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Environments characterized by scarce and variable food supply, termed “harsh environments,” have been hypothesized to favor cog-
nitive abilities that aid an animal in finding food, remembering where it is located, or predicting its availability. Most studies of the 
“harsh environment” hypothesis have found that scatter hoarders from harsher environments have better spatial memory abilities, but 
few studies have looked at this hypothesis in nonscatter hoarders. Here, we present the first comparison of performance on a serial 
reversal learning task in a nonscatter hoarder from 2 elevations that differ in harshness. Serial reversal learning tasks measure a suite 
of cognitive abilities that are believed to allow an animal to adjust its foraging behavior to match changes in the availability of food 
over time. Therefore, performance on this task is predicted to increase with elevation. There was no significant difference between 
the high and low elevation great tits in initial reversal learning accuracy. While both high and low elevation birds were able to improve 
their reversal learning accuracy, they did not differ in their rate of improvement over reversals. However, we found that lower elevation 
birds had higher accuracy across all reversals. Contrary to the “harsh environment” hypothesis, our findings suggest that birds from 
the less harsh environment at low elevation performed more accurately on the reversal learning task. Overall, our results suggest that 
the study of the relationship between harshness and cognition in nonhoarders would benefit from taking into account other environ-
mental factors, and trade-offs with other cognitive abilities.

Key words:  altitude, cognitive ecology, intraspecific variation, operant learning, Parus major, winter resident.

Environments characterized by low food abundance and a vari-
able food supply, termed “harsh environments,” could favor cog-
nitive abilities that help individuals cope with these challenges by 
enhancing their ability to find food, remember where it is located, 
or predict its availability (Milton 1981; Sol et al. 2005; Dukas 2009; 
Pravosudov and Roth 2013; Kozlovsky et  al. 2017). This “harsh 
environment” hypothesis has been tested along latitudinal and ele-
vation gradients, as increases in latitude and elevation can correlate 
to more snow cover, lower temperatures, greater seasonality, and 
shorter day length, which lead to greater variability in the availabil-
ity of  food and higher metabolic costs (Roth and Pravosudov 2009; 
reviewed in Boyle et  al. 2016) but see Körner, 2007). Over these 
2 gradients, the “harsh environment” hypothesis has been studied 
using scatter-hoarding birds, or birds that store food in multiple 

locations, as these stored caches allow them to circumvent resource 
variability (Croston et al. 2015). This scatter-hoarding behavior has 
been shown to require spatial memory to remember and retrieve 
previous caches (Krebs 1990; reviewed in Sherry 1998). Empirical 
support for the “harsh environment” hypothesis in scatter-hoarders 
include positive links between elevation or latitude and the size and 
density of  the neurological structures linked to memory (elevation: 
Freas et al. 2013; latitude: Freas et al. 2013; Roth et al. 2013) and 
behavioral measures of  spatial learning and memory (reviewed in 
Pravosudov et  al. 2015). Although a positive correlation between 
residual brain size, as a proxy for general cognitive ability, and 
resource variability has been found in a large-scale comparative 
study (Sayol et  al. 2016), few studies have examined the “harsh 
environment” hypothesis in nonscatter hoarders.

Compared to the amount of  knowledge that has accumulated 
over the past decades on the cognitive ecology of  avian scatter-
hoarders, little is known about the cognitive solutions that may be 
employed by nonhoarders to survive harsh environments. However, Address correspondence to E. Hermer. E-mail: eherm041@uottawa.ca.
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models predict that if  the environment contains information that 
can be used to acquire food efficiently or predict its availability, 
associative learning, or the ability to learn about the environment, 
would be advantageous (Mery and Burns 2010; reviewed in Dunlap 
and Stephens 2016). In support of  this, Kotrschal and Taborsky 
(2010) found that a cichlid fish (Simochromis pleurospilus) that experi-
enced a change in food abundance during development performed 
more accurately on an associative learning task than fish from a 
control treatment These findings suggest that environmental vari-
ability may activate an increase in associative learning ability, point-
ing to its potential usefulness in a changing environment.

