetic code
and selection on amino-acids.

Third, we exclusively looked at the substitutions in the
CpG context (table 4), which should be easier to interpret.
Unsurprisingly, the number of CpG->TpG or ->CpA transi-
tions among all substitutions were much more frequent
(from 234 6 133 to 584 6 318) than other substitution types.
When analyzed with respect to the position of CpG within
codons, it appears that only CpG->CpA at positions 2-3 and

FIG. 4. Comparison of the uG þ uC posterior mean estimates under
the models without (x axis) and with CpG hypermutation (y axis)
recovered from the analysis of the 137 mammalian gene alignments.
A diagonal line is added (black) to appreciate any deviation between
both models estimate. The error bars correspond to the standard
deviations computed from each posterior.

FIG. 5. Comparison of the ability of the models without (gray squares)
and with CpG hypermutation (blue circles) to predict the GC3 con-
tent of the 137 mammalian gene alignments using posterior predic-
tive simulations. The observed GC3 is plot against the mean
predictions (y axis) from both models. A diagonal line is added (black)
to appreciate any deviation between observations and the predic-
tions. The error bars correspond to the standard deviations com-
puted from models predictions.

Table 3. Comparison of the Proportions of Substitution Types
Recovered from the Posterior Predictive Simulations (Mean over
137 Mammalian Gene Analyses).

Type of Substitutions Without CpG With CpG

ts 71.33 6 3.38 77.29 6 2.91
A>G 17.16 6 2.1 17.33 6 2.05
G>A 17.04 6 2.15 18.87 6 2.05
C>T 18.49 6 2.01 21.12 6 2.25
T>C 18.64 6 2.08 19.97 6 2.17
tv 28.67 6 3.38 22.71 6 2.91
A>C 4.70 6 0.93 4.68 6 0.88
C>A 4.74 6 0.92 3.29 6 0.77
A>T 2.53 6 0.7 2.53 6 0.7
T>A 2.59 6 0.72 2.46 6 0.68
C>G 3.70 6 1.05 2.49 6 0.75
G>C 3.62 6 1.06 2.23 6 0.71
G>T 3.52 6 1.08 1.92 6 0.49
T>G 3.28 6 0.69 3.10 6 0.59

ts for transitions; tv for transversions.
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CpG->TpG at positions 3-1 drastically increase under the
model with CpG hypermutability. This is entirely expected
since most of these substitutions are synonymous. In fact, the
proportion of nonsynonymous substitutions (transitions) at
CpG sites only increases from 1.9% to 2.5% whereas the syn-
onymous transitions jump from 7.5% to 14.6%. This is con-
gruent with the analysis of thousands of genes between
human and chimpanzee showing that�14% of the substitu-
tions (synonymous or nonsynonymous) are related to CpG
hypermutability (Misawa and Kikuno 2009). Table 4 shows
that selection at the amino-acid level severely filters the effect
of CpG hypermutability (Stoltzfus and McCandlish 2017), but
suggests that CU might be affected (see below).

Fourth, we investigated the dinucleotide frequencies re-
lated to CpG hypermutability (CpG, TpG, and CpA) and, as
negative controls, the other dinucleotides involving the same
pairs of nucleotides (GpC, GpT, and ApC). For all codon
positions (i.e., 1-2, 2-3, 3-1) the negative controls are similarly,
and accurately, predicted by both models, with or without
CpG hypermutability (supplementary figs. S9–11D–F,
Supplementary Material online). In contrast, introducing
CpG hypermutability severely impacted the prediction of
CpG, TpG, and CpA dinucleotide frequencies (supplementary
figs. S10 and 11A–C, Supplementary Material online), except
at codon position 1-2 (supplementary fig. S9A–C,
Supplementary Material online). This is expected because al-
most all substitutions at these positions are nonsynonymous,
hence almost exclusively predicted by the selection part of
the model, which is identical between the two models. At
codon positions 2-3 and 3-1, the CpG frequency is always
better predicted by the model that includes CpG hypermut-
ability (supplementary figs. S10 and 11A, Supplementary
Material online) and are in fact very close to the observed
values (mean Z-score of –0.58 and 0.01, respectively). The
frequency of TpG at codon position 3-1, and of CpA at po-
sition 2-3, are both better predicted by the model with CpG
hypermutability (supplementary figs. S11C and S10B,
Supplementary Material online). As noticed for the predicted
substitutions (table 4), the mutational results of CpG hyper-
mutability are synonymous events at the codon level. For
TpG (CpA) frequency at codon position 3-1 (2-3), the pre-
dictions of the two models are virtually identical because
these products of CpG hypermutability are nonsynonymous.
Including the CpG hypermutability therefore allows to im-
prove the prediction of dinucleotide frequencies almost

exclusively in a synonymous context. In contrast, in a non-
synonymous context, the model without CpG hypermutabil-
ity appears to yield globally correct predictions.

