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Abstract

Dispersal is a central process in ecology and evolution. At the individual level, the

three stages of the dispersal process (i.e., emigration, transience and immigration)

are affected by complex interactions between phenotypes and environmental fac-

tors. Condition‐ and context‐dependent dispersal have far‐reaching consequences,

both for the demography and the genetic structuring of natural populations and for

adaptive processes. From an applied point of view, dispersal also deeply affects the

spatial dynamics of populations and their ability to respond to land‐use changes,

habitat degradation and climate change. For these reasons, dispersal has received

considerable attention from ecologists and evolutionary biologists. Demographic and

genetic methods allow quantifying non‐effective (i.e., followed or not by a success-

ful reproduction) and effective (i.e., with a successful reproduction) dispersal and to

investigate how individual and environmental factors affect the different stages of

the dispersal process. Over the past decade, demographic and genetic methods

designed to quantify dispersal have rapidly evolved but interactions between

researchers from the two fields are limited. We here review recent developments in

both demographic and genetic methods to study dispersal in wild animal popula-

tions. We present their strengths and limits, as well as their applicability depending

on study objectives and population characteristics. We propose a unified framework

allowing researchers to combine methods and select the more suitable tools to

address a broad range of important topics about the ecology and evolution of dis-

persal and its consequences on animal population dynamics and genetics.
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1 | INTRODUCTION

Dispersal is a central process in ecology and evolution as it deeply

affects the demography (Benton & Bowler, 2012; Hanski & Gilpin,

1991; Hansson, 1991) and the genetic structuring of natural popula-

tions (Baguette, Blanchet, Legrand, Stevens, & Turlure, 2013; Olivieri,

Michalakis, & Gouyon, 1995; Ronce, 2007), as well as adaptive pro-

cesses (Hanski & Gaggiotti, 2004; Legrand et al., 2017; Ronce,

2007). From an applied point of view, dispersal influences the spatial

dynamics of populations and their ability to respond to land‐use
changes, habitat degradation and climate change (Baguette et al.,

2013; Caplat et al., 2016; Travis et al., 2013). Measuring dispersal is

therefore of crucial importance, and methods to do so are continu-

ally evolving. Broadly speaking, animal dispersal can be measured

using demographic methods that mainly rely on capture–recapture
approaches or through the use of molecular markers. While both are
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rapidly evolving, interactions among researchers in these two spe-

cialized fields are often limited. We here review recent develop-

ments in both demographic and genetic methods to study animal

dispersal to foster their combined use under a unified framework.

1.1 | What is dispersal?

Dispersal designates the movement of an individual between its site

of birth and its first breeding site (i.e., natal dispersal), or among suc-

cessive breeding sites (i.e., breeding dispersal; Baguette & Van Dyck,

2007; Clobert, Galliard, Cote, Meylan, & Massot, 2009; Matthysen,

2012). Dispersal can be passive or active. In passive dispersers,

movement is mainly driven by extrinsic factors such as wind, ocean

currents or dispersal agents as animals (Bohonak & Jenkins, 2003;

Burgess, Baskett, Grosberg, Morgan, & Strathmann, 2016; Nathan et

al., 2008). In active dispersers, dispersal often implies specialized

large‐scale one‐way movements potentially resulting in gene flow

(Cote, Bestion et al., 2017; Ronce, 2007; Van Dyck & Baguette,

2005). Therefore, it is distinguished from migration, which implicates

recurrent, two‐way out and back movements, and from foraging

movements implying frequent, short‐distance movements to locate

resources (Cote, Bocedi et al., 2017). Synonyms of dispersal have

sometimes been used in the specialized literature dedicated to sev-

eral taxonomic groups. For example, the term “straying” is the dis-

persal of mature fishes to spawn in a stream other than the one

where they originated (Quinn, 1993). Furthermore, although the

terms “dispersal” and “migration” are often considered synonyms in

the context of population genetics (Broquet & Petit, 2009), formally

they should be considered as two distinct ecological processes (Cote,

Bocedi et al., 2017). In a population genetics context, we use the

term “dispersal rate” to refer to the quantity σ2, the mean squared

axial parent–offspring distance (Rousset, 1997), while the term “mi-

gration” rate refers to the quantity m (Box 1), the proportion of

genes in a subpopulation that originate from new immigrants at each

generation. This conceptual point remains a source of ambiguity in

many population genetics studies (also discussed in Broquet & Petit,

2009; Lowe & Allendorf, 2010).

Dispersal is usually thought as a three‐stage process (Baguette &

Van Dyck, 2007; Clobert et al., 2009; Matthysen, 2012) including: (a)

emigration, which corresponds to the departure of an individual from

its site of birth or its current breeding site, (b) transience that deter-

mines the movement of an individual in the landscape matrix, and (c)

immigration, which designates the settlement in a new breeding site.

Theory predicts that the evolution of dispersal depends on the bal-

ance between costs and benefits at each step of the process (Bonte

et al., 2012) and that this balance is potentially affected by individ-

ual, social and environmental factors: that is, context‐ and condition‐
dependent dispersal (Bowler & Benton, 2005; Matthysen, 2012;

Ronce & Clobert, 2012). At the individual level, morphological (e.g.,

body size and condition), behavioural (e.g., boldness and aggressive-

ness) and physiological traits (e.g., testosterone and corticosterone

titres) can all influence the propensity to emigrate, the locomotor

capacities mobilized during transience, and habitat selection

associated with the immigration phase (Cote, Clobert, Brodin, Foga-

rty, & Sih, 2010; Davis & Stamps, 2004; Ronce & Clobert, 2012;

Stamps, 2001). The covariation patterns between dispersal and phe-

notypic traits have been coined “dispersal syndromes” (Clobert et al.,

2009; Ronce & Clobert, 2012). Individuals are expected to adjust

their emigration and immigration decisions according to environmen-

tal and social cues that reflect the fitness prospects in a given site

(i.e. [informed dispersal] Clobert et al., 2009). Site‐specific environ-

mental factors such as the quantity of food supplies, the density of

heterospecifics and predation risks, may have a broad influence on

emigration and immigration decisions (Bowler & Benton, 2005; Clo-

bert, Ims, & Rousset, 2004; Matthysen, 2012). Emigration and immi-

gration may also be profoundly affected by social factors including

kin competition/selection and inbreeding risks (Bowler & Benton,

2005; Matthysen, 2012). Moreover, landscape composition and con-

figuration have a strong influence on dispersal (Baguette et al., 2013;

Cote, Bestion et al., 2017; Fahrig, 2003). Namely, individual move-

ment during the transience phase is affected by the availability of

sites and their level of geographic isolation, as well as the permeabil-

ity of the landscape matrix (Baguette & Van Dyck, 2007; Baguette et

al., 2013; Pflüger & Balkenhol, 2014).

1.2 | Demographic and genetic consequences of
dispersal

The processes occurring at the individual level have far‐reaching
consequences for the dynamics of spatially structured animal popula-

tions (Figure 1; Hansson, 1991; Hanski & Gaggiotti, 2004; Gilpin,

2012). Spatially structured populations are composed of a set of

populations (or “subpopulations” in several demographic studies)

occupying distinct sites (or “patch,” “demes”) that are linked by dis-

persing individuals (Revilla & Wiegand, 2008; Thomas & Kunin,

1999); they encompass all the population categories classically con-

sidered in the general “metapopulation” framework (i.e., “Levins
metapopulation,” Hanski, 1998; “patchy populations,” Hastings &

Harrison, 1994; “source‐sink” and “pseudo‐sinks” systems, Pulliam,

1988; “mainland‐island” systems, Hanski & Gilpin, 1991). Condition‐
and context‐dependent dispersal decisions deeply affect dispersal

rates and distances (Clobert et al., 2009; Cote, Bestion et al., 2017),

which in turn influences the dynamics and the long‐term viability of

spatially structured populations. Theory predicts that dispersal has a

strong influence on the dynamics of populations by affecting the

local population growth rate through net immigration (= immigra-

tion – emigration; Hastings, 1993). The contribution of dispersal to

the rate of population growth is called demographic connectivity

(Lowe & Allendorf, 2010). Dispersal increases the level of demo-

graphic similarity (i.e., absolute values of vital rates) and synchrony

(i.e., relative change of vital rates) among populations over time

(Abbott, 2011; Bjørnstad, Ims, & Lambin, 1999; Hastings, 1993;

Ranta, Kaitala, Lindstrom, & Linden, 1995). It also reduces the risk of

population extinction when the local population sizes are small and/

or the local population growth rates are low (i.e., “rescue effect,”
Gotelli, 1991; Harrison, 1991; Lowe & Allendorf, 2010). In parallel,

CAYUELA ET AL. | 3977



dispersal also increases the colonization rate of empty sites, which

therefore decreases the extinction chances of the whole spatially

structured population (Ebenhard, 1991; Gilpin, 2012).

As dispersal implies the movement of individuals that may con-

tribute to reproduction, it can result in gene flow. Dispersal is

called “effective” when the disperser (an animal or a gamete) suc-

cessfully transmits its genes to the next generation, which leads to

gene flow. “Non‐effective” dispersal refers to cases where the dis-

perser moves into another patch regardless of whether it success-

fully reproduces or not (Broquet & Petit, 2009). As dispersal is a

costly process (Bonte et al., 2012), dispersers may pay acute sur-

vival and reproductive costs after immigrating in a new patch,

which therefore affects lifetime reproductive success and gene flow

(Ronce, 2007). Gene flow has profound influences on the

BOX 1 Glossary

Census population size (Nc): The total number of individuals in a population including both those who do and do not contribute offspring

to the next generation.

Demographic connectivity: Following the definition given by Lowe and Allendorf (2010), function of the relative contribution of net

immigration (i.e., immigration – emigration) to the population growth between t and t + 1: Ntþ1 ¼ Nt þNatality�Morlityþ
Immigration� Emigration.

Dispersal: The movement of an individual from its patch of birth to its breeding patch, or between successive breeding patches. Dis-

persal is usually thought as a three‐stage process including emigration, transience and immigration. Note that the term dispersal is often

misleadingly replaced by the term migration in population genetic studies.

Dispersal syndromes: Covariation patterns between dispersal (rate or distance) and phenotypic (e.g., behavioral, physiological, mor-

phological and life history) traits.

Dispersal kernel: Probability function (e.g., Gaussian, negative exponential, logistic) describing the distribution of post‐dispersal loca-
tions relatively to the source point.

Effective dispersal: Dispersal is called effective when the disperser (an animal, a gamete, a seed or pollen) successfully transmits its

genes.

Effective population size (Ne): Number of individuals in an ideal (Wright‐Fischer) population having the same magnitude of random

genetic drift as the actual population.

Emigration: Departure from the patch of birth or the breeding patch currently occupied. This step is also sometimes named departure.

Genetic connectivity: The degree to which gene flow affects evolutionary processes within populations. Lowe and Allendorf (2010)

distinguished three types of genetic connectivity: inbreeding connectivity that implies sufficient gene flow to avoid harmful condition of

local inbreeding; drift connectivity that supposes sufficient gene flow to maintain similar allele frequencies; adaptive connectivity, which

implies sufficient gene flow to spread advantageous alleles.

Identity‐by‐descent: Haplotypes that are identical and are inherited from a shared ancestor.

Identity‐by‐descent segment: A continuous segment over which two haplotypes are identical by descent.

Immigration: Arrival in the (new) breeding patch. This step is also sometimes named (settlement).

Isolation with migration model (IM): A model describing an ancestral population of size N which splits at time t in two daughter pop-

ulations of respective size Npop1 and Npop2. The two populations are exchanging migrant at a constant rate m1 and m2, respectively.

Migration: Recurrent, two‐way, out and back movement. In population genetic studies, migration often erroneously designates disper-

sal.

Migration rate m: In population genetics, effective dispersal rate, that is, the proportion of individuals emigrating from a population

(forward dispersal) or the proportion of individuals immigrating into a population (backward dispersal).

Non-effective dispersal: Non‐effective dispersal refers to cases where the dispersing agent moves into another habitat regardless of

whether it successfully reproduces and transmits its gametes.

Reinforcement: The evolution of mechanisms that prevent interbreeding between newly interacting incipient species, as a result of

selection against hybrids (narrow definition) or interspecific mating (broad definition).

Spatially structured population: System composed of a set of populations (or subpopulations) occupying spatially discrete sites

(patches or demes) among which dispersal occurs.

Selective sweep: Rapid increase in frequency of an allele in the population due to natural selection after the appearance of a favour-

able mutation.

Transience: Movement within the landscape matrix, following the emigration and preceding the immigration. This step is also some-

times named transfer phase.
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evolutionary trajectories of populations through modification of

allele frequencies within populations (Figure 1). In the absence of

gene flow, populations readily evolve through changes in allele fre-

quencies due to the other four major evolutionary forces: mutation,

random genetic drift (random fluctuation of allele frequencies in

populations of finite size), recombination and selection. If gene flow

occurs between populations from different demes, allele frequen-

cies are expected to be homogenized thus reducing genetic differ-

entiation. As a result, Wright (1951) showed that one migrant per

generation may be sufficient to reduce allele frequency differences

between populations and avoid the harmful effects of local inbreed-

ing (i.e., inbreeding connectivity, see Lowe & Allendorf, 2010).