In natural environments, the value of  temporally and spatially 
variable resources can change multiple times, and thus may not only 
require animals to acquire learned associations, but also to track 
the value of  multiple options and behave accordingly. The ability 
to collect and utilize information to flexibly adjust one’s associations 
can be measured via reversal learning tasks (Shettleworth 2010). In 
a reversal learning task, an animal is required to learn to associate 
a stimulus with a response (e.g., associate a red well with food, and 
a blue well with no food) and once the animal has learned this asso-
ciation, the originally unrewarded stimulus is now rewarded and 
the rewarded stimulus becomes unrewarded (e.g., associate a blue 
well with food, and a red well with no food). Several reversals can 
also be used, such that animals have to adjust their choices repeat-
edly (i.e., serial reversal learning; Shettleworth 2010). Performance 
on reversal learning tasks is thought to measure the suite of  abilities 
an animal would use, for example, to change its foraging behav-
ior to match a change in food availability and therefore it can be 
predicted to covary with environmental harshness (Tebbich and 
Teschke 2014; Janmaat et  al. 2016). To our knowledge, the only 
study that examined the relationship between “harsh environ-
ments” and reversal learning in nonscatter hoarders is Tebbich and 
Teschke’s (2014) study on woodpecker finches (Cactospiza pallida). 
A single reversal was used and returned evidence that supports the 
“harsh environment” hypothesis, with woodpecker finches from the 
food-scarce, more variable desert site performing the reversal faster 
than those from the more stable cloud forest site.

Performance in reversal learning tasks can be measured in one 
or several reversals, but also as the rate of  change, or improve-
ment of  performance across reversals (Bond et  al. 2007; Bebus 
et al. 2016; Liu et al. 2016; reviewed in Izquierdo et al. 2017). The 
improvement of  performance across reversals is believed to mea-
sure an animal’s ability to learn a rule to allow them to more effi-
ciently track resource value (e.g., win-stay/lose shift; Liu et al. 2016) 
or accumulate past information and better estimate a prior prob-
ability that reversals will occur (Reveiwed in Izquierdo et al. 2017). 
This ability could allow animals to increase the rate at which they 
can track recurrent changes in their environment (e.g., Strang and 
Sherry 2014; Liu et  al. 2016; Chow et  al. 2017), and could thus 
be advantageous in highly-changing environments. However, it has 
never been examined in the context of  the “harsh environment” 
hypothesis.

Here, we present the first test of  the “harsh environment” 
hypothesis using a serial reversal learning task. We studied great tits 
(Parus major) from high and low elevation sites along the Pyrénées 
mountain range. Great tits are nonscatter hoarding passerines that 
forage for patchily-distributed seeds and invertebrates during the 
winter (Gosler 1993). They are also able to complete associative 
learning, initial and serial reversal learning tasks (Amy et al. 2012; 
Titulaer et  al. 2012; Morand-Ferron et  al. 2015; Cauchoix et  al. 
2017). We predict great tits from higher elevations will have higher 

accuracy in an initial and serial reversal learning task, and will 
improve faster over reversals, than great tits from lower elevations.

METHODS

Study sites

Study sites were located near Moulis, France, along the north side 
of  the Pyrénées. High (800–900 m; Galey: 42.93644′′ N 0.91702′′ 
E, Cap Sour: 42.93203′′ N 1.12322′′ E) and low (400–500 m; 
Aubert: 42.96427′′ N 1.10302′′ E, Ledar: 42.98306′′ N 1.11492′′ 
E, Moulis: 42.96551′′ N, 1.08791′′ E, Lab: 42.95741′′ N, 1.08698′′ 
E) elevation sites covered an elevation range similar to that in other 
studies of  harsh environments (e.g., Croston et  al. 2017). In the 
Pyrénées, this results in a temperature decrease of  2  °C (personal 
communication, López-Moreno and Nogués-Bravo 2005; Bruendl 
2017), a shorter growing period (Ninot et al. 2017), and increased 
snow accumulation (López-Moreno and Nogués-Bravo 2005). Our 
high elevation sites were also characterized by increased weekly 
snow cover compared with our low elevation sites (Supplementary 
Material S1), which is expected to equate to lower food availability 
and increased variability in food availability (Boyle et al. 2016).