Fifth, we compared the amino acid frequencies predicted
by the two models. We did not observe major differences
(supplementary fig. S12, Supplementary Material online),
again, probably because this characteristic is mainly modelled
by the selection part, which is shared by the two models.
However, it is known that the mutational process has an
impact on amino acid frequencies, through variation in GC
content in mitogenomes (Foster et al. 1997), or differences
between the leading and lagging strands (Rocha et al. 1999).
The case of arginine constitutes a good illustration of this
specific point. The frequency of arginine is overpredicted by
the reference model, and underpredicted by the model in-
cluding CpG hypermutability. Strikingly, arginine is the only
amino acid encoded by codons having a CpG at position 1-2
(CGN, and also by codons AGR). If the selective advantage of
arginine at a given position is not sufficiently strong, the high
mutational pressure away from CpG can easily lead to the
replacement of arginine by a less favorable amino acid. The
case of arginine also demonstrates that site-specific amino-
acid preferences might in fact be correlated with kCpG under
the posterior, something which was ignored in our analysis, by
pre-estimating amino-acid fitness parameters under the ref-
erence model (without CpG) without any subsequent cor-
rection. In this respect, one possible improvement of our
approach would be to globally modulate the site-specific
amino acid fitness profiles using a vector of 20 correcting
factors that would be estimated at the ABC step. However,
the pattern shown in supplementary figure S12,
Supplementary Material online is complex. For instance, it
is not clear why the model including CpG hypermutability
overpredicts the frequencies of isoleucine (codons AUH) and
methionine (codon AUG).

Posterior Predictive Checks and the CU Bias in
Mammals
We have shown that the modelling of CpG hypermutability
has a major impact on the ability to predict synonymous
aspects of mammalian protein coding gene evolution. It is
therefore particularly interesting to examine its effect on CU.
We used posterior predictive checks to study the entropy of
relative synonymous codon usage (RSCU, fig. 6) and of rela-
tive codon frequencies (RFC, supplementary fig. S13,
Supplementary Material online). The results obtained with
these two alternative statistics were similar and we will focus
on RSCU, which is commonly used in empirical analyses of
CU (e.g., Pouyet et al. 2017). The model with CpG hyper-
mutability more accurately predicts the CU entropy observed
on the empirical alignments, compared with the reference
model (fig. 6): the mean Z-scores are –4.84 and –3.16, respec-
tively. Since the entropy is maximal under equal use of each
synonymous codon, the predicted RSCU are generally more
homogeneous than the observed RSCU. A large proportion of
the genes (41.6% and 20.4% for the models without and with
kCpG respectively) yields very poor predictions of the entropy
of RSCU with Z-scores under –5 (fig. 6). This suggests that

Table 4. Comparison of the Proportion of Transition Substitutions
within CpG Context Recovered from the Posterior Predictive
Simulations (Mean over 137 Mammalian Gene Analyses).

Codon Position Substitution Types Without CpG With CpG

1-2 CpG>TpG 0.14 6 0.14 0.23 6 0.22
2-3 CpG>TpG 0.54 6 0.32 0.65 6 0.42
3-1 CpG>TpG 4.33 6 1.05 8.27 6 2.14
1-2 CpG>CpA 0.45 6 0.36 0.75 6 0.57
2-3 CpG>CpA 3.19 6 0.79 6.36 6 1.44
3-1 CpG>CpA 0.78 6 0.42 0.88 6 0.54
Synonymous CpG>TpG 1 CpG>CpA 7.52 6 1.47 14.63 6 2.85
Nonsynonymous CpG>TpG 1 CpG>CpA 1.91 6 1.02 2.51 6 1.47
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other important determinants, such as splicing enhancer, or
mRNA structure, are still missing to our modeling strategy.