Therefore, gene flow stemming from effective dispersal can play a

major role in reducing population inbreeding and the fixation of

deleterious mutations (Keller & Waller, 2002) and thus maintain fit-

ness by counteracting the random loss of genetic diversity (Frank-

ham, 2015). If populations experience a deleterious mutations load,

then hybrid offspring between residents and immigrants may dis-

play heterosis and have higher fitness than their parents. Gene flow

ultimately leads to the spread of immigrant alleles among nearby

populations, thus increasing effective dispersal rates (Ingvarsson &

Whitlock, 2000). More generally, dispersal may increase fitness

within populations by introducing new adaptive variants (Frankham,

2015). Furthermore, the absence of gene flow is generally believed

to be an important condition for speciation, although modest

amounts of gene flow during secondary contacts can favour rein-

forcement (i.e., increase in prezygotic isolation due to selection

against interspecific mating) and lead to complete reproductive iso-

lation (Barton & Hewitt, 1985; Coyne & Orr, 2004; Servedio &

Noor, 2003). The absence of gene flow may also favour local adap-

tation as gene flow may swamp locally adapted alleles and limit

local adaptation (Morjan & Rieseberg, 2004). For instance, at migra-

tion–selection equilibrium, in a two‐deme model, local adaptation

can be maintained only when the effective migration rate m is

lower than selection s favouring the locally adapted allele so that

m/s < 1 (Bulmer, 1971; Lenormand, 2002; Yeaman & Otto, 2011).

On the contrary, it is now acknowledged that dispersal may not

always be random (Clobert et al., 2009; Edelaar, Siepielski, & Clo-

bert, 2008; Garant, Kruuk, Wilkin, McCleery, & Sheldon, 2005) and

may, for instance, favour local adaptation when immigrants select

F IGURE 1 Conceptual scheme describing the role of the dispersal process in the dynamics and the genetics of spatially structured
populations. Factors including environmental characteristics (e.g., food supply, predation risk) and the social context (e.g., kin competition,
inbreeding risk) within the patch of departure and arrival affect individual internal state and the three stages of the dispersal process (i.e.,
emigration, transience and immigration). Landscape characteristics (e.g., Euclidean distance between patches, landscape composition) also
influence transience. The three stages of the dispersal process are affected by individual internal state including morphological (e.g., body size
and condition), physiological (e.g., corticosterone levels and metabolic rate), behavioural (e.g., boldness, exploration propensity) and life history
(i.e., survival, fecundity and growth) traits. Note that dispersal can be indirectly influenced by the environment through environmentally
mediated alterations of individual state. Variation in individual internal state (e.g., survival, fecundity and growth) also affects population
dynamics by contributing to intrinsic gain (i.e., natality) and loss (i.e., mortality), which ultimately shapes subpopulation growth and density
within patches. Individual internal state may have a direct influence on population genetics, especially by influencing selection through
pleiotropic effects. Dispersal influences population dynamics by affecting extrinsic loss (i.e., emigration) and gain (i.e., immigration). It also
affects population genetics: When dispersers have a successful reproduction, dispersal contributes to gene flow between populations.
Population dynamics influences population genetics, as population size regulates the effects of genetic drift and selection efficiency. Population
dynamics also has feedbacks on individual internal state, especially through density‐dependent effects and may influence the social context
(e.g., kin density) within patches. Population genetics has an influence on individual internal state through evolutionary feedbacks, which are
involved in dispersal evolution [Colour figure can be viewed at wileyonlinelibrary.com]
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their recipient patch according to their own phenotype, thus

increasing assortative mating (Jacob et al., 2017). Gene flow

between already diverged populations or species may also favour

admixture (Kuhlwilm et al., 2016) and even subsequently adaptive

introgression (Arnold & Kunte, 2017). Estimating the level and nat-

ure (e.g., random or not) of gene flow is hence of paramount

importance to understand whether populations will be able to cope

with global change, especially for low mobility species (e.g., Aitken

& Whitlock, 2013; Corlett & Westcott, 2013; Kremer et al., 2012).

1.3 | Demographic and genetic tools to estimate
dispersal

A broad range of demographic and genetic methods have been used

to quantify and study non‐effective dispersal in free‐ranging animal

populations. Among the demographic methods, telemetry and cap-

ture–recapture (CR) surveys are the ones most commonly used to

study animal movements (Hooten, Johnson, McClintock, & Morales,

2017; Hussey et al., 2015; Lebreton, Nichols, Barker, Pradel, & Spen-

delow, 2009; Lebreton & Pradel, 2002; Royle, Fuller, & Sutherland,

2018; Shafer, Northrup, Wikelski, Wittemyer, & Wolf, 2016).

Telemetry methods pose a series of technical and conceptual chal-

lenges for the study of dispersal. First, despite remarkable advances

in transmitter miniaturization, many species have body sizes too

small to carry these devices without potential deleterious effects.

Second, while telemetry methods are very efficient for tracking rou-

tine and cyclic movements related to foraging and migration (e.g.,

Bestley, Jonsen, Hindell, Harcourt, & Gales, 2015; Cumming, Henry,

& Reynolds, 2017; Doherty et al., 2017; Hoenner, Whiting, Hindell,

& McMahon, 2012; Moore et al., 2017), they are far less effective at

detecting occasional dispersal events. Individuals are often surveyed

over short time periods (rarely more than 3 years) due to limited

battery capacities, which are not long enough to detect dispersal

events, in particular for medium‐ to long‐lived species. This limitation

was recently exemplified by a study that revealed a mismatch

between patterns of gene flow (resulting from dispersal) and migra-

tory movements detected using telemetry data (Moore et al., 2017).

Finally, the relatively high cost of telemetry devices generally allows

surveying a small number of individuals (usually <30) and does not

permit to quantify population‐level dispersal rates and distances. For

these reasons, we will focus on CR methods rather than telemetry

for the remainder of this review.

In contrast to telemetry, CR methods allow: (a) examining disper-

sal in a broad range of taxa including small‐sized organisms while

accounting for non‐exhaustive observation of individuals (e.g.,

Beirinckx, Van Gossum, Lajeunesse, & Forbes, 2006; Plăiaşu, Ozgul,

Schmidt, & Băncilă, 2017; Vlasanek, Sam, & Novotny, 2013), (b) sur-

veying the individuals throughout their entire lifetime to track punc-

tual events of both natal and breeding dispersal (e.g., Balkiz et al.,

2010; Blums, Nichols, Hines, Lindberg, & Mednis, 2003; Devillard &

Bray, 2009); and surveying large samples of populations and esti-

mate population‐level dispersal and vital rates (e.g., Cayuela et al.,

2016; Lebreton, Hines, Pradel, Nichols, & Spendelow, 2003; Serrano,

Oro, Ursua, & Tella, 2005). Note that, while CR methods can be

potentially suitable to examine dispersal in passive dispersers, these

methods have been generally used in studies focusing on organisms

with an active dispersal. Thus, the demographic methods considered

in this study will therefore be more appropriate for examining dis-

persal in actively dispersing animals than in passive dispersers. Dur-

ing the last four decades, a broad range of CR models have been

developed to quantify dispersal rates (Arnason, 1972; Lebreton et al.,

2003; Schwarz, Schweigert, & Arnason, 1993) and distances (Ergon

& Gardner, 2014; Fujiwara, Anderson, Neubert, & Caswell, 2006)

and to test hypotheses about the effects of individual and

F IGURE 2 Decision tree showing the demographic (i.e., CR modelling) and genetic methods that can be used to estimate non‐effective and
effective dispersal rate and distance. The description of all these methods is provided in section How to quantify non-effective and effective
dispersal rates and distances using demographic and genetic approaches? [Colour figure can be viewed at wileyonlinelibrary.com]
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environmental factors on each step of the dispersal process (i.e.,

emigration, transience and immigration; Grosbois & Tavecchia, 2003;

Ovaskainen, 2004; Cayuela, Pradel, Joly, & Besnard, 2017; Cayuela,

Pradel, Joly, Bonnaire, & Besnard, 2018).

Simultaneously, genetic approaches dedicated to quantifying

both non‐effective and effective dispersal also received consider-

able attention (Broquet & Petit, 2009). Recent decades in particular

have seen increasing development of analytical tools to perform

demographic inferences and estimating effective dispersal using

either the allele frequency spectrum (Gutenkunst, Hernandez, Wil-

liams, & Bustamante, 2009), summary statistics relying on coales-

cent theory such as approximate Bayesian computation (Beaumont,

2010; Beaumont, Zhang, & Balding, 2002), or inferences based on

blocks of identity‐by‐descent (Browning & Browning, 2011) making

it possible to study the movement of genes between populations

with increased precision. Concomitantly, decreasing sequencing

costs make it increasingly easy to genotype or sequence large num-

bers of individuals using a range of methods from RADseq

(Andrews, Good, Miller, Luikart, & Hohenlohe, 2016) to whole gen-

ome sequencing (Ellegren, 2014; Fuentes‐Pardo & Ruzzante, 2017),

including whole genome pool sequencing data (Schlötterer, Tobler,

Kofler, & Nolte, 2014). Careful use of these next‐generation
sequencing (NGS) data can provide further insights into levels of

connectivity, even in species for which inferring genetic connectiv-

ity can be difficult due to large population size or high dispersal

rates (Gagnaire et al., 2015).

1.4 | The goals of the review

In this review, we aim to propose a unified framework allowing

demographers and population geneticists to select the most suitable

tools according to their biological questions and the characteristics of

studied populations. We first review the demographic and genetic

methods available to estimate non‐effective and effective dispersal

rates and distances in animals (Figure 2). Next, we review the methods

allowing investigation of the effects of environmental and individual

factors on the three stages of dispersal (emigration/immigration and

transience), in their non‐effective and effective dimensions (Figure 3).

Finally, we conclude this synthesis by giving a number of recommen-

dations to help the reader select accurate methods, and eventually

combine approaches, to address a set of important issues about the

dynamics and the genetics of wild animal populations.

2 | HOW TO QUANTIFY NON ‐EFFECTIVE
AND EFFECTIVE DISPERSAL RATES AND
DISTANCES USING DEMOGRAPHIC AND
GENETIC APPROACHES?

Demographic and genetic methods used to quantify effective and non‐
effective dispersal rates and distances are summarized in Figure 2.

2.1 | Estimating non‐effective dispersal rates and
distances using demographic approaches

2.1.1 | Estimating dispersal rates using multistate
models

The first CR models developed to quantify dispersal rates among

discrete sites (or patches) date from the 1970s. Arnason (1972,

1973) proposed the first multisite (or “multi‐strata” in its general

formulation) models with time‐varying recruitment and survival, in

F IGURE 3 Decision tree showing the demographic (i.e., CR modelling) and genetic methods that can be used to examine how individual
and environmental factors affect non‐effective and effective emigration/immigration and transience. The description of all these methods is
provided in section How to infer environmental and individual effects on non-effective and effective emigration and immigration? and the section
How to infer the environmental and individual effects on non-effective and effective transience? [Colour figure can be viewed at wileyonlinelibra
ry.com]
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which individuals can be captured at three distinct dates, in differ-

ent sites. This model can be viewed as a generalization of the sin-

gle‐site Cormack–Jolly–Seber model (Clobert, Lebreton, & Allaine,

1987; Cormack, 1964; Jolly, 1965; Seber, 1965), allowing individu-

als to disperse between two sites across successive capture occa-

sions. Twenty years later, Schwarz et al. (1993) proposed a

generalization of this model (called “Arnason–Schwarz model”) by

considering more than three capture occasions and a large number

of recapture sites. The Arnason–Schwarz model paved the way for

the development of multistate models (Lebreton & Pradel, 2002;

Lebreton et al., 2009; Nichols & Kendall, 1995), in which one con-

siders that individuals may move within a finite set of states that

reflect individual variables such as body size (small vs. large), body

condition (poor vs. good) or life history stages (juvenile vs. adult),

rather than simple geographic states (sites). In such models, the

transitions between states are modelled as first‐order Markovian

processes (i.e., in which the state at time t only depends on the

state at t−1). The basic parameters of the Arnason–Schwarz model

are as follows:

ϕR
t = the probability that an individual alive in site R at occasion

t−1 is still alive at occasion t (i.e., survival probability).

ψRT
t = the probability that an individual in site R at occasion t−1

disperses to site T at occasion t provided it survives (i.e., dispersal

probability).

pRt = the probability that an individual alive in site R is recaptured

at occasion t (i.e., recapture probability).

In 1993, Brownie, Hines, Nichols, Pollock, and Hestbeck (1993)

developed the first software (MSSURVIV) specifically dedicated to the

construction of multistate models. Other user‐friendly programs

(MARK, White & Burnham, 1999; White, Kendall, & Barker, 2006;

MSURGE, Choquet, Reboulet, Pradel, Gimenez, & Lebreton, 2004)

spurred a rapid and straightforward implementation of these mod-

els, resulting in an extensive use of multistate models to quantify

dispersal rates in a broad range of taxa including insects (Chaput‐
Bardy, Grégoire, Baguette, Pagano, & Secondi, 2010), other arthro-

pods (Mills, Gardner, & Oliver, 2005), birds (Cam, Oro, Pradel, &

Jimenez, 2004; Doligez et al., 2002; Dugger, Ainley, Lyver, Barton,

& Ballard, 2010), mammals (Sanderlin, Waser, Hines, & Nichols,

2012; Skvarla, Nichols, Hines, & Waser, 2004), fishes (Frank, Gime-

nez, & Baret, 2012; Haugen et al., 2007), reptiles (Dodd, Ozgul, &

Oli, 2006; Roe, Brinton, & Georges, 2009) and amphibians (Funk,

Greene, Corn, & Allendorf, 2005; Grant, Nichols, Lowe, & Fagan,

2010).