Capture and housing

First capture took place between 15 February 2016 and 1 March 
2016 (Winter) when 21 high and 25 low elevation birds were 
captured. From 7 October 2016 to 22 November 2016 (Fall), 
an additional 8 high and 12 low elevation birds were captured 
(Supplementary Material S2). Great tits were captured using mist 
nets, and marked with a CRBPO (Centre de Recherches sur la 
Biologie des Populations d’Oiseaux) metal band and colored RFID 
band (passive integrated transponder, IB Technologies, UK). We 
used plumage to sex and age the birds (Svensson 1992). We placed 
the birds in cloth bags and transported them to outdoor aviaries 
in Moulis where they were housed in groups of  2–5 per aviary 
(1 × 4 × 3 m), depending on how many birds were caught. Each 
aviary contained foliage for cover in the nontesting area, 4 roosting 
boxes, and 2 horizontal perches between the foliage and the testing 
area for perching.

Operant devices

Operant devices consisted of  a single portable operant box 
(Morand-Ferron et al. 2015; Cauchoix et al. 2017), which was com-
posed of  a waterproof  Perspex casing that contained: a motor-acti-
vated feeding tray, a printed circuit board (PCB, “Darwin board” 
designed by Stickman Technologies Inc., UK), and 2 transparent 
pecking keys lit up by white light-emitting diode (LEDs). The front 
panel of  the operant box was freely available to any individual and 
displayed 2 pecking keys that each contained 2 live mealworms. 
The great tits were unable to consume the mealworms which 
instead acted as bait to elicit pecking actions. A feeding hole 1.5 cm 
under the pecking keys provided a single dried mealworm reward 
on the feeding tray when the correct key was pecked. A 10 cm × 
5 cm × 1 cm PIT tag identification perch was attached outside of  
the box, under the feeding hole. The perch instructed the PCB to 
start the learning program at each individual’s current position 
within the program (see below). For visits that led to a bird peck-
ing a key, which we termed a trial, the PCB recorded whether the 
choice was correct (1) or incorrect (0). If  the bird did not peck a key, 
no trial was recorded.
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Acclimatization

Acclimatization to the aviary occurred for the first 7–12  days of  
captivity. For the first 3 days, the birds were given ad libitum black 
oil sunflower seeds, fat balls, meal worms, and water. Additionally, 
a small heated (25 °C) room inside of  the aviary building was left 
open and contained a second source of  ad libitum food and water, 
as well as a constant source of  light, to encourage feeding. During 
the acclimatization period, a wooden dummy operant box was 
placed at the end of  the outdoor aviary, on the wooden shelf  where 
the operant box would be during the test phase (Cauchoix et  al. 
2017). The dummy box was baited with seed and margarine where 
the pecking keys would be, and sunflower seeds alone where the 
reward hole would be. This was done to acclimatize the birds to 
the components and location of  the operant device, and learn that 
it was a source of  food. After 3 days, the adjoining room to the avi-
ary was shut and the birds were kept only in the outdoor portion 
of  the aviary. Dummy operant boxes were removed at the end of  
acclimatization.