To better understand the mutational or selective forces
determining the small entropy of RSCU observed in mam-
malian protein coding genes, we performed a principal com-
ponent analysis of the RSCU predicted by the two models,
along with the RSCU observed in the empirical alignments
(fig. 7). The first axis of the PCA explains most of the variance
(59.2%), and is related to the GC3 content (the r2 between the
first axis and the GC3 of the real alignments is equal to 0.984).
This is congruent with similar analyses based on a larger
number of genes but restricted to Homo sapiens (e.g.,
Pouyet et al. 2017). The model without CpG hypermutation
is slightly shifted to the right (fig. 7), in agreement with its GC3
overprediction (fig. 5). In contrast, the predictions of the
model including CpG are comparable to real data on the first
axis. The second axis explains 14.3% of the variance and
strongly discriminates the real data from the predictions of
the reference model, the predictions of the model with CpG
hypermutability being in-between. The model that includes
CpG hypermutability is, as expected from previous results,
closer to the real data.

All the G/C ending codons (in red) but TTG and AGG are
located to the right, in agreement with the correlation be-
tween the first axis and GC3 content. The second axis, driven
by the difference between observed and predicted data, is
more complex to interpret. The codons ending by CpG are
all located in the lower right corner, indicating that CpG
hypermutability contributes to this axis. Including kCpG is in-
deed necessary to explain why codons TCG, GCG, CCG, and
ACG are unpreferred in humans with a RSCU of 0.05, 0.11,
0.11, 0.11, respectively (Nakamura et al. 2000), whereas G
ending codons are always otherwise preferred. However, the
synonymous products of transitions of these codons (NCA)

do not meaningfully contribute to the second axis. In con-
trast, three codons ending by G (GTG, CTG, and CAG, up
right corner) heavily contribute to this axis but do not seem
to be linked to CpG. Codons CTA (Leucine), ATA (Isoleucine),
and GTA (Valine) are also major drivers of the second axis.
They are overpredicted by both models. A deficit of TpA
could be due to the hypermutability of this dinucleotide
(Milholland et al. 2017) or to selection against the attachment
to transcription or termination factors (Burge et al. 1992).
Codons for arginine are also separated on the second axis,
AGR clearly on the upper part and CGN on the lower one
(very weakly for CGG). This is likely related to CpG hyper-
mutability, which will erode CGN codons towards TGN and
CAN. The possibly complicated evolutionary path between
CGN and AGR codons to conserve functionally important
arginines could be responsible for the surprising position of
codon AGG along the first axis. In summary, the PCA of RSCU
(fig. 7) demonstrates that including CpG hypermutability into
the mutation–selection model leads to an improved predic-
tion of CU but that other characteristics (e.g., TpA) are poorly
predicted, requiring future additions in the mutation and/or
selection part(s) of the model.

Conclusions and Future Directions
We have proposed a new approach, CABC, that combines
MCMC and ABC to simultaneously handle high-dimensional
parameter vectors and site-interdependent substitution pro-
cesses. We have shown that this approach allows accurate
estimation of the level of transition hypermutability in the
CpG context. Our analysis confirms that CpG hypermutabil-
ity is prevalent in mammals and variable among loci. This
proof of concept of the CABC methodology opens new per-
spectives towards improved mutation–selection models bet-
ter able to tease apart the relative role of these two
evolutionary forces.

FIG. 6. Distribution of Z-scores computed from RSCU (without stop,
methionine and tryptophan codons) entropy predicted under the
models without (gray) and with (blue) CpG hypermutation. The ver-
tical dashed (gray) and dotted (blue) lines represent the mean
Z-scores obtained under each model respectively (i.e., without and
with CpG hypermutation). The vertical solid line (red) represents the
zero value.