In summary, the Arnason–Schwarz model allows quantifying

dispersal rates between pairs of sites while accounting for survival

and recapture probabilities, using data collected across multiple

surveys (e.g., years) and sites. It is a suitable approach to estimate

dispersal rates (and possibly distances, see Fernández‐Chacón et

al., 2013) in species occupying discrete habitat patches or breed-

ing sites. The Arnason–Schwarz model is not used to quantify

dispersal in species occurring in relatively continuous and

homogeneous environments. Yet, one of the most important

issues with this model is that the number of parameters rapidly

increases with the number of monitored sites (or more generally

of states), which may result in problems of stability and precision

of estimates, and identifiability of parameters (Lebreton & Pradel,

2002; Lebreton et al., 2009). Indeed, for n states, the number of

transitions among states to be estimated is n (n−1) and is thus a

function of n2.

2.1.2 | Estimating dispersal rates using multievent
models

To circumvent the computational issues resulting from the exponen-

tial increase in parameter number of the Arnason–Schwarz model as

states are added, Lagrange, Pradel, Bélisle, and Gimenez (2014) pro-

posed a multievent model to estimate survival, dispersal and recap-

ture probabilities while omitting the identity of sites. In multievent

models, a distinction is made between events and states (Pradel,

2005). An event is what is observed in the field and thus coded in

the individual capture history. This observation is related to the

latent state (non‐observable) of the individuals. Yet, observations can

come with some uncertainty regarding the latent state. Multievent

models aim at modelling this uncertainty in the observation process

using hidden Markov chains. In their model, Lagrange et al. (2014)

categorized the state of an individual in a given capture occasion as

being in the same location as at t−1 or in a different location as at

t−1. The states also include information about the capture status

(captured or not) of the individual at t−1 and t. To date, this kind of

multievent model has been used to quantify dispersal rates among

numerous sites in birds (Lagrange et al., 2014, 2017) and amphibians

(Cayuela et al., 2016; Denoël, Dalleur, Langrand, Besnard, & Cayuela,

2018).

This model provides accurate estimates of dispersal rates when

the number of sites is large; it provides mean dispersal rates

between all pairs of sites, contrary to the Arnason–Schwarz model

that only provides pairwise dispersal rates. Its implementation in the

E‐SURGE program (Choquet, Rouan, & Pradel, 2009) also allows

many possible model refinements (e.g., robust‐design, trap‐depen-
dence) that have been developed for multistate models. Similar to

the Arnason–Schwarz model, the Lagrange model is dedicated to

estimating dispersal rate (and possibly distances, see Cayuela, Bon-

naire, & Besnard, 2018) in species occurring in discrete habitat

patches or breeding sites and cannot be used to investigate dispersal

in organisms occupying spatially continuous environments. Another

limitation of this model is that it assumes that site characteristics

and suitability do not vary over space and time, which appears to be

an unrealistic assumption in many natural systems.

2.1.3 | Estimating dispersal kernels using Fujiwara's
model

Dispersal kernels, the statistical distribution of dispersal distances in

a spatially structured population, have been extensively used to
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study dispersal (Nathan, Klein, Robledo‐Arnuncio, & Revilla, 2012).

They are probability functions (e.g., Gaussian, negative exponential,

logistic) that describe the distribution of post‐dispersal locations rela-

tive to the source point (Nathan et al., 2012). Fujiwara et al. (2006)

first introduced a maximum‐likelihood method to estimate dispersal

kernels from CR data. Fujiwara's model integrates three basic pro-

cesses: dispersal, survival and sampling. Individuals are allowed to

move freely in a one‐dimensional space without any boundary. Dis-

persal is modelled as a density function kd where d is the shape

(Gaussian or Laplace) of the kernel. Survival is modelled as the prob-

ability ϕt that an individual alive at time t−1 is still alive at time t

and is independent of the location. The sampling process is modelled

with a capture probability function ptðxtÞ giving the probability of

capturing an individual conditional to its location xt at time t.

Fujiwara's model was the first approach to estimate dispersal

kernels assuming: The distribution of displacements is not always

normally distributed, individuals can temporarily leave the study area

and individuals may die during the study period. As with multistate

and multievent models, Fujiwara's model allows the examination of

dispersal among discrete habitats patches or breeding sites. Contrary

to later‐developed spatially explicit CR models, this model does not

allow quantifying dispersal kernels in spatially continuous environ-

ments. To our knowledge, Fujiwara's model has not been used in

further empirical studies, which might be due to the fact that this

model has never been implemented in a user‐friendly software.

2.1.4 | Estimating dispersal kernels using spatially
explicit CR models

Spatially explicit CR models are an extension of Cormack–Jolly–Seber
CR models (Royle et al., 2018) and represent alternative approaches

to fit dispersal kernels. Spatial CR models couple a spatiotemporal

point process (Illian, Penttinen, Stoyan, & Stoyan, 2008) with a spa-

tially explicit observation model. These models allow investigators to

examine spatially explicit biological processes including density varia-

tion (Efford, 2011; Efford, Borchers, & Byrom, 2009), resource selec-

tion (Proffitt et al., 2015; Royle, Chandler, Sun, & Fuller, 2013) and

dispersal (Ergon & Gardner, 2014; Royle, Fuller, & Sutherland, 2016)

using encounter history data. Basically, these models assume that a

population, composed of N individuals, is sampled and that each

individual is associated with a spatial location that represents its

activity centre expressed in x- and y‐coordinates. The entire set of

activity centres can be thought as the realization of point processes

(Illian et al., 2008), a class of probability models for characterizing

the spatial pattern and distribution of points. The activity centres are

regarded as latent variables and are explicitly estimated along with

other parameters of interest (e.g., probabilities of recapture, survival

and dispersal) from the underlying point processes using marginal

likelihood (Borchers & Efford, 2008) or Bayesian approaches using

Markov chain Monte Carlo (Royle & Young, 2008).

Ergon and Gardner (2014) proposed a spatially explicit CR model

that allows estimation of recapture and survival probability and fit-

ting of dispersal kernels. The model integrates two basic parameters:

πijk = the capture probability of individual i in secondary session j

within a primary session k, which may depend on the latent

activity centre of the individuals and the location of traps.

ϕik = the probability that an individual i in the primary sampling

period k survives to sampling period k + 1

Dispersal is modelled as a shift in an individual's activity centre.

The dispersal process is described by individual dispersal direction

(θik) and distance (dik) such that the change in the x‐ and y‐coordi-
nates of the activity centre is given by trigonometric functions. For

dik , exponential, gamma and log‐normal distributions, with zero‐
inflated versions for each of these distributions, can be considered in

the model. The models can be fitted in the JAGS program using the

R (R Core Team 2014) package rjags (Plummer, 2003).

To summarize, spatially explicit CR models are promising new

tools to study dispersal distances. They allow fitting dispersal kernels

using a great variety of distributions and are implemented in user‐
friendly R programs. Contrary to other capture–recapture models that

estimate dispersal among discrete habitat locations, spatially explicit

CR models allow quantification of dispersal in spatially continuous

environments. They permit the use of individual detection data

recorded using a variety of sampling methods including camera traps,

acoustic sampling, non‐invasive genetic sampling or direct physical

capture.

2.2 | Estimating non‐effective dispersal rates and
distances using genetic approaches

2.2.1 | Clustering and assignment approach

Genetic clustering analysis allows delineation of population bound-

aries by assigning individuals to discrete panmictic genetic clusters

(Corander, Waldmann, & Sillanpää, 2003; Pritchard, Stephens, &

Donnelly, 2000), sometimes with the use of geographic information

(Caye, Jay, Michel, & Francois, 2017; Guillot, Estoup, Mortier, & Cos-

son, 2005; Guillot, Renaud, Ledevin, Michaux, & Claude, 2012), that

can help to identify barriers to gene flow. These methods are valid

when the species is effectively subdivided into discrete populations.

In theory, F0 migrants can be identified when individuals are well

assigned to genetically differentiated groups. Non‐effective dispersal

rate is obtained by dividing the number of F0's by the sample size

(Broquet & Petit, 2009). While theoretically straightforward, several

complications can arise (see also Broquet & Petit, 2009; Gagnaire et

al., 2015). First, one needs to identify the number of discrete clus-

ters present in the data, a task known to be difficult as statistically

inferred clusters may be different from real populations and can be

confounded by unsampled source populations (Falush, van Dorp, &

Lawson, 2016; Pritchard et al., 2000). Second, isolation‐by‐distance
(IBD) patterns are known to result in inflated signals of population

clustering as most clustering methods assign individuals to discrete

groups, assuming constant allele frequencies within each group and

fail to take into account spatial autocorrelation in allele frequencies

(Frantz, Cellina, Krier, Schley, & Burke, 2009; Meirmans, 2012; see
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Bradburd, Coop, & Ralph, 2017 for recent improvement). Finally,

with NGS data, important concerns may arise as researchers tend to

filter their data in ways that may not meet model assumption such

as independence among loci. The use of minor allele frequency

threshold filters can also introduce bias as rare variants contain

information regarding population structure (Gravel et al., 2011;

Mathieson & McVean, 2012). Other methods such as BayesAss (Wil-

son & Rannala, 2003), GeneClass2 (Piry et al., 2004), or BiMR

(Faubet & Gaggiotti, 2008), are designed to estimate recent migra-

tion rate using MCMC and genotype data. The main limitations of

these methods have already been reviewed elsewhere and include

problems related to MCMC convergence, reduced accuracy with

high numbers of populations and the need for moderate genetic dif-

ferentiation (FST ~ 0.05; Berry, Tocher, & Sarre, 2004; Paetkau,

Slade, Burden, & Estoup, 2004; Hall et al., 2009; Faubet, Waples, &

Gaggiotti, 2007; Broquet & Petit, 2009; Meirmans, 2014; Samarasin,

Shuter, Wright, & Rodd, 2017). Given these limitations, such meth-

ods are not relevant for large population sizes and highly mobile spe-

cies showing weak population structure (Gagnaire et al., 2015; Lowe

& Allendorf, 2010) and might not be appropriate for large‐scale gen-

omewide data sets. In contrast, the R package Assigner (Gosselin,

Anderson, & Ferchaud, 2016) implements the methods of Anderson,

Waples, and Kalinowski (2008) and Anderson (2010) and allows cir-

cumventing some of these limitations, such as low population differ-

entiation (e.g., FST < 0.05) while dealing with thousands of markers,

for instance, using RADseq data. However, whether assignment

results can be accurately translated to estimates of dispersal (m)

remains to be investigated in more detail.

2.2.2 | Parentage analysis and sibship
reconstruction

Parentage analysis uses the genotypes of many individuals to iden-

tify parent–offspring relationships. It can be performed using exclu-

sion methods where allelic mismatches are used to exclude

individuals as possible parents of an offspring (Jones & Ardren,

2003; Jones, Small, Paczolt, & Ratterman, 2010; Marshall, Slate,

Kruuk, & Pemberton, 1998). In most natural populations, it is impos-

sible to sample all potential parents making exclusion‐based
approaches unreliable so maximum‐likelihood or Bayesian methods

are more commonly used to perform parentage analysis (Huisman,

2017; Jones & Ardren, 2003; Jones et al., 2010). Accurate assign-

ments can be obtained from a small number of molecular markers: In

general, optimal performances will be obtained with at least 15–20
polymorphic microsatellite markers (Jones et al., 2010) or at least

50–100 SNPs (Huisman, 2017). Nevertheless, it requires extensive

sampling of all possible offspring (reviewed in Broquet & Petit, 2009;

see Kamm et al., 2009 for an example). Parentage assignments,

together with sibship reconstruction methods (reviewed in Wang &

Santure, 2009; Wang, 2004, 2012; Städele & Vigilant, 2016; Blouin,

2003), allow estimating natal dispersal distances by measuring the

geographic distance between parent and offspring spatial positions.

These methods have also been used across numerous animal species

to measure non‐effective dispersal including insects (Fountain et al.,

2018; Lepais et al., 2010), mammals (Burland, Barratt, Nichols, &

Racey, 2001; Telfer et al., 2003; Waser, Busch, McCormick,

& DeWoody, 2006), birds (Aguillon et al., 2017; Woltmann, Sherry,

& Kreiser, 2012) and fishes (Almany, Berumen, Thorrold, Planes, &

Jones, 2007; Almany et al., 2013, 2017; Jones, Planes, & Thorrold,

2005). Yet, despite their usefulness, parentage and sibship recon-

struction analyses have several limitations. Specifically, they often

require extensive sampling of offspring and potential parents to

obtain accurate estimates, which can be infeasible when population

size is large.

2.3 | Estimating effective dispersal rates and
distances using genetic approaches

2.3.1 | Estimating migration rate m

FST as a biased estimator of migration rate

Traditionally, estimates of gene flow have been obtained under the

island model introduced by Wright (1931). In this model, each popu-

lation is made of the same, constant number of individuals N and

receives and provides the same number of immigrants at a rate m

per generation. Migration rates are thus symmetric and do not

depend on geographic distance among populations (no IBD). The

model also assumes that there is neither selection, nor mutation, and

that migration–drift equilibrium is attained. Wright F‐statistics allow

measuring correlation of allele frequencies within and among such

populations. In particular, Wright (1943) FST measures the variance

of allele frequencies among populations (see review in Holsinger &

Weir, 2009 and Alcala & Rosenberg, 2017). Wright showed that, if

all conditions of the islands models are met, then, FST≈ 1
4Nmþ1 where

N is the population size and m is the migration rate. Therefore, many

researchers have used this relationship to estimate the product Nm

as follows: Nm ¼ 1
4

1
FST

� 1
� �

: However, in reality, these conditions

are rarely met. For instance, Ne/N ratios are known to be very far

from one in nature (Frankham, 1995) and what is really measured is

Nem with Ne being the effective population size. However, obtaining

accurate estimate of Ne is notoriously difficult (Charlesworth, 2009).