Testing

For 2 weeks after acclimatization, the great tits were exposed to a 
serial spatial reversal learning task for 2 h. Great tits were deprived 
of  food overnight and the first hour after sunrise in the morning 
(08h00), and for 1 h in the afternoon (14h00). Operant boxes were 
in the cages for a total of  2 h after each deprivation period, where 
great tits could engage freely in any number of  trials by visiting the 
device. In total, 28 sessions occurred over 14 days for each group. 
Reward wheels were checked and replenished halfway through 
each session when depleted. After the 2  h testing intervals, great 
tits received ad libitum food and water, and the operant boxes were 
shut off and covered.

The first landing an individual great tit made that resulted in 
a peck to a pecking key, i.e., the first trial, started its learning 
program (Cauchoix et al. 2017). After this trial, the bird received 
a reward and the motor training stage started. In this stage, an 
individual great tit was required to peck the same key it had 
previously pecked to receive a reward. If  the opposite key was 
pecked, both LEDs would shut off for 500 ms and turn back on. 
Once an individual obtained 9 correct trials in total during the 
motor training stage, it proceeded to the first reversal learning 
stage. During the first reversal learning stage, individuals had to 
inhibit pecking the past correct key from the motor training stage, 
and instead peck the other key. Incorrect pecks led to the LEDs 
turning off, and the operant box would become unresponsive to 
that individual great tit for a set amount of  time. Due to techni-
cal issues, a slightly different program was used in each season; 
in the winter, the punishment period lasted 15 s or until another 
bird visited the device, while for fall birds it lasted 5  s regard-
less of  whether another bird visited the device or not (included 
as a covariate in analyses as “season”). The first reversal stage 
was completed when an individual pecked the correct pecking 
key in 9 out of  10 successive trials. The second reversal stage 
would then commence and this individual would have to peck 
the opposing pecking key from the first reversal stage and again 
peck the correct key in 9 of  10 successive trials before moving to 
the next reversal. This alternation between right-key and left-key 
rewarded pecks would continue with each successive stage up to 
a maximum of  18 serial reversals. This progression of  stages was 
the same for each bird and progress was maintained across each 
2-week reversal learning period.

Statistical analysis

To discern whether there was a difference in initial motivation, accli-
matization or motor proficiency with the task between high and low 
elevation birds, we tested for differences in the proportion of  birds 
using the device (i.e., returning a first peck), the proportion of  birds 
completing the motor training phase, the first reversal, and the final 
reversal (18th reversal) with Pearson’s chi-squared tests with Yates’ 
continuity correction. We also compared the mean session number 
(out of  28 sessions) when the birds registered a first peck and com-
pleted the motor training stage between elevations using all birds 
that made it to each of  these stages using a nonpaired Wilcoxon-
signed rank test, as these data did not meet the assumption of  nor-
mality. Due to technical difficulties, one high elevation bird did not 
have a time for first peck and was excluded from the comparison of  
the mean session number when the birds registered a first peck

To determine whether there was a difference in the pace at 
which trials were taken by birds from high and low elevation, which 
could have impacted their ability to remember learned associations, 
we compared their intertrial interval (ITI) durations during reversal 
learning. We could model only 80.7% (88/109) of  the fall bird’s 
reversals due to technical difficulties that returned missing timing 
information for some ITIs. We used a linear mixed-model with 
Gaussian distribution (LMM). The dependent variable, ITI (num-
ber of  seconds from the last reversal trial), was log-transformed to 
better meet the assumptions of  the model. The independent vari-
able was high or low elevation and bird ID was included as a ran-
dom intercept. We compared this model against the null model 
using a likelihood ratio test.

We examined the differences in both initial and serial rever-
sal learning accuracy between elevations using generalized linear 
mixed models (GLMM) with a binary response (1: trial correct, 0: 
trial incorrect). We included fixed effects of  elevation (High, Low), 
sex (Male, Female), age (Juvenile, Adult), trial number, and group 
size. We also included a fixed effect of  season (Fall, Winter), to 
control for differences in the programmed delay after an incorrect 
peck and potential seasonal effects. Bird ID and capture site were 
included as random intercepts (Schielzeth and Forstmeier 2008).