FIG. 7. Principal component analysis of the RSCU (without stop,
methionine and tryptophan codons) recovered from the 137
mammalian gene alignments and from the mean RSCU predicted
under models without and with CpG hypermutation. G/C-ending
codons are annotated in red (italic) whereas A/T-ending codons
are annotated in black.
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We used a simple implementation for ABC, where SS were
manually selected and the posterior distribution was approx-
imated with the RS algorithm followed by the use of a LRM.
This appears to be sufficient to accurately estimate the rate of
CpG hypermutation, kCpG, although some biases and/or in-
accuracies were observed for other parameters (e.g. kTBL and
kx�). From there, the method could be improved in several
respects. For instance, RS could be replaced by MCMC
(Marjoram et al. 2003) or by sequential Monte Carlo
(Sisson et al. 2007). Similarly, LRM could be replaced by other
regression models (e.g., random forest; Raynal et al. 2017,
unpublished work), in the hope of getting closer to the true
posterior and potentially reducing the computation burden.
The choice of SS could also be reconsidered, for instance by
computing the number of substitutions by maximum parsi-
mony instead of simply counting the number of observed
pairwise differences, which might improve the estimation of
kTBL. Perhaps more importantly, the choice of SS could be
performed automatically (Prangle, Fearnhead, et al. 2014).
The Random Forest ABC (Pudlo et al. 2016) may be partic-
ularly well suited for sequence data, for which hundreds of SS
can in principle be contemplated. Finally, one specific aspect
of strategy that was adopted here, that is, introducing mod-
ulator parameters, which are estimated at the ABC step, to
correct for the fact that most nuisance parameters are sam-
pled under the reference posterior distribution (i.e., under
kCpG ¼ 1), could be generalized to other aspects of the
model, in particular, to amino-acid frequencies across the
proteome (as illustrated by the case of arginine, supplemen-
tary fig. S12, Supplementary Material online).

The CABC approach will make it possible to develop com-
plex mutation–selection models handling several of the well
identified and complex features of mutation and selection
processes. Concerning mutation, context-dependent effects
are clearly understudied in molecular evolution, mostly for
computational reasons, and despite the fact that the preva-
lence of such effects is widely recognized (Siepel and Haussler
2004; Nevarez et al. 2010; Seplyarskiy et al. 2017; Guo et al.
2018). In addition to CpG hypermutability, TpA hypermuta-
tion (Milholland et al. 2017) or more complex context-
dependent mutational pattern, such as inferred from the
large number of de novo mutations discovered through the
sequencing of trios (e.g., Francioli et al. 2015; Wong et al. 2016;
Jonsson et al. 2017), could be further investigated. Concerning
selection, the perspectives are broader, including, among
other things, selection against mono-nucleotide repeats,
mRNA secondary structure, motif for RNA binding proteins
(e.g., splicing enhancers) and obviously protein structure.
Such improved models should have a broad applicability in
molecular evolutionary studies, by making it possible to tease
apart the role of mutation, purifying, and diversifying selec-
tion in the evolution of genomic sequences.

Materials and Methods

Data Sets and Tree Topology
All the 137 mammalian gene alignments used in this work as
well as the mammalian tree were recovered from

Laurin-Lemay et al. (2018), and both are available via
the GitHub repository (https://github.com/Simonll/Like
lihoodFreePhylogenetics/; last accessed September 12, 2018).

Codon Substitution Models
To mechanistically disentangle mutation from selection pro-
cesses, we used the codon substitution model of Rodrigue
et al. (2010) with the modification of Rodrigue and Lartillot
(2017), as implemented in Phylobayes-MPI (Lartillot et al.
2013; Rodrigue and Lartillot 2014). Let us briefly recall the
parameterization of this reference model, denoted as
M[GTR]-S[NCatAA*]. Branch lengths are free parameters,
while the tree topology is kept fixed. The mutational part
of the model, M[GTR], is modelled with the general-time-
reversible approach (Lanave et al. 1984) using 10 parameters
(8 degrees of freedom) and assumes a point mutation process
between codon a to codon b. Stop codons are prohibited (i.e.,
have zero probability). The mutational process act identically
on all codon positions (1, 2, and 3), whereas codons a and b
differ at the cth position. The nucleotide propensities, are
defined as u ¼ ðunÞ1� n� 4, with