In addition, a population may display very low FST due to large Ne

while being demographically independent (low m) from the other

populations (Waples & Gaggiotti, 2006). The relationship between

FST and Nem is also affected by the mutation rate (μ) and applies

only when μ ≪ m. While this could be a concern when the mutation

rate is high, this should not be a problematic with SNPs data in

which the mutation rate is lower. Details of the limitation this

method have been reviewed in Whitlock and McCauley (1999) and

Marko and Hart (2011). Given the many processes unrelated to gene

flow that can result in high or low FST values, estimates of popula-

tion connectivity based on FST alone are unlikely to be meaningful.

Coalescent approaches

The development of the coalescent theory (Kingman, 1982) has

favoured the emergence of likelihood‐based methods for inference
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of population parameters. These methods can be exploited to

directly assess the effective migration rate m or the product Nem. It

is noteworthy that in coalescence, m is scaled by the mutation rate,

a parameter that is difficult to estimate (Ségurel, Wyman, & Prze-

worski, 2014) and reflects historical migration patterns over long

time scales. Therefore, interpreting m might not reflect current levels

of connectivity well. Earlier methods rely on coalescent theory and

use MCMC to explore the space of genealogy (Beerli & Felsenstein,

1999, 2001). Then, isolation with migration (IM) models were devel-

oped (Wakeley, 1996) and implemented in the software IM (Nielsen

& Wakeley, 2001) with various improvement to account for multiple

loci, multiple demes, or to solve efficiently Felsenstein's equa-

tion (Hey, 2010; Hey & Nielsen, 2004, 2007). These methods and

their limitations have been reviewed elsewhere (e.g., Strasburg &

Rieseberg, 2011). In general, they assume independence among loci,

selective neutrality, free inter‐locus recombination, no intra‐locus
recombination and migration–drift equilibrium. Violations of these

assumptions have been shown to bias estimates of gene flow (Bec-

quet & Przeworski, 2009; Strasburg & Rieseberg, 2011). False‐posi-
tive rates were found when testing for the presence of migration

using likelihood ratio tests in small data set (~5–50 loci of 2,500 bp)

and low divergence time (Cruickshank & Hahn, 2014) or small num-

ber of sample sites (Quinzin, Mayer, Elvinger, & Mardulyn, 2015).

Two other important limitations of IM model are the assumption of

a constant effective deme size and the inability to fit more complex

and realistic models, including those with secondary contacts.

Recent model development has relaxed some of the previous

assumptions using different variants of the IM model. For instance,

it is now possible to include both asymmetric migration and variable

population size (Costa & Wilkinson‐Herbots, 2017). It is also now

possible to infer complex histories using joint information from the

blockwise site frequency spectrum and linkage disequilibrium (Beer-

avolu Reddy, Hickerson, Frantz, & Lohse, 2016) or to perform exact

calculation of the joint allele frequency spectrum under an IM model

using Markov chain representation of the coalescence (Kern & Hey,

2017).

Finally, approximate Bayesian computation (ABC) can be used to

estimate the direction, symmetry and intensity of effective migration

rate (4Nem; Aeschbacher, Futschik, & Beaumont, 2013; Joseph, Hick-

erson, & Alvarado‐Serrano, 2016; Moore et al., 2017; Rougemont &

Bernatchez, 2018). ABC can be seen as a less rigorous, but very flex-

ible, framework which potentially allows relaxing many assumptions

made by the methods presented above (Beaumont et al., 2002; Csil-

léry, Blum, Gaggiotti, & François, 2010). For example, Aeschbacher et

al. (2013) used a two‐step approach for inferring migration rate in

Alpine ibex (Capra ibex). First, they estimated general population

parameters (ancestral mutation rate and other more specific parame-

ters). Second, they estimated migration between pairs of demes and

showed how the accuracy of the pairwise approach increases with

the number of parameters.

These methods mostly rely on the Kingman coalescent. Although

this coalescent has been shown to be robust to departure from its

major assumptions, it is not well suited if (a) the distribution of

number of offspring among individuals is skewed (Eldon & Wakeley,

2006), (b) there are recurrent selective sweeps (Durrett & Schweins-

berg, 2004), (c) sample sizes are larger than the effective population

size (Wakeley & Takahashi, 2003), or (d) strong positive selection

occurs (Spence, Kamm, & Song, 2016). Extensive efforts are cur-

rently being employed to develop more general classes of coalescent

models (e.g., Spence et al., 2016) that relax some major assumptions

of Kingman's coalescent. In the light of these findings and other

recent studies on the limit of demographic inferences based on the

site frequency spectrum (Baharian & Gravel, 2018; Lapierre, Lambert,

& Achaz, 2017; Myers, Fefferman, & Patterson, 2008; Terhorst &

Song, 2015), it is worth keeping in mind that low complexity models

should be investigated first before testing more complex models

with many parameters. With regard to these assumptions, more gen-

eral classes of coalescent models appear very promising (Tellier &

Lemaire 2014). In particular the spatial Λ‐lambda‐Fleming‐Viot model

(Barton, Etheridge, & Veber, 2010; Barton, Etheridge, & Véber,

2013; Etheridge, 2008; Etheridge & Véber, 2012), as pertaining to

the multiple merger coalescent model (the Λ‐Coalescent here), allows

for the coalescence of more than two (multiple) lineages at a given

generation. This model separately estimates dispersal distance (σ2)

and the local population density (D) and is not restricted to the study

of the neighbourhood size 4πDσ2 as most methods are (see section

on IBD below). This coalescent model was applied to a broad range

of taxa including FLU virus (Guindon, Guo, & Welch, 2016), plants

(Joseph et al., 2016) and humans (Ringbauer, Coop, & Barton, 2017)

using blocks of identity‐by‐descent (see below).

2.3.2 | Estimating effective dispersal distance

IBD approaches to infer effective dispersal distance

A widespread pattern observed in nature is the close genetic related-

ness of individuals that are physically close to one another, and

therefore, genetically distinct from geographically distant individuals

(Vekemans & Hardy, 2004). This spatial autocorrelation generates a

pattern of IBD in which individuals’ relatedness decreases with

increasing geographic distance due to spatially limited dispersal (Mal-

écot, 1948; Wright, 1943). Classically, IBD is tested by regressing lin-

earized pairwise genetic distances (see link-based methods section

for details), computed, for instance, as FST
1�FST

, against geographic dis-

tances (log‐transformed in a two‐dimensional habitat or untrans-

formed in a one‐dimensional habitat; Rousset, 1997, 2000). In a two‐
dimensional habitat, the slope of the regression is b ¼ 1

4Dπσ2, with

4πDσ2 describing the “neighbourhood” size, where D represents the

density of reproducing individuals and σ is the mean axial parent–off-
spring dispersal distance (Rousset, 1997, 2000; Sumner, Rousset,

Estoup, & Moritz, 2001). When a direct estimate of population den-

sity is available, a non‐trivial issue in structured metapopulations

(Vekemans & Hardy, 2004), it becomes possible to infer σ. This rela-

tionship holds when dispersal is homogeneous and spatially limited,

when population density is homogeneous and when migration–drift
equilibrium is reached (Rousset, 1997). Rousset (2000) then

extended this approach at the individual level. Similar methods were
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BOX 2 Quantifying dispersal and distance using pedigrees: the Florida Scrub‐Jay case study

Recently, Aguillon et al. (2017) took advantage of an extensive data set for a single population of Florida Scrub‐Jay including natal dispersal

distance, sex, pedigree data and genotype data of almost all individuals in the population at more than 15,000 SNPs on autosomes and z‐
chromosomes. The geographic scale of the study was limited to ~10 km, providing an ideal setting to study the effects of recent dispersal

at demographic equilibrium. Aguillon et al. (2017) first demonstrated limited and sex‐biased dispersal of the Florida Scrub‐Jay where half of

the males only dispersed 488 m away from their parent's territories (territories are shown in Figure B) and half of the females dispersed less

than 1,150 m (Figure A). Second, the authors estimated relatedness of individuals using identity‐by‐descent measures and clearly demon-

strated sex‐biased declines in identity‐by‐descent with distance, resulting in isolation by distance (Figure C). They then computed the dis-

tance (δ) where identity‐by‐descent diminishes halfway from its maximum value and found again greater isolation by distance (IBD) in males

(δ = 620 m) than in females (δ = 903 m; Figure C). Thanks to the detailed pedigree information available, the authors then decomposed the

effect of family relationship on IBD. For instance, in male–male comparisons, the highest IBD signal was apparently driven by short geo-

graphic distances between individuals from the highest pedigree classes, namely, parent–offspring, full‐siblings, grandparent–grandchild, half‐
siblings and aunt/uncle‐nice or nephew (figures 2 and 3 in Aguillon et al., 2017). They also sequentially removed pedigree relationship classes

and plotted the new IBD curves. While pattern of IBD softly decreases as classes were removed, the signal remained statistically significant

even after removing all pairs with r ≥ 0.0625, indicating that if the strength of IBD was indeed driven by highly related individuals, the signal

is also generated by dispersal events occurring at longer time scales. Interestingly, the authors showed similar IBD patterns in Z‐linked mark-

ers. They then used their estimates of dispersal, population density and immigration rate to reconstruct sex‐specific IBD patterns.

Although ideal for understanding the local process that generate dispersal, such studies will be hard to reproduce for other species

given the amount of data needed and strict conditions required to observe local dispersal of individuals. Studies of this kind over larger

spatial scales are nevertheless needed for conservation purposes and to gain insight into levels of connectivity between populations. For

instance, the studied population of Florida Scrub‐Jay is undergoing inbreeding depression due to decreased immigration rates (Aguillon

et al., 2017; Chen, Cosgrove, Bowman, Fitzpatrick, & Clark, 2016).

Figure adapted from Aguillon et al. (2017).
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also developed using kinship or autocorrelation statistics (Hardy &

Vekemans, 1999; Loiselle, Sork, Nason, & Graham, 1995; Rousset,

2000; Vekemans & Hardy, 2004). While this method was used suc-

cessfully in some of these studies, it relies on demographic equilib-

rium, which is often unrealistic (Leblois, Estoup, & Rousset, 2003;

Leblois, Rousset, & Estoup, 2004) and can be confounded by ances-

tral structure (Meirmans, 2012). Therefore, the link between these

estimates of dispersal and demographic connectivity is far from

straightforward (Lowe & Allendorf, 2010). Importantly, inferences

from IBD will perform best when sampling populations along regular

grids, or regular networks, and when distances among samples are in

accordance with the species dispersal ability, that is, in the order of

σ (Leblois et al., 2003; Rousset, 2000; Vekemans & Hardy, 2004;

Watts et al., 2007).

In addition to the direct inference of the mean axial squared

parent–offspring dispersal rate, directional and non‐directional Man-

tel correlograms (Borcard & Legendre, 2012; Oden & Sokal, 1986)

may also be considered to assess the distance threshold at which

the Mantel correlation becomes null, that is, the distance threshold

below which allelic frequencies are positively autocorrelated and

thus pairwise measures of genetic differentiation are smaller than

expected by chance. It is a common mistake to interpret this dis-

tance threshold as an absolute estimate of the scale of gene flow

(or as an upper estimate for effective dispersal distances) as it is

primarily dependent on the considered sampling scheme, and more

precisely, on the lag distance between sampling sites (Vekemans &

Hardy, 2004). Nevertheless, Mantel correlograms may provide valu-

able information as to the relative spatial extent of gene flow

across distinct genetic data sets (e.g., temporal or spatial replicates

and age cohorts), provided they were gathered following a similar

sampling scheme, and notably similar lag distances between sample

sites. For instance, in a genetic study of the Florida Scrub‐Jay (Aph-

elocoma coerulescens), Aguillon et al. (2017) found significant Mantel

correlations at more distance classes in male–male pairs than in

female–female pairs, a pattern consistent with the observed female‐
biased dispersal behaviour in this species. In Box 2, we detailed this

study case, which combines both demographic and genetic data to

refine our understanding of how restricted dispersal generates iso-

lation by distance over very short distance. Although it was applied

at a local scale, such approach could be deployed at larger spatial

scales.

Cline analysis to measure effective dispersal distance

Cline theory provides an accurate framework for inferring dispersal

distances (Barton, 1983; Lenormand, Guillemaud, Bourguet, & Ray-

mond, 1998; Rieux, Lenormand, Carlier, de Lapeyre de Bellaire, &

Ravigné, 2013; Sotka & Palumbi, 2006). At demographic equilib-

rium, if clines coincide and are more or less symmetric, then

selection can be ignored and it is possible to infer dispersal σ

such as σ ¼ ω
ffiffiffiffiffiffiffiffi
4Rr

p
where ω is the cline width, R is the level of

linkage disequilibrium and r is the recombination rate among loci

(Barton, 1983). In most cases, however, selection coefficient must

be estimated, which is not a trivial issue and different formulas

will apply (but see Gagnaire et al., 2015). Numerous studies have

described geographic clines of allelic frequencies, either falling

along environmental gradients or along habitat boundaries (i.e.,

local adaptation clines; Sotka & Palumbi, 2006; Hare, Guenther, &

Fagan, 2005; Galindo et al., 2010; Fabian et al., 2012; Bergland,

Tobler, González, Schmidt, & Petrov, 2016; Van Wyngaarden et al.,

2017). These clines are often formed in secondary contact zones

(Szymura & Barton, 1986). Recently, Gagnaire et al. (2015) sug-

gested taking advantage of large genomewide data sets to identify

selected and hitchhiker loci. They proposed using cline theory,

either in the form of local adaptation clines, hitchhiking cline,

hybrid clines or introgression tails, to infer patterns of connectivity

in marine populations characterized by large effective population

sizes and strong larval dispersal. In these populations, shallow

levels of genetic differentiation make most traditional methods

relying on neutral model inefficient. Importantly, identification of

relevant outlier loci can be confounded by demographic factors

(e.g., bottleneck, expansion, admixture), variation in local recombi-

nation rate, shared ancestral polymorphism and polygenic selection

making their identification a non‐trivial issue (Gagnaire et al.,

2015; Hoban et al., 2016; Vitti, Grossman, & Sabeti, 2013). Never-

theless, the method advocated by Gagnaire et al. (2015) is highly

promising and could be extended to species with sufficiently large

effective population sizes and where natural selection is expected

to be strong.