P4
n¼1 un ¼ 1 and the nu-

cleotide exchangeabilities are defined as . ¼ ð.mnÞ1�m;n� 4,
with

P
1�m< n� 4.mn ¼ 1. The selective part of the model,

S[NCatAA*], acts at the amino acid level. The amino acid
relative scaled fitness profiles, or NCatAA from S[NCatAA*],
are elements of a Dirichlet process (Rodrigue et al. 2010). The
Dirichlet process is a nonparametric method, controlled by a
few hyper-parameters, which allows to approximate any un-
known distribution (Ferguson 1973). Here the dimensionality
of the latent variables is huge (e.g., the number of profiles
times 20 amino acids) noting that there is in average
�70.80 6 22.42 profiles to deal with when working with
the mammalian gene alignments studied here. The K profiles
are defined as vectors w ¼ ðwðkÞl Þ1� l� 20;1� k�K . Site specific
allocation of the K profiles is specified for the length of the
gene, N, via the vector z ¼ ðziÞ1� i�N. Therefore, the scaled
selection coefficient for nonsynonymous events, S

ðiÞ
ab , is

obtained as in Yang and Nielsen (2008):

S
ðiÞ
ab ¼ ln

wðziÞ
fðbÞ

wðziÞ
fðaÞ

0
@

1
A; (11)

where f(a) returns an index, from 1 to 20, of the amino acid
encoded by codon a. The value of S

ðiÞ
ab in turn defines a fixa-

tion factor, denoted hðSðiÞabÞ, and calculated as

hðSðiÞabÞ ¼
S
ðiÞ
ab

1� e�S
ðiÞ
ab

: (12)

A deviation parameter, x�, or � from S[NCatAA*], was
recently introduced by Rodrigue and Lartillot (2017) to cap-
ture the excess or the deficit of nonsynonymous rates with
respect to the purifying selection modelled by the amino acid
fitness profiles, corresponding to Darwinian selection or other
forms of purifying selection (e.g., the secondary structure
of mRNA or the 3D structure of protein), respectively.
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The substitution rate matrix Q of the reference model has
entries of the form:

Q
ðiÞ
ab ¼

.acbc
ubc

; if syn:;

.acbc
ubc

hðSðiÞabÞx�; if non� syn:

(
(13)

To capture the transition mutation rate in the CpG con-
text (i.e., CpG> TpG or CpG>CpA), we extended the mu-
tation component M[GTR] of the reference model by
including an across-site dependent parameter, kCpG. The Q
matrix has now entries of the form:

Q
ðiÞ
ab¼

.acbc
ubc

; if syn: tr: or ts: non�CpG;

.acbc
ubc

kCpG; if syn: ts:CpG;

.acbc
ubc

x�hðSðiÞabÞ; if non�syn: tr: or ts:
non�CpG;

.acbc
ubc

x�hðSðiÞabÞkCpG; if non� syn: ts:CpG:

8>>>>>>>><
>>>>>>>>:

(14)

Overview of CABC
The hypermutability of C in the CpG context introduces
across-site dependency, making the computation of the like-
lihood intractable. CABC eschews this difficulty by inferring
the high-dimensional parameter vectors using a standard
MCMC with the model M[GTR]-S[NCatAA*], that is, with
kCpG ¼ 1, and then by using ABC to infer the posterior dis-
tribution of the model with CpG hypermutation, assuming
the values of the high-dimensional parameter vectors previ-
ously estimated. More precisely, the parameter vectors hsc

and hwc of equation (9) consist of the propensities and
exchangeabilities of the GTR matrix (u and .) plus three
modulators (kx� , kTBL, and kROOT) and of the branch lengths
plus the amino acid fitness profiles, respectively. As explained
above, the parameters of hwc are of high dimensionality and
cannot be accurately inferred by ABC, whereas the parame-
ters of hsc are strongly correlated with the site-interdependent
parameter kCpG and therefore cannot be inferred by MCMC.
As a result, hwc is first obtained using MCMC assuming kCpG

¼ 1 and kCpG and hsc are obtained using ABC conditional on
hwc as formulated CABC equation (9). Priors are defined for
kCpG and hsc before running the ABC step.

MCMC Part of CABC
We applied the reference model implemented in Phylobayes-
MPI on the 137 alignments, composed of 39 placentals, avail-
able from Laurin-Lemay et al. (2018). All the analyses were
carried under fixed topology previously obtained by Laurin-
Lemay et al. (2018). The analyses were also conducted on
subparts of the mammalian tree: Glires (7 species),
Laurasiatheria (14 species), and Primates (12 species).
Convergence was first visually assessed using two indepen-
dent chains, and then by computing the effective size of the
parameters. The priors used under the reference model
are listed in Rodrigue and Lartillot (2014). Parameters from
hwc are drawn from the posterior distribution estimated

under the reference model using MCMC (i.e., assuming
kCpG ¼ 1).