Using identity‐by‐descent blocks to infer recent demography

Another promising approach with the increased availability of

whole genome sequencing data or other very dense polymorphism

data (e.g., RADseq or high‐density SNP chip data) is the analysis

of the length of haplotype blocks (Gravel, 2012; Pool & Nielsen,

2009). Individuals immigrating into a new (genetically differenti-

ated) population will transmit chromosomes that are broken down

by recombination, with block size being gradually reduced with

each generation of hybridization. Therefore, these long admixture

tracts can provide information regarding recent migration rates

(Liang & Nielsen, 2014). In the same vein, identity‐by‐descent seg-

ments, which are blocks of haplotypes inherited from a common

ancestor by pairs of individuals (reviewed in Browning & Brown-

ing, 2012), have been used to infer recent migration rates (Pala-

mara & Pe'er, 2013). Again, these segments are delimited by

recombination history and the longer the segment, the more

recent the migration event. In particular, Harris and Nielsen (2013)

and Palamara and Pe'er (2013) developed theoretical expectations

of the distribution of identity‐by‐descent under different demo-

graphic scenarios in the presence of migration. More recently,

Ringbauer et al. (2017) derived a promising approach relying on

diffusion approximation to infer patterns of isolation by distance

of long identity‐by‐descent blocks. The model allows identifying

population effective density (D) and dispersal rate σ2 separately,

thus overcoming the limitation of classical FST‐based measures of

isolation by distance. This scheme can account for changes in

population density and the geographic spread of ancestry
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(assuming uniform diffusion). While all these methods rely on a

good reference genome and high‐quality genotype data for iden-

tity‐by‐descent segment inferences, they are promising in that they

allow inference of very recent demographic events relevant to

analyse contemporary genetic connectivity.

3 | HOW TO INFER ENVIRONMENTAL AND
INDIVIDUAL EFFECTS ON NON ‐EFFECTIVE
AND EFFECTIVE EMIGRATION AND
IMMIGRATION?

Demographic and genetic methods used to study the influence

of individual and environmental factors on effective and non‐effec-
tive emigration and immigration are presented in Figure 3 and

Table 1.

3.1 | Examining non‐effective emigration and
immigration using demographic approaches

3.1.1 | Disentangling emigration and immigration
using multistate and multievent models

In the classical version of the Arnason–Schwarz model, the dispersal

parameter ψRT
t includes both emigration from site R and immigration

to site T. This formulation remained a limiting factor for dispersal

studies for a long time as variables influencing emigration and immi-

gration may differ or can differently affect both processes. For this

reason, Grosbois and Tavecchia (2003) introduced a new parameteri-

zation of the Arnason–Schwarz model where ψRT
t is decomposed into

two distinct parameters:

πRt = the probability that an individual that was in site R at cap-

ture occasion t−1 emigrates at occasion t provided it survives.

μRTt = the probability that an individual that was in site R at cap-

ture occasion t−1 immigrates to site T at capture occasion t pro-

vided it survives and emigrates.

This parameterization was subsequently used in many studies

of birds (Fernández‐Chacón et al., 2013; Lok, Overdijk, Tinbergen,

& Piersma, 2011; Péron, Crochet, Doherty, & Lebreton, 2010;

Péron, Lebreton, & Crochet, 2010) and mammals (Devillard &

Bray, 2009).

In the context of multievent models, Tournier, Besnard, Tour-

nier, and Cayuela (2017) recently modified the structure of

Lagrange models to separately estimate emigration and immigra-

tion probabilities. These extensions in the framework of both mul-

tievents and multistate models were important methodological

developments allowing the study of the different steps of the dis-

persal process.

TABLE 1 Demographic and genetic methods to investigate environmental and individual variables on the three stages of non‐effective
dispersal

Step Variable Approach Method

Emigration/
immigration

Individual

state

Demography Temporally fixed individual variables can be introduced as external covariates in multistate and

multievent models. Temporally varying individual variables can be coded as states in multievent

models; they are therefore introduced as discrete variables in the models.

Genetic Parentage analysis and assignment method may permit to link emigration/immigration and individual

variables.

Environmental/
social

Demography Multistate models allow to compare groups of sites (e.g., small vs. large) by constraining model

parameters.

Spatiotemporally variable site characteristics or variation in the social context can be modelled

using multievent models. Environmental and social information is coded as states in the model.

Genetic Parentage analysis and assignment methods may permit to link emigration/immigration and

environmental and social information. Individual genotyping (and relatedness measurement) of

dispersers and residents can provide information about inbreeding avoidance, kin competition and

individual fitness.

Transience Individual

state

Demography Spatially explicit CR models and Ovaskainen's diffusion models can incorporate individual covariates

(fixed or time‐specific).

Genetic Parentage analysis can be used to assess relationships between parent–offspring dispersal distance

and individual variables. Assignment methods may also be used to examine correlations between

dispersal distances and individual factors.

Environmental Demography Multistate model estimates can be used in ad hoc analyses to examine the effect of Euclidean and

environmental distances on between‐site dispersal probability.

Multievent models can be used to examine the effect of physical barriers in the landscape on

immigration probability.

Ovaskainen's diffusion models can be used to investigate landscape composition and configuration

on movement path.

Genetic Parentage analysis, assignment methods and link‐based methods can be used to assess relationships

between dispersal distance and landscape characteristics.
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BOX 3 Investigating dispersal syndromes using multievent CR models: the great crested newt case study

In a recent study, Denoël et al. (2018) investigated how the interplay between individual and environmental factors may lead to alterna-

tive dispersal strategies that, in turn, lead to the coexistence of contrasting site fidelity phenotypes. They addressed this issue in a pond‐
breeding amphibian, the great crested newt (Triturus cristatus, Figure C). They used a modified version of the Lagrange multievent CR

model that includes heterogeneity mixtures. By doing so, they were able to assess if alternative breeding site fidelity phenotypes (i.e.,

lowly site faithful (LSF) vs. highly site faithful (HSF) individuals) could coexist within the studied spatially structured populations. In a first

analysis, they showed that the probability of staying in the same breeding site between each time step depended on individual site fide-

lity status at t−1. The probability of remaining in the same breeding site was higher in individuals that were already site faithful at t−1.

In a second analysis, they highlighted that two distinct site fidelity strategies occurred in the population and that individuals belonging to

each strategy differed in terms of phenotypic and life history traits. At both intra‐ and inter‐annual scales, the site fidelity probability was

always 1 in the HSF phenotype, while this probability fluctuated greatly over time in the LSF phenotype at both intra‐annual (Figure A)

and inter‐annual levels (Figure B). In both HSF and LSF phenotypes, survival increased with body size. Yet, the HSF phenotype was char-

acterized by a lower survival probability than the LSF phenotype (odd ratio HSF/LSF: 0.63; 95% CI: 0.43–0.94). The study also demon-

strated that the probability of being assigned to the LSF phenotype depended on both intrinsic and extrinsic factors (i.e., sex, body size

and pond surface). Males had a higher probability of belonging to the LSF phenotype than females (odd ratio: 2.62; 95% CI: 1.55–4.42),
and, in both sexes, this probability increased with body size (Figure D and E). Furthermore, the probability of being in the LSF phenotype

slightly increased with the mean surface of the pond occupied by the individuals during the three‐year study period (Figure F and G).

The study of Denoël et al. (2018) illustrates the usefulness of multievent CR models to investigate dispersal syndromes in natural popula-

tions.

Figure adapted from Denoël et al. (2018). Figure A and B: 95% CI are shown in error bars. Figure D‐G: mean estimates and 95% CI

are shown in full and dashed lines, respectively.
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3.1.2 | Detecting inter‐individual variation and
dispersal strategies within populations

Multistate and multievent models examine temporal autocorrelation

of the dispersal behaviour (memory models) as state–state transitions

modelled as first‐order Markovian processes. These models assess

the repeatability of the individual's dispersal behaviour, a central

component in the framework of animal personalities (Bell, Hankison,

& Laskowski, 2009; Stamps & Groothuis, 2010), by testing if the

probability of dispersal at time t depends on the individual dispersal

state at t−1 (see, e.g., Denoël et al., 2018 and Péron, Lebreton et

al., 2010). Moreover, individual heterogeneity of unknown source in

dispersal behaviour can be detected using capture–recapture mix-

ture models with discrete classes of individuals (Pledger, Pollock, &

Norris, 2003). Using such models, Denoël et al. (2018) highlighted a

dispersal syndrome implicating a covariation pattern between dis-

persal tendency, survival and body size (Box 3). Individual hetero-

geneity of dispersal probability can also be accommodated using

random effects in multistate and multievent models (Gimenez &

Choquet, 2010).

Multistate models have been used extensively to test the

effects of individual variation on dispersal probabilities. In differ-

ent studies, authors have extended the parameters’ state‐space
of the Arnason–Schwarz model to test the effects of age on dis-

persal probabilities (e.g., Blums, Nichols, Hines et al., 2003; Bre-

ton, Diamond, & Kress, 2006; Lebreton et al., 2003). For

instance, Blums, Nichols, Hines et al. (2003) proposed a multi-

state model to quantify natal (i.e., pre‐breeding) dispersal, breed-

ing dispersal and age‐dependent survival. Age classes were coded

as states in the model. At the same time, Lebreton et al. (2003)

introduced a class of age‐dependent multistate CR models for

the simultaneous estimation of natal dispersal, breeding dispersal

and age‐dependent recruitment. The effects of individual variation

on dispersal have also been tested by including time‐constant
individual covariates (e.g., body condition, body mass and tarsus

length; Barbraud, Johnson, & Bertault, 2003) and group effects

(e.g., sex; Tavecchia, Pradel, Lebreton, Biddau, & Mingozzi, 2002).

Other studies used the parameterization proposed by Grosbois

and Tavecchia (2003) to examine the effect of individual age on

emigration probabilities (Lok et al., 2011; Péron, Lebreton et al.,

2010), again by coding age classes as states in the model. More-

over, a recent study used multievent models to deal with high

number of sites (the parameterization of Tournier et al., 2017) to

examine age‐specific emigration rates by considering three age

classes (two pre‐breeding and one breeding states) in the model

(Cayuela, Bonnaire et al., 2018).

3.1.3 | Detecting the influence of environmental
factors on emigration and immigration

The effect of patch characteristics (e.g., past reproductive success,

colony size, habitat management, predation risk) on dispersal

probability has also been extensively studied using Arnason–Sch-
warz model (Blums, Nichols, Lindberg, Hines, & Mednis, 2003;

Blums, Nichols, Hines et al., 2003; Cam et al., 2004; Dodd et al.,

2006; Grant et al., 2010; Péron, Crochet et al., 2010; Spendelow et

al., 2016). Other studies used the parameterization proposed by

Grosbois and Tavecchia (2003) to examine the environmental

effects on emigration probability (Fernández‐Chacón et al., 2013;

Péron, Lebreton et al., 2010; Péron, Crochet et al., 2010). In both

cases, site‐specific variation is coded as states in the models (e.g.,

small vs. large colonies). Moreover, time‐specific factors uniformly

affecting all studied sites (e.g., weather condition, sea level) are

incorporated as continuous covariates in the models. Note that the

existing multistate models do not allow examining the effects of

spatiotemporally variable factors (e.g., variation in conspecific or

heterospecific densities).

Recently, Cayuela et al. (2017) circumvented this issue by

extending the parameters’ state‐space of Lagrange's model, which

assumes that all sites have spatially and temporally homogenous

proprieties. First, Cayuela et al. (2017) proposed a generalized ver-

sion of the Lagrange model that allows survival and movement

probabilities to differ according to temporally fixed site characteris-

tics. The states of the model include those of Lagrange model (cap-

tured or not at t−1 and t; move or stay between t−1 and t), and

additional states correspond to site proprieties (A and B in the case

of a two‐habitat model). In subsequent work, Cayuela, Pradel et al.

(2018) generalized their two‐habitat models by considering situa-

tions where the state of sites is not constant over time. They devel-

oped two new multievent CR models that allow the estimation of

emigration, immigration, survival and recapture probabilities when a

site may appear or disappear over time or when the characteristics

of sites change over space and time.