ABC Part of CABC
In addition to the 10 GTR parameters, which are expected to
be strongly correlated to kCpG, hsc includes kTBL, a modulator
serving as a multiplicative parameter for every branch length.
As the mutation–selection equilibrium was disrupted by the
new parameterization, the tree length (Total Branch Length
or TBL), which is measured in the number of mutations per
site, will likely increase because of the additional mutations
proposed at CpG sites (when kCpG > 1). Also included in hsc

is kx� , a multiplicative modulator to x�, to respond to
changes in nonsynonymous rates that might emerge when
accommodating CpG hypermutability. It is difficult to antic-
ipate the value of kx� , given the potentially complex interplay
between parameter values that could be produced from
modeling CpG hypermutation. Finally, hsc includes kROOT, a
multiplicative parameter to fix the exact position of the root
of the tree between the in- and out-group. Since we used a
model, M[GTRþts-CpG]-S[NCatAA*], that makes the pro-
cess nontime-reversible, the position of the root, in our case
on the branch separating Afrotheria (set as the out-group
from Xenarthraþ Euarchontogliresþ Laurasiatheria), influ-
ences the output. It is difficult to know whether the phylo-
genetic signal will be sufficient to precisely estimate kROOT.

Priors used are noninformative except for the nucleotide
exchangeabilities, or .. We informed the model that the tran-
sition rates are in average two times higher than transversions
(Wakeley 1996) to reduce the dimensionality of the ABC
search. The use of noninformative priors makes the rejection
of the null hypothesis more reliable at the expense of com-
putational time.

kCpG � log10 Uniform½0:1; 10�

.ts � Gamma½a ¼ 1;b ¼ 1�

.tr � Gamma½a ¼ 2; b ¼ 1�

u � Dirichlet½1; 1; 1; 1�

kx� � log2 Uniform½0:5; 2�

kTBL � log2 Uniform½0:5; 2�

kROOT � Uniform½0; 1�

The simulator developed in Laurin-Lemay et al. (2018)
allows one to generate sequence alignments from the model
with CpG across-site dependency along a phylogenetic tree.

Approximate Bayesian Computation for Modeling CpG Hypermutability . doi:10.1093/molbev/msy173 MBE

2829

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article-abstract/35/11/2819/5092473 by U
niversite de M

ontreal - Bibliotheques - Acquisitions (Periodiques) user on 28 N
ovem

ber 2018

Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: i.e.
Deleted Text:  
Deleted Text: p
Deleted Text:  
Deleted Text: p
Deleted Text: s
Deleted Text: -
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: -
Deleted Text: -


It was modified to work in parallel and to compute distances
between the vectors of SS recovered from simulated and true
alignments. Concretely, the simulator program generates a
reference table of SS along with the parameter values (SS,
kCpG, hsc, hwc), ordered by increasing distance values. The
ABC rejection sampling algorithm (RS; Pritchard et al. 1999)
was implemented into the simulation package. One can run
the RS for a defined number of simulations (i.e., sampling size)
and select the best simulations (i.e., tolerance level) on the
basis of the distances computed for each simulation (see be-
low). The selected simulations correspond to the RS table
used to approximate the posterior distribution. The program
is accessible via the GitHub repository (https://github.
com/Simonll/LikelihoodFreePhylogenetics/; last accessed
September 12, 2018). The two steps procedure (MCMC
followed by CABC) developed here takes for a single gene
analysis �10 h on an AMD Opteron 6172 using 12 cores
(for 100,000 simulations).

The SS are key to capturing the relevant information in the
data (Fu and Li 1997; Tavare et al. 1997; Weiss and von
Haeseler 1998; Pritchard et al. 1999). Preliminary analyses
were performed to select among >200 possible SS those
that are the most useful in discriminating different values
of kCpG and hsc. Thirteen SS were selected to summarize
the alignments. First, we used the relative dinucleotide fre-
quency of CpG, TpG, and CpA (SSC3pG1; SST3pG1; SSC3pA1) at
the third and first positions of two adjacent codons, mainly in
order to fit the kCpG parameter. Second, the frequency of four
nucleotides at the GC3 (SSA3; SSC3; SSG3; SST3) was consid-
ered, mainly to fit the nucleotide propensities, or u. Third, the
sum over all the possible pairs of sequences of the absolute
numbers of differences were computed at the nucleotide
level for each possible unordered pair of nucleotides, leading
to six SS (SSA<>C; SSA<>G; SSA<>T; SSC<>G; SSC<>T;
SSG<>T); they should mainly allow to fit the exchangeability
parameters (.), but also kTBL. Fourth, we also computed the
sum over all the possible pairs of sequences of the absolute
number of all nonsynonymous differences indiscriminately
(SSNS), with the aim to fit kTBL and kx� . We did not find
any SS informative for kROOT. In this study, the ordering of
simulations was achieved by using the squared Euclidean dis-
tance. All the 13 SS were log base 2 transformed to avoid over
representing SS with large values (e.g., SSA<>C � 105 while
SSC3pG1 are �10�2) when applying the distance function.

Two sampling sizes (105 or 106 simulations) were investi-
gated under the RS algorithm. To approximate the posterior
distribution of kCpG and hsc, we selected the best simulations
following different tolerance levels: we kept the best 10% or
1% for the sampling size of 105 or the best 1% or 0.1% for 106.
Given the large combinatorics of parameter values for kCpG

and hsc, it is likely that the RS algorithm would require a much
larger sampling size to accurately infer the posterior distribu-
tion (Barber et al. 2015). To get closer to the true posterior
distribution, we modeled the relationship between the pa-
rameter values sampled during the CABC (i.e., kCpG, hsc) as the
response variables and the SS present in the RS table of the
best simulations as the predictors of a regression model as
introduced by Beaumont et al. (2002). More specifically, we

applied the nonparametric weighted multiple linear regres-
sion model (previously identified as LRM), which also
accounts for heteroskedasticity, as proposed by Blum and
Francois (2010) and available in the ABC package (Csill�ery
et al. 2012) from R CRAN (R Core Team 2017). The weighted
scheme, done for each entry of the RS table, are obtained by
applying an Epanechnikov kernel to the Euclidean distances
computed. In other words, the weights are maximal for the
entries with the smallest distances, and minimal for the big-
gest distances. This ensures that the LRM optimizes its
parameters from the best samples present in the RS table.

Validation of CABC
To validate the new CABC method we analyzed alignments
simulated using known parameter values. To ensure the re-
alism of the simulated alignments, we drew the parameter
values from the posteriors obtained under the reference
model (10 genes) along with five values of kCpG (0.5, 1, 2, 4,
and 8). The same mammalian tree topology was used for the
validation and the analyses, taken from Laurin-Lemay et al.
(2018). The 10 genes (see supplementary table S3,
Supplementary Material online for details) were selected
among the 137 used in Laurin-Lemay et al. (2018) to represent
the variation of the GC content found within mammalian
genomes (supplementary table S3, Supplementary Material
online) and to have a sequence length of �1000 codons (a
compromise between the amount of evolutionary signal and
the computational burden). More specifically, for each gene,
100 sets of parameter values were drawn from the posterior
distribution and used for five simulation sets (i.e., the five
values of kCpG). This leads to a total of 5,000
(5� 10� 100) DNA sequence alignments to benchmark
the CABC.

This validation framework enables us to investigate the
reliability of inferences conducted in this study, as a function
of the various settings of our approximation methods.
Specifically, we explored the number of simulations (i.e., 105

or 106), the tolerance level to be applied (10%, 1%, or 0.1%), as
well as the use of regression models. The tolerance levels were
chosen to have RS table of at least 1,000 points.