3.2 | Examining non‐effective emigration and
immigration using genetic approaches

Genetic approaches that identify both the origin and the destina-

tion of dispersing individuals, such as parentage analyses or assign-

ment methods, can be used to infer the influence of individual

phenotypes and local environmental characteristics on relative

emigration and immigration rates. Parentage analyses, in particular,

allow direct measurement of dispersal. For instance, parentage anal-

ysis and sibship reconstruction provide information regarding sex‐
biased dispersal (e.g., Aguillon et al., 2017; Biek et al., 2006; Prug-

nolle & de Meeus, 2002; van Dijk, Covas, Doutrelant, Spottis-

woode, & Hatchwell, 2015; van Hooft, Keet, Brebner, & Bastos,

2018), the fitness of the dispersers (van Hooft et al., 2018),

inbreeding avoidance (Nelson‐Flower, Hockey, O'Ryan, & Ridley,

2012) and kin competition (Perrin & Mazalov, 2000). Regarding the

inference of sex‐biased dispersal, when phenotypic or fitness data

are measured for all individuals for which dispersal data have been

collected, it is then possible to draw correlation between emigra-

tion/immigration and these traits.
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3.3 | Examining effective emigration and
immigration using genetic approaches

3.3.1 | Detecting the influence of environmental
factors on emigration and immigration

Emigration and immigration rates are directly impacted by the way

dispersal individuals perceive and interpret environmental charac-

teristics of local patches in the light of their own phenotypic and

genotypic characteristics (Edelaar & Bolnick, 2012). For instance,

Saint‐Pé et al. (2018) showed that, in a brown trout (Salmo trutta

trutta) population from a small French watershed stocked for dec-

ades, both the emigration propensity and the dispersal destination

of individuals were influenced by their individual level of genetic

admixture with the domestic strain. Nevertheless, when contempo-

rary individual dispersal events cannot be identified, genetic

approaches relying on the spatial distribution of allelic frequencies

(e.g., measures of genetic differentiation) must carefully dissociate

the influence of between‐site landscape processes (geographic dis-

tance and/or landscape resistance) impacting the transience phase

from the influence of at‐site landscape processes (local carrying

capacity, patch quality, etc.) impacting the emigration and immigra-

tion phases. To that aim, Murphy, Dezzani, Pilliod, and Storfer

(2010) introduced gravity models (Fotheringham & O'Kelly, 1989)

in which gene flow (modelled along a spatial network as 1 – ge-

netic distance) is explained by both at‐site data (characteristics of

network nodes in terms of production/attraction of propagules)

and among‐sites data (characteristics of network edges in terms of

geographic distance and landscape resistance). Applied to a spa-

tially structured population of Columbia spotted frogs (Rana

luteiventris), they identified a negative effect of predation (locally

decreasing immigration) and a positive effect of site productivity

(locally increasing emigration) on gene flow along with a more

classical negative effect of geographic distance, affecting the tran-

sience phase. Contrary to gravity models, other analytical proce-

dures using location‐specific landscape data (landscape genetics

node‐based methods; see Balkenhol, Waits, & Dezzani, 2009 for a

review) do not explicitly consider the possible influence of

between‐patch processes on the distribution of neutral genetic

variation (apart from spatial autocorrelation) and are thus only

meaningful when studying adaptive genetic variation (Wagner &

Fortin, 2013, 2015).

3.3.2 | Emigration, immigration and isolation by
environment

One may also consider the use of metrics of isolation by environ-

ment (IBE) that can be compared to pairwise measures of genetic

differentiation in addition to classical metrics of IBD, IBB (isolation

by barriers) and/or IBR (isolation by resistance) using various

linked‐based statistical tools (e.g., McRae, 2006; Bradburd, Ralph,

& Coop, 2013; see next section for a review of other available

statistical tools). IBE is defined as a pattern in which genetic

differentiation increases with environmental differences, indepen-

dent of geographic distance (Wang & Bradburd, 2014). IBE may

arise from local (natural or sexual) selection against immigrants,

but also from non‐random dispersal resulting from individual habi-

tat choice or local adaptation (Bolnick & Otto, 2013). For instance,

Wang, Glor, and Losos (2013) showed that IBE explained 17.9%

of variance in genetic divergence in 17 species of Anolis lizards

from Greater Antillean islands, whereas 36.3% of variance was

explained by classical IBD. In a meta‐analysis by Sexton, Hangart-

ner, and Hoffmann (2014), 74.3% of surveyed studies showed sig-

nificant IBE.

4 | HOW TO INFER THE ENVIRONMENTAL
AND INDIVIDUAL EFFECTS ON NON ‐
EFFECTIVE AND EFFECTIVE TRANSIENCE?

Demographic and genetic methods used to study the influence of

individual and environmental factors on effective and non‐effective
transience are summarized in Figure 3 and Table 1.

4.1 | Examining non‐effective transience using
demographic approaches

4.1.1 | Studying transience using multistate and
multievent models

Transience cannot directly be studied using multistate and multi-

event CR models because the pathway used by the individual

within the landscape matrix is ignored; these models allow esti-

mating transitions between discrete sites. Yet, several studies

attempted to examine transience in an indirect way, by modelling

immigration probabilities according to the Euclidean distances

between sites or the presence of physical barriers in the land-

scape matrix. For instance, Péron, Lebreton et al. (2010) as well as

Fernández‐Chacón et al. (2013) investigated how Euclidean dis-

tances among sites affect dispersal probabilities. In both studies, a

post hoc analysis retrieved immigration estimates from the

selected model and assessed the effect of between‐sites distance

on immigration using a generalized least squares approach. More-

over, in a recent study, Cayuela, Bonnaire et al. (2018) examined

the effect of physical barriers (i.e., different kinds of roads)

between sites on immigration probability by extending the param-

eters’ state‐space of the multievent model proposed by Tournier

et al. (2017). In this model, individuals may immigrate into sites

given they crossed a physical barrier or not. To assess the signifi-

cance of the physical barrier effect on transience, Cayuela, Bon-

naire et al. (2018) compared the conditional immigration

probability extracted from the best‐supported models to the prob-

ability of reaching a site given individuals crossed an obstacle or

not using a random dispersal hypothesis (i.e., the mean probability

of arriving in a patch calculated from all the individuals occurring

in all patches of the study area).
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4.1.2 | Ovaskainen diffusion model

Ovaskainen (2004) developed a model that quantified movement

behaviour of an individual in a heterogeneous landscape. In this

model, the landscape is classified into a finite number of habitat

types that differ from each other in terms of the individual's move-

ment behaviour. Three components are considered in the model:

movement within a habitat type, behaviour at edges between habitat

types and mortality. Movement within a habitat type is assumed to

follow a random walk or a correlated random walk, which can be

approximated by diffusion (Patlak, 1953). When deriving the diffu-

sion approximation, the distributions specifying the random walk

model aggregate into a single variable D, which is called the diffusion

coefficient. Ovaskainen (2004) considered the possibility that the dif-

fusion coefficient for habitat i may vary with time t, resulting in the

diffusion coefficient DiðtÞ. As an individual's response to boundaries

between habitat types may be a major determinant of dispersal pat-

terns (Crone & Schultz, 2008; Schtickzelle & Baguette, 2003; Schultz

& Crone, 2001), the Ovaskainen model also accounts for edge‐
mediated behaviour. It assumes that an individual may bias its direc-

tion towards either of the habitat types when it is close to a bound-

ary. In the diffusion approximation, such bias leads to a discontinuity

in the probability density for the individual's location (Ovaskainen &

Cornell, 2003). In the model, this bias is quantified by habitat‐specific
multiplier ki. Moreover, the model also accounts for individual mor-

tality by assuming that an individual located in habitat type i has a

mortality probability μiðtÞ at time t.

Ovaskainen et al. (2008) extended the maximum‐likelihood esti-

mation scheme of their previous model to a more flexible Bayesian

framework, using a MCMC method. They implemented the estima-

tion schemes in two software programs: Mapper, a GIS‐based inter-

face for the triangulation of the layers representing the landscape

and the set of mark–recapture sites; and Disperse, a program includ-

ing the adaptive MCMC methods for parameter estimation. Overall,

Ovaskainen's model is of great interest because it separates the mor-

tality occurring during the transience phase of the dispersal process

and the mortality resulting from other activities (e.g., breeding; Ovas-

kainen et al., 2008). The model can also be used to examine the

effect of landscape composition and configuration on the transience

phase/process. Despite its flexibility and robustness, Ovaskainen's

model has been rarely used in empirical studies (Arellano, León‐
Cortés, & Ovaskainen, 2008; Ovaskainen, 2008; Ovaskainen et al.,

2008; Wang et al., 2011), likely because it remains computationally

intensive.

4.2 | Examining non‐effective transience using
genetic approaches

The study of transience based on indirect estimates of dispersal is

rarely performed although landscape genetic approaches, as detailed

below, could in principle be applied to estimates of dispersal

obtained from assignments tests or parentage analysis (Castilla et al.,

2017; Kamm, Gugerli, Rotach, Edwards, & Holderegger, 2010). Other

approaches to measure connectivity rely on the combination of

parentage analysis and dispersal kernels, and therefore estimate the

distribution of dispersal distance. Such approaches, initially devel-

oped in plant seed dispersal (Nathan & Muller‐Landau, 2000), are
now used for animals with complex life cycles and dispersal patterns

(e.g., Almany et al., 2017; Buston, Jones, Planes, & Thorrold, 2012;

D'Aloia, Bogdanowicz, Majoris, Harrison, & Buston, 2013; Ismail et

al., 2017). In general, these methods require very extensive sampling

(e.g., Almany et al., 2017). Although these models do not directly

infer the effect of landscape configuration on transience, future

development could integrate GIS data accounting for the landscape

configuration when fitting the kernel distribution and modelling dis-

persal. At least, information on the fragmentation of the landscape

or connectivity levels in the sea (measured, e.g., by current forces

and directionality) could be correlated to the estimated distribution

kernels.

4.3 | Examining effective transience using genetic
approaches

Both boundary‐based and link‐based landscape (see below) genetic

procedures can infer the influence of between‐patch processes (e.g.,

fragmentation, land cover conversion and climate change) on effec-

tive transience phase of dispersal. In most cases, boundary‐based
and link‐based landscape genetic methods rely on the assumptions

that both genetic drift and gene flow are spatially random: All

patches (when relevant) are assumed to be of similar size and quality

(Prunier, Dubut, Chikhi, & Blanchet, 2017) and all genotypes are con-

sidered equally likely to immigrate, disperse and settle (Edelaar &

Bolnick, 2012).

4.3.1 | Boundary‐based methods

Boundary‐based methods include edge detection techniques (e.g.,

Cercueil, François, & Manel, 2007; House & Hahn, 2017; Jombart,

Devillard, & Balloux, 2010; Jombart, Devillard, Dufour, & Pontier,

2008; Monmonier, 1973; Piry et al., 2016), and Bayesian clustering

algorithms (reviewed in François & Durand, 2010) aim to delineate

discrete or admixed populations in space (Wagner & Fortin, 2013).

They allow identifying spatial genetic boundaries that are visually

(e.g., Frantz et al., 2012; Prunier et al., 2014) or statistically (e.g.,

Balkenhol et al., 2014; Jay et al., 2012; Murphy, Evans, Cushman, &

Storfer, 2008) compared to landscape patterns. Although sensitive to

sampling design (e.g., Puechmaille, 2016) or IBD (e.g., Safner, Miller,

McRae, Fortin, & Manel, 2011), boundary‐based methods are an

effective way of exploring the influence of landscape configuration

on genetic structure, and ultimately, on spatial patterns of gene flow

among patches.

4.3.2 | Link‐based methods

Link‐based landscape genetic methods address the question of how

likely gene flow is between two patches considering the

3992 | CAYUELA ET AL.



spatiotemporal heterogeneity of the environment (Wagner & Fortin,

2013). They are based on the statistical comparison between pair-

wise measures of inter‐individual or inter‐population genetic differ-

entiation and pairwise landscape distances quantifying the

connectivity among sampling locations.

Pairwise landscape distances, considered as predictors in subse-

quent statistical approaches, quantify the connectivity among

sampling locations under the non‐exclusive assumptions of IBD (e.g.,

geographic of riparian distances), isolation by barriers (e.g., presence

or number of barriers) and more generally isolation by resistance

(IBR). Many procedures have been proposed to compute IBR pair-

wise landscape distances. Most of them rely on the initial design of

one or several resistance surfaces, representing the extent to which

the conditions at each grid cell are expected to constrain movement

BOX 4 Identifying the spatial scales at which processes underlying genetic structures should be investigated: the Fenno‐Scandina-
vian brown bear case study

The genetic structure of a population may be shaped by multi‐level processes (e.g., sex‐biased dispersal, social behaviours, territoriality)

each acting at a given spatial scale. In a recent study, Schregel et al. (2018) proposed a simple analytical framework based on semivari-

ogram analysis to identify the possible multiple spatial scales at which processes underlying the genetic structure are to be considered. A

semivariogram depicts the spatial autocorrelation of measures at sample points (Figure A). The distance at which the semivariance flat-

tens out is the range. Measures at sample locations separated by distances smaller than the range are spatially autocorrelated, whereas

measures at locations separated by distances larger than the range are not. The semivariance at the range is called the total sill, while

the semivariance at distance 0 is called the nugget and is due to background noise in the data (e.g., measurement errors). The partial sill

is defined as the total sill minus the nugget. The relative partial sill (partial sill/total sill) provides the strength of the spatial autocorrela-

tion in the data. The first step in the framework by Schregel et al. consists in getting the residuals from an IBD model, depicting the rela-

tionship between genetic and spatial distances. Then, a series of non‐overlapping distance classes are defined (e.g., from 0 to the

maximal recorded distance). For each distance class, the corresponding subset of residuals is used in a semivariogram analysis and the

corresponding relative partial sill value, providing the local strength of the spatial autocorrelation in residuals at that distance class, is

recorded. When values of relative partial sill are plotted against distance classes, local peaks indicate the spatial scales at which the pop-

ulation structure exhibits maximal strength. Applying this framework to an empirical brown bear (Ursus arctos) data set consisting in

1530 geo‐referenced genotypes from Norway and Sweden, Schregel et al. identified two main peaks at different spatial scales, suggest-

ing that two independent biological processes may shape the Scandinavian brown bear's population genetic structure (Figure B) : (a) a

local process, to be analysed at the scale of the home range (<35 km) and affecting genetic patterns on a short‐term time, (b) a large‐
scale process associated with sex‐biased gene flow over multiple generations and responsible for population subdivision at scales

>98 km. From these insights, they could then perform an informed scale‐explicit analysis of the genetic structure in brown bears, finding

that one of the four genetic clusters identified in central Scandinavia by STRUCTURE was actually caused by IBD.