Two standard methods were used to evaluate the accuracy
of CABC. First, we quantified estimation error for each pa-
rameter fitted under the CABC procedure by using the RMSE
as used by Beaumont et al. (2002):

RMSEi ¼
1

N

XN

j¼1

ĥi � hij

ĥi

 !2

; (16)

where RMSEi corresponds to the average error computed for
the parameter i (e.g., kCpG). The RMSE is obtained by averag-
ing the relative squared discrepancy between the true param-
eter value (ĥi ) used for generating the simulated alignment
and the N parameter values (hij) from the approximated
posterior recovered under the CABC procedure when analyz-
ing that very same simulated alignment. Note that the error is
calculated relative to the scale of the true parameter value. A
global RMSE can be obtained by averaging the total error
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computed independently for each parameter (RMSEi) over all
the analyses of a validation set (i.e., defined upon the five kCpG

values).
We also investigated the coverage property of each param-

eter (Cook et al. 2006; Fearnhead and Prangle 2012; Prangle,
Blum, et al. 2014) fitted under the CABC using the P–P plots.
The coverage was investigated with a set of 99 credibility
intervals (1–a), where a is ranging from 1 to 99%, and in-
creased by steps of 1%. More precisely we computed the
frequency for which the true parameter value was found
within each credibility interval (1,000 replicates per kCpG val-
ues) and compared those frequencies to the expected ones
(1–a). In other words, when a 95% credibility interval
(1� 0:05) is used, we should recover the true value within
this credibility interval 95% of the times. Conformity between
the coverage recovered was assessed using a two sided
Kolmogorov–Smirnov test available from SciPy (Eric et al.
2018). The rejection of the null hypothesis (i.e., the coverage
is expected to be uniform along all credible intervals tested)
would demonstrate that there is a bias in the CABC analyses.

We also evaluated the impact of the two approximations
of CABC on its accuracy. To study the choice of the param-
eters to be included in hsc, we transferred the GTR parameters
into hwc. The strongly correlated (to kCpG) parameter vector,
hsc, is now only composed of kTBL, komega� , and kROOT. The
second approximation (that the parameters contained in hwc

might not be uncorrelated to kCpG) was investigated by fixing
the values of the hwc parameters to the true values. In other
words, instead of drawing hwc from the posterior distribution
of the simulated alignments under the reference model, we
took the hwc values that have been used to generate the
simulated alignments.

Application to Mammalian Protein Coding Genes
We would like to evaluate the ability of CABC to estimate
hypermutability in the CpG context in the cases of mamma-
lian protein coding genes. All the 137 genes of Laurin-Lemay
et al. (2018) were analyzed with CABC using a sampling size of
106 and a tolerance level of 0.1%. The topology of Laurin-
Lemay et al. (2018) was used for all the genes. We then carried
out the hypothesis testing related to CpG hypermutability
(i.e., kCpG > 1), for credibility intervals of 95% and 99%. We
further investigated the impact of the prior on kCpG param-
eter by comparing our results to the ones obtained by using a
broader prior on kCpG (i.e., [1/50, 50]). We also explored the
heterogeneity of CpG hypermutability over the placental tree
by analyzing three clades independently. For each analysis (i.e.,
Glires, Laurasiatheria, and Primates) we sampled the root
position using kROOT parameter on the branch connecting
Dipodomys and the rest of the Glires (7 species), on the
branch connecting Mustela and the rest of Laurasiatheria
(14 species), and on the branch connecting Callithrix and
the rest of the Primates (12 species).

Posterior Predictive Checks
Posterior predictive analysis is a powerful framework to eval-
uate model properties (Gelman et al. 2013). Ten replicates
were generated per posterior sample under the model

without and with CpG hypermutability. First, we compared
the model predictions on the basis of substitution histories
generated over simulations. Specifically, we quantified the
total number of substitutions and the proportion of each
substitution types as defined by each unique pair of nucleo-
tide substitution (e.g., A–C) or by their effect at the amino
acid level (synonymous vs. nonsynonymous). We also tracked
substitutions related to the CpG context (i.e., CpG to TpG
and CpG to CpA) from all codon position (1-2, 2-3, and 3-1).
We computed various SS from simulated alignments to com-
pare model fit using Z-scores. Among the key features inves-
tigated, we looked at the GC3 content, the entropy of the
RSCU (relative synonymous CU), the entropy of the RCF
(relative codon frequencies), the relative dinucleotide fre-
quencies for codon positions 1-2, 2-3, and 3-1, as well as
the amino acid frequencies. We also performed a principal
component analysis using the VEGAN package (Oksanen
et al. 2017) from R CRAN (R Core Team 2017) on the matrix
of the RSCU recovered from the true alignments and from
alignments generated by both models.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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