Figures adapted from Schregel et al. (2018). Figure A: Main characteristics of a semivariogram. Figure B: Strength of IBD‐based popu-

lation structure over geographic scales from 1 to 350 km, for each sex separately, and for combined data.
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or gene flow (Spear, Balkenhol, Fortin, Mcrae, & Scribner, 2010;

Spear, Cushman, & McRae, 2015; but see Emaresi, Pellet, Dubey,

Hirzel, & Fumagalli, 2011). The best approach to parameterize resis-

tance surfaces is still debated (Milanesi et al., 2016; Zeller, McGari-

gal, & Whiteley, 2012): Parameterization may rely on expert opinion

and/or on empirical evidence ensuing from experimentation (e.g.,

Stevens, Verkenne, Vandewoestijne, Wesselingh, & Baguette, 2006),

movement pathway data (e.g., Reding, Cushman, Gosselink, & Clark,

2013) or species distribution models (e.g., Shafer et al., 2012; Wang,

Yang, Bridgman, & Lin, 2008). The parameterization procedure may

also incorporate an optimization step, notably allowing the calibra-

tion of non‐linear responses of resistance values to original map pixel

values (e.g., Peterman, Connette, Semlitsch, & Eggert, 2014; Wasser-

man, Cushman, Schwartz, & Wallin, 2010). Three major modelling

frameworks can then be used to convert resistance surfaces (or orig-

inal landscape maps) into pairwise measures of landscape connectiv-

ity: least‐cost path modelling, circuit‐based modelling and transect‐
based approaches. Least‐cost path modelling (Adriaensen et al.,

2003) assumes that organisms have enough knowledge of the whole

landscape to follow the ideal path, whereas circuit‐based modelling

(McRae, 2006) incorporates many possible paths into the final mea-

sure of resistance, but both rely on resistance surfaces and thus

incorporate the influence of landscape configuration on transience

trajectories to provide pairwise matrices of landscape distances

(Spear et al., 2015). Transect‐based approaches use buffers of vari-

ous widths and drawn along straight‐lines (e.g., Emaresi et al., 2011)

or least‐cost paths (e.g., Van Strien, Keller, & Holderegger, 2012) to

calculate the abundance of each original landscape feature. Although

both approaches are primarily designed to quantify landscape com-

position between pairwise locations, the advantage of least‐cost
transects over straight‐line transects is that they also allow taking

landscape configuration into consideration (Van Strien et al., 2012).

Pairwise genetic distances (e.g., FST, Da), considered as the quan-

tity of interest in subsequent statistical approaches, may be com-

puted at the population or at the individual level from neutral

genetic data (Balkenhol & Fortin, 2015). Pairwise measures of

genetic differentiation are usually computed from allele frequencies

at the population‐level and from genotypes at the individual level. In

both cases, numerous metrics may be considered (Waits & Storfer,

2015). Additionally, individual‐based genetic distances may also be

calculated from transformed genetic data, such as individual ancestry

values computed from clustering algorithms (e.g., Balkenhol et al.,

2014; Murphy et al., 2008). Using populations as the sampling unit

is a classical approach in landscape genetics, although it involves a

challenging a priori decision about the putative delineation of demes,

because the real spatial distribution of individuals may not be strictly

discrete (Manel, Schwartz, Luikart, & Taberlet, 2003). Furthermore

and as previously stated, the commonly used F‐statistics are primar-

ily measures of the balance between genetic drift and gene flow

(not to mention mutation). Thus, they may only be considered as

proxies for gene flow under the strict assumption of equal effective

population sizes, demographic equilibrium (an assumption rarely met

in postglacially established populations) or after having ruled out the

possible influence of spatial heterogeneity on effective population

sizes (Prunier, Dubut et al., 2017). Alternatively, using individuals as

the sampling unit is adequate in the case of continuously distributed

organisms and, in the case of patchily distributed organisms, it may

provide more flexibility in the design of the sampling scheme (extent

of the study area, lag distance between samples, etc.; Anderson et

al., 2010) without specific loss of power for detecting isolation pat-

terns (Luximon, Petit, & Broquet, 2014; Prunier et al., 2013).

4.3.3 | Link‐based statistical models

Numerous linked‐based statistical models have been proposed to

relate pairwise genetic distances to pairwise landscape distances,

while dealing with the inherent non‐independence of pairwise data.

They notably include linked‐based linear models, such as simple and

partial Mantel tests (Legendre, 2000), multiple regressions on dis-

tance matrices (Smouse, Long, & Sokal, 1986) and maximum‐likeli-
hood population‐effects models (MLPE; Clarke, Rothery, & Raybould,

2002; Selkoe et al., 2010; Van Strien et al., 2012), as well as linked‐
based non‐linear models based on Bayesian approaches (e.g., Brad-

burd et al., 2013; Faubet & Gaggiotti, 2008). Note that the validity

of the Mantel statistical test has been questioned and that it should

be used with caution (see Diniz‐Filho et al., 2013 for a review).

Because these statistical approaches are in essence correlative, these

linked‐based linear models may be deeply flawed by multicollinearity

among predictors, a major issue in landscape genetics (Prunier,

Colyn, Legendre, Nimon, & Flamand, 2015; Wagner & Fortin, 2015).

Multicollinearity, and notably statistical suppression situations (Paul-

hus, Robins, Trzesniewski, & Tracy, 2004), may obscure the interpre-

tation of multivariate regressions through artefactual increases in

regression coefficients and possible sign reversal (Prunier et al.,

2015). The removal of redundant predictors, the creation of orthogo-

nal synthetic predictors and/or the use of regression commonality

analyses are different strategies that may be deployed to correct for

multicollinearity (Dormann et al., 2013; Prunier, Colyn, Legendre, &

Flamand, 2017; Prunier, Dubut, Loot, Tudesque, & Blanchet, 2018).

Linked‐based causal models (e.g., Cushman, McKelvey, Hayden, &

Schwartz, 2006; Fourtune et al., 2018; Wang et al., 2013) are a

promising alternative to the previously described models as they

allow inferring causal relationships among the genetic response and

landscape predictors beyond simple correlations, although they may

also be sensitive to collinearity. Finally, most linked‐based statistical

models may be subject to model selection procedures based on the

comparison of model fit parameters (e.g., Keller, Holderegger, & van

Strien, 2013) or Akaike information criterion (Burnham & Anderson,

2002; but see Prunier et al., 2015; Franckowiak et al., 2017).

It is also crucial to consider the temporal and spatial scales of

the ecological processes under study when performing linked‐based
statistical analyses, as it has been shown that the drivers of ecologi-

cal processes may each act at unique scales in space and time

(Anderson et al., 2010; Wiens, 1989). For instance, most statistical

analyses may fail to detect significant relationships between genetic

and landscape data when the rate of landscape change is faster than
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can be resolved by common molecular markers (Anderson et al.,

2010). A solution may consist in confronting genetic data with both

historical and contemporary landscapes (e.g., Pavlacky, Goldizen,

Prentis, Nicholls, & Lowe, 2009). Computing genetic distances from

individual genotypes rather than from population‐based allelic fre-

quencies may also be worth considering, as metrics based on allelic

frequencies may suffer from a loss of resolution due to the averag-

ing of genetic information over individuals (Landguth et al., 2010;

Prunier et al., 2013). Additionally, one may couple these approaches

with genetic simulations to calculate the theoretical temporal lag in

the expected genetic response to landscape change, given the data

at hand (e.g., Prunier et al., 2014). Similarly, most statistical analyses

may fail to detect significant relationships between genetic and land-

scape data when the grain size, the spatial extent of the study area

or the lag distance between sampling points do not match the spatial

scale of the considered ecological process (Anderson et al., 2010).

For instance, restricting landscape genetic analysis to smaller scales

(0–3 km) and neighbouring populations as defined by a population

network provided the highest model fit in a landscape genetic study

of the wetland grasshopper Stethophyma grossum (Keller et al.,

2013). Similarly, Schregel et al. (2018) developed a simple statistical

framework based on variogram analysis allowing the identification of

the multiple spatial scales at which various biological processes have

the highest influence on patterns of genetic structure (Box 4).

5 | COMPLEMENTARITY OF
DEMOGRAPHIC AND GENETIC
APPROACHES TO STUDY DISPERSAL

5.1 | Estimating non‐effective dispersal rates and
distances using demographic and genetic methods

Demographic and genetic methods can be used to estimate non‐
effective dispersal rates and distances, but they differ in terms of

information gathered, sampling effort and technical constraints.

Demographic surveys provide time‐specific (i.e., monthly, yearly) dis-

persal distances and rates, while genetic approaches (i.e., assignment

methods, sibship reconstruction and parentage analyses) provide a

snapshot in time of dispersal estimates. In this context, demographic

data are therefore more informative than genetic data by providing

insights about temporal variation of non‐effective dispersal esti-

mates. Yet, demographic approaches involve important technical

constraints. First, the sampling effort dedicated to collect demo-

graphic data is often heavy, requiring successive capture sessions

during which a significant part of the population is surveyed. Hence,

demographic surveys are usually avoided in species displaying very

large population sizes, for example, millions of individuals as in many

invertebrates and marine fishes. Demographic methods are also usu-

ally poorly suited to study dispersal in species having large dispersal

F IGURE 4 Decision tree for selecting demographic or genetic methods to study non‐effective dispersal rates and distances according to
characteristics (i.e., population size, dispersal distance and dispersal rate) of the spatially structured populations. Overall, demographic methods
are unsuitable to estimate non‐effective dispersal when the population size is large and the dispersal distance is long due to technical and
financial constraints. In these situations, genetic methods can be used to estimate non‐effective dispersal rates and distances except when
dispersal rates are high. High dispersal rates result in low genetic variation between patches (or demes), which decreases the inference
accuracy of assignment analyses, parentage approaches and sibship reconstruction. Our decision tree also highlights the situations (high
dispersal rates, long dispersal distance and large population size) where both demographic and genetic approaches are usually unsuitable to
estimate non‐effective dispersal [Colour figure can be viewed at wileyonlinelibrary.com]
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abilities. Surveying many individuals over large areas is often infeasi-

ble, leading to an underestimation of the frequency of long‐distance
dispersal events (Reid, Thiel, Palsbøll, & Peery, 2016; Watts et al.,

2007). Their use is also limited by our ability to mark individuals,

especially in the absence of natural individual marking (e.g., apose-

matic coloration) and when a small body size does not allow the use

of pit‐tags. By contrast, assignment and parentage analyses effi-

ciently detect non‐effective dispersal with a reduced sampling effort

(i.e., one sampling event per patch or deme) directed to a smaller

subset of the population. These approaches are therefore suitable to

estimate non‐effective dispersal in large populations that cannot be

surveyed using demographic approaches. They are also very useful

when individuals cannot be surveyed using visual or internal marking,

or when the survey is based on both direct and indirect (e.g., faeces)

observations. Yet, these methods also have their own limitations.

Particularly, the inferential accuracy of assignment and parentage

analyses declines when genetic variation between patches decreases

(Anderson et al., 2010), which precludes any dispersal assessment in

spatially structured populations with high dispersal between patches

(e.g., patchy populations).

To summarize, we recommend investigators choose demographic

and genetic methods depending on a priori knowledge about the

population system (high or low expected dispersal, population size),

the sampling effort that can be allocated (1 year or multiple years)

and the technical constraints induced by individual marking and sur-

veying. We propose a decision tree (Figure 4) to help in the selec-

tion of the methods that are suitable to estimate non‐effective
dispersal according to the characteristics of the spatially structured

populations. Moreover, we recommend the use of both demographic

and genetic approaches when feasible. Their combination can be

used to cross‐validate dispersal estimates. It also allows investigating

the dispersal process at different spatial and temporal scales: Demo-

graphic approaches permit the examination of multi‐annual patterns
of short‐ and medium‐distance dispersal, while genetic methods

detect long‐distance dispersal events through short‐term studies.

5.2 | Estimating effective dispersal rates and
distances using genetic methods

The use of genetic data to estimate dispersal rate should be guided

by the question being tackled, namely, does the study aim to charac-

terize direct dispersal? Is the question focused on recent dispersal

(over a few generations) or the long‐term patterns of migration rate

(m) among differentiated populations? Indirect methods that rely on

a population genetic models often reflect an average of demographic

parameters over long‐term historical periods. For instance, data from

the site frequency spectrum SFS (e.g., single SNP) provide informa-

tion about migration and changes in population size over tens to

thousands of generations (Gutenkunst et al., 2009). This is true for

summaries of the SFS, such as FST or associated statistics. Similarly,

coalescent simulations, regardless of the kind of data (SNPs,

microsatellite) or the use of diffusion to compute the SFS (Guten-

kunst et al., 2009; Kimura, 1964), will provide information on long‐

term historical demography Alternatively, long blocks of identity‐by‐
descent can provide information about very recent demographic

processes (Browning & Browning, 2012), and it is now becoming

possible to infer migration rate or dispersal parameters and the

beginning of migration from these data (Baharian et al., 2016;

Gravel, 2012; Harris & Nielsen, 2013; Palamara & Pe'er, 2013;

Ringbauer et al., 2017). From an ecological perspective, inferring

patterns of recent dispersal can be relevant to draw inference about

population connectivity and such methods might be of high rele-

vance in the near future. Accurate estimates of dispersal and very

recent effective population size obtained from these methods might

serve as priors for the calibration of various models in subsequent

demographic studies of dispersal in organisms where prior data are

unavailable. For now, while these methods appear very promising,

they are still restricted to a few species and have only been applied

to human data (see in particular Baharian et al., 2016 and Ringbauer

et al., 2017 for dispersal rates and Palamara and Pe'er (2013) for

recent migration rates). They rely on heavy population haplotypic

data with many individuals sampled and require a genetic map to

determine blocks of identity‐by‐descent. However, as pointed out by

Ringbauer et al. (2017), the promising results of such methods to

infer dispersal and population density should justify further

developments, even in non‐model species. Similarly, these blocks of

identity‐by‐descent could be used to infer relatedness that can then

be directly exploited to study dispersal patterns.

5.3 | Combining demographic and genetic methods
to compare effective and non‐effective dispersal
rates and distances

The level and nature of correspondence between non‐effective dis-

persal estimated from CR data and effective dispersal from genetic

estimates has long been debated (Koenig, Van Vuren, & Hooge,

1996; Watts et al., 2007; Lowe & Allendorf, 2010; Yu, Nason, Ge, &

Zeng, 2010; Wang & Shaffer, 2017). Theoretically, effective dispersal

distances and rates are expected to be equal or less than non‐effec-
tive dispersal rates and distances (Broquet & Petit, 2009; Slatkin,

1987). Empirical studies reported that effective dispersal exceeded

non‐effective dispersal (Fedy, Martin, Ritland, & Young, 2008; Slat-

kin, 1987; Watts et al., 2007; Yu et al., 2010), while others found

the opposite (De Meester, Gómez, Okamura, & Schwenk, 2002;

Favre, Balloux, Goudet, & Perrin, 1997; Lachish, Miller, Storfer, Gold-

izen, & Jones, 2011) or congruent patterns (Funk et al., 2005; Van-

dewoestijne & Baguette, 2004).

Different explanations have been proposed to explain these dis-

crepancies. First, they may result from sampling design misconcep-

tions. They can be due to temporal mismatch between demographic

and molecular estimates. CR studies based on temporally restricted

survey may lead to incorrect inferences when dispersal rates broadly

vary in time (e.g., due to meteorological fluctuation). Moreover,

molecular approaches strongly differ from one another in terms of

lag time for detection of the genetic effects of landscape change

(Landguth et al., 2010; Murphy et al., 2008). In particular, individual‐
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based methods achieve an equivalent effect size roughly 10 times

faster than FST (Landguth et al., 2010). Accordingly, incongruences

between demographic and genetic estimates of dispersal may result

from a lag time between contemporary dispersal estimates from CR

data and historical gene flow (for an illustrative example, see

Howeth, McGaugh, & Hendrickson, 2008). Second, CR surveys with

spatially limited sampling effort can also entail mismatches between

both types of dispersal estimates. Non‐exhaustively sampling of all

the patches occupied by a population usually leads to biased demo-

graphic inferences. When individuals immigrate into unsurveyed

patches, dispersers become virtually dead, as apparent survival and

permanent emigration are always confounded in the CR framework

(Lebreton et al., 2009). This leads to underestimating both survival

and dispersal rates. Moreover, spatially restricted CR surveys often

do not allow detection of rare long‐distance dispersal events (Reid et

al., 2016; Watts et al., 2007). These methodological biases may

result in effective dispersal rates and distances exceeding non‐effec-
tive dispersal ones, a phenomenon called “Slatkin's Paradox” (Slatkin,

1987; Yu et al., 2010).

Incongruent patterns between effective and non‐effective disper-

sal may also result from the low accuracy of the statistical methods

used. Concerning genetic approaches, it is important to keep in

mind, as explained above, that FST and other genetic divergence

metrics cannot be considered as direct estimates of effective disper-

sal (Marko & Hart, 2011; Whitlock & McCauley, 1999). Gene flow

and genetic drift interact as opposing forces, the former decreasing

and the latter increasing genetic variability among populations

(Hutchison & Templeton, 1999; Slatkin, 1985). Hence, mismatches

between demographic and genetic estimates of dispersal could, in

part, be due to the contribution of genetic drift to genetic differenti-

ation, especially when the spatial extent of the genetic studies

exceeds the maximal dispersal distance of surveyed species. In par-

ticular, Broquet and Petit (2009) suggested that genetic estimates of

dispersal at scales larger than the species dispersal ability should not

be interpreted at face value. At such large scales, mutation and

selection are also likely to act as confounding factors and popula-

tions at opposite ends of the sampling distribution may not be at

demographic equilibrium. Taking into account these factors is most

important with dense genomewide data comprising hundreds of

thousands of markers where different processes unrelated to gene

flow can generate patterns of differentiation. Concerning CR meth-

ods, many studies that have compared non‐effective and effective

dispersal provided naïve demographic rates of dispersal without tak-

ing into account imperfect detection of individuals (but see Callens

et al., 2011; Reid et al., 2016). Hence, one can legitimately ask

whether the differences (or congruence) between demographic and

genetic estimates of dispersal found by these studies could result

from statistical artefacts.

Beyond methodological artefacts, mismatches between non‐
effective and effective dispersal estimates may result from their

respective biological meaning. As previously stated, demographic

approaches focus on dispersal events that are followed, or not, by

an effective reproduction. By contrast, genetic approaches used to

analyse population structuring and gene flow quantify effective dis-

persal resulting from dispersal events necessarily followed by a suc-

cessful reproduction. Accordingly, discrepancies between non‐
effective and effective dispersal may result from dispersal costs

(Bonte et al., 2012; Clobert et al., 2009). Various forms of dispersal

cost exist including energetic costs, resulting from the movement

itself during the transience phase or the development of special dis-

persal organs and tissues (e.g., muscles and wings) necessary to initi-

ate dispersal (e.g., Zera & Denno, 1997). Dispersal may also trigger

time costs associated with searching for a new suitable patch in

which to settle (Hinsley, 2000) and risk costs related to mortality

risks (e.g., due to increased predation or settlement in unsuitable

habitat) and accumulated damages or physiological changes (Souls-

bury, Baker, Iossa, & Harris, 2008; Srygley & Ellington, 1999). More-

over, opportunity costs can also occur due to loss of familiarity with

the environment, the loss of benefits from familial nepotism or the

loss of the social rank after settling into a new social context (Dick-

inson, Euaparadorn, Greenwald, Mitra, & Shizuka, 2009; Hansson,

Bensch, & Hasselquist, 2004). All these costs, immediate or delayed,

may lead to negative effects on survival and reproductive outputs,

potentially resulting in a loss of lifetime reproductive success in dis-

persers (Bonte et al., 2012) and therefore mismatches between non‐
effective and effective dispersal estimates.

To summarize, combining well‐designed and well‐executed
demographic and genetic studies allows for accurate compar-

isons of non‐effective and effective dispersal rates and dis-

tances. Such integrative approaches permit investigation of

dispersal costs in wild populations, especially when the repro-

ductive success of dispersers and residents cannot be directly

observed and/or are not precisely estimated using parentage

and sibship analyses.

5.4 | Combining demographic and genetic methods
to study effective and non‐effective emigration and
immigration

Demographic methods and several genetic approaches (e.g., assign-

ment and parentage analyses) allow studying fine‐scale relationships

between non‐effective emigration/immigration and individual (i.e.,

phenotype‐dependent dispersal) and environmental (condition‐
dependent dispersal) factors (Table 1). Demographic surveys usually

collect precise phenotypic information during an individual's lifetime.

The demographic models presented above (i.e., multistate and

multievent models) permit in‐depth analysis of dispersal syndromes,

by quantifying the covariation between individual dispersal probabili-

ties (or distances), phenotypic traits (morphology, physiology or

behaviour) and life history traits (survival and fecundity). Moreover,

parentage analyses and sibship reconstruction methods provide valu-

able inferences about genealogical relationships, reproductive out-

puts and fitness in wild populations. Combining both approaches

could be a suitable way to examine the influence of kin competition

and kin selection on dispersal and the contribution of dispersal in

the evolution of sociality (Platt & Bever, 2009). It would also allow
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the examination of the role of dispersal in the evolution of inbreed-

ing avoidance strategies by associating emigration and immigration

decisions with the social context within the patches of departure

and arrival.

Despite their great interest to model asymmetric gene flow,

methods quantifying effective immigration (i.e., gravity models and

other approaches dedicated to examining IBE) remain rarely used,

perhaps due to their apparent complexity. Two distinct mecha-

nisms may generate IBE: First, natural selection against immigrants

may lead to a decrease of disperser's fitness when their genotype

is ill‐adapted to the environmental conditions prevailing in the

patch of arrival (Hendry, 2004; Nosil, Vines, & Funk, 2005). Alter-

natively, the concept of habitat matching choice and more gener-

ally of context‐ and condition‐dependent dispersal assumes that

individuals do not disperse randomly but rather base their emigra-

tion/immigration decisions according to their capacity to use the

environment (Edelaar et al., 2008; Jacob et al., 2017). One of the

main limits of IBE approaches is that they do not tease apart the

relative contribution of the two mechanisms in directed gene flow.

In this context, using demographic approaches could help deter-

mine whether non‐effective immigration is followed by an erosion

of fitness components (i.e., survival, reproductive success) or

whether emigration/immigration decisions are based on environ-

mental factors (i.e., similitudes of the characteristics of the patch

of arrival and departure).

5.5 | Combining demographic and genetic methods
to study non‐effective and effective transience

To date, few demographic studies have analysed the effects of land-

scape composition and configuration on non‐effective transience

(Arellano et al., 2008; Cayuela, Bonnaire et al., 2018; Ovaskainen,

2004; Ovaskainen et al., 2008). This is mainly due to the scarcity of

CR data collected in large geographic areas including a large number

of patches. This is also potentially caused by the complexity of mod-

elling systems, for example, Ovaskainen’ diffusion model (Ovaskai-

nen, 2004) being computationally intensive. As well, few studies

have analysed the landscape effects on non‐effective transience

using genetic approaches except that of Kamm et al. (2010) already

mentioned above. Recently, Norman et al. (2017) developed a

method that incorporates landscape information to perform spatial

interpolation of relatedness. Many studies of connectivity patterns

use parentage analysis or dispersal kernels (e.g., Almany et al., 2017;

Buston et al., 2012; D'Aloia et al., 2013; Ismail et al., 2017), but

these studies would be improved by the incorporation of landscape

information.

Landscape genetic methods provide a suitable framework to

study the effect of landscape composition and configuration on

effective transience. They may be applied at relatively large spatial

scales, which allow analysing landscape effects on transience in spe-

cies with long dispersal distances (for which the use of demographic

methods is technically complicated). They do not require an exhaus-

tive sample of the individuals of a population, which allows studying

landscape effects on transience in species displaying large population

sizes (which is hardly possible with demographic, assignment and

parentage analyses). However, they also display several limitations.

First, they do not allow investigating the influence of phenotypic

variation on transience (except for fixed traits, such as sex). Most of

landscape genetic studies are temporally restrictive (i.e., single tem-

poral point studies) due to financial constraints, while population

genetic structuring may vary over time because of demographic or

environmental causes (but see, e.g., McCairns & Bernatchez, 2008).

Moreover, although several methods allow taking into account some

spatial heterogeneity in genetic drift (e.g., Prunier, Dubut et al.,

2017), it remains a difficult challenge to disentangle the relative con-

tribution of other processes, especially if the landscape features lim-

iting dispersal also constrain population sizes. On this specific point,

combining demographic and landscape genetic approaches seems

appropriate, as CR models usually provide robust census population

size estimates (Nichols, 1992; Pollock, Nichols, Brownie, & Hines,

1990). Although census population size and effective population size

are two very different metrics and their ratio is typically far from

one (Frankham, 1995; Hedrick, 2005), a thorough estimation of cen-

sus population size can be helpful to understand the factor influenc-

ing the variance in the ratio of effective population size to census

size. Combining demographic and genetic approaches could also alle-

viate the problem of friction map parameterization that is often

based on expert opinion. Demographic models could be used to

examine the effects of landscape surface on non‐effective dispersal,

which could therefore inform landscape geneticists about how each

surface is resistant to organisms’ movement.

6 | CONCLUSION

In this review, we proposed a unified framework allowing ecologists

to select the most accurate tools to use with respect to their biologi-

cal questions and population characteristics. We believe that an

appropriate use of demographic and genetic methods, as well as

their combination, allows investigators to address central issues in

the field of ecology. Our review highlights that different demo-

graphic and genetic approaches can be used depending on the type

of dispersal to infer (i.e., non‐effective vs. effective), the age of tar-

geted dispersal flow (i.e., historic vs. recent) and the characteristics

of the populations (i.e., population size, intensity and extent of dis-

persal). Nevertheless, the integration of demographic and genetic

methods remains hampered by the fact that the specialized knowl-

edge required to apply these methods currently resides in two fields

that have limited interactions. One potential solution would be the

development of integrated analysis platforms to estimate both non‐
effective and effective dispersal rates and distance for the same spa-

tially structured population. Such approaches would also account for

population dynamics (i.e., survival, natality, census population size) in

the gene flow inferences and landscape genetic analyses. To date,

long‐term capture–recapture surveys including multiple monitored

sites are available to conduct such analyses on a broad range of
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animal taxa. We believe that integrated approaches would open new

avenues in the analyses of dispersal pattern and gene diffusion in

wild populations.
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