In the initial reversal model, the random intercept of  site 
returned a zero-variance estimate and we were thus unable to con-
trol for a site effect with this approach. To check for a site effect, we 
used 2 separate high and low elevation models that contained their 
respective sites as a fixed effect. The high and low elevation models 
would not converge with group size included and so it was dropped 
for these analyses. The effect of  site was not significant in either 
high or low elevation models (see Supplementary Materials S3, S4, 
S5, S6) and it was thus excluded from further analyses.

The serial reversal model utilized the same variables as those 
used for initial reversal learning, with the addition of  a reversal 
number × elevation interaction to test for elevation-related differ-
ences in reversal learning improvement, and a random slope of  ID 
× reversal number to account for individual variation in improve-
ment in accuracy over reversals (Schielzeth and Forstmeier 2008). 
To check for a site effect in the serial reversal learning models we 
compared a model with and without the random effect of  site using 
a likelihood ratio test; as it was not significant (χ2 = 24073, P = 1), 
we excluded it from further analysis.

LMMs and GLMMs were fit using the statistical package lme4 
(Bates et  al. 2015) in R (version 3.4.4, R Core Team, 2018). We 
used Akaike’s Information Criterion adjusted for small sample 
size (AICc) for model selection (R package MuMIn; Bartoń 2018).  
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Statistical analysis

To discern whether there was a difference in initial motivation, accli-
matization or motor proficiency with the task between high and low 
elevation birds, we tested for differences in the proportion of  birds 
using the device (i.e., returning a first peck), the proportion of  birds 
completing the motor training phase, the first reversal, and the final 
reversal (18th reversal) with Pearson’s chi-squared tests with Yates’ 
continuity correction. We also compared the mean session number 
(out of  28 sessions) when the birds registered a first peck and com-
pleted the motor training stage between elevations using all birds 
that made it to each of  these stages using a nonpaired Wilcoxon-
signed rank test, as these data did not meet the assumption of  nor-
mality. Due to technical difficulties, one high elevation bird did not 
have a time for first peck and was excluded from the comparison of  
the mean session number when the birds registered a first peck

To determine whether there was a difference in the pace at 
which trials were taken by birds from high and low elevation, which 
could have impacted their ability to remember learned associations, 
we compared their intertrial interval (ITI) durations during reversal 
learning. We could model only 80.7% (88/109) of  the fall bird’s 
reversals due to technical difficulties that returned missing timing 
information for some ITIs. We used a linear mixed-model with 
Gaussian distribution (LMM). The dependent variable, ITI (num-
ber of  seconds from the last reversal trial), was log-transformed to 
better meet the assumptions of  the model. The independent vari-
able was high or low elevation and bird ID was included as a ran-
dom intercept. We compared this model against the null model 
using a likelihood ratio test.

We examined the differences in both initial and serial rever-
sal learning accuracy between elevations using generalized linear 
mixed models (GLMM) with a binary response (1: trial correct, 0: 
trial incorrect). We included fixed effects of  elevation (High, Low), 
sex (Male, Female), age (Juvenile, Adult), trial number, and group 
size. We also included a fixed effect of  season (Fall, Winter), to 
control for differences in the programmed delay after an incorrect 
peck and potential seasonal effects. Bird ID and capture site were 
included as random intercepts (Schielzeth and Forstmeier 2008).

In the initial reversal model, the random intercept of  site 
returned a zero-variance estimate and we were thus unable to con-
trol for a site effect with this approach. To check for a site effect, we 
used 2 separate high and low elevation models that contained their 
respective sites as a fixed effect. The high and low elevation models 
would not converge with group size included and so it was dropped 
for these analyses. The effect of  site was not significant in either 
high or low elevation models (see Supplementary Materials S3, S4, 
S5, S6) and it was thus excluded from further analyses.

The serial reversal model utilized the same variables as those 
used for initial reversal learning, with the addition of  a reversal 
number × elevation interaction to test for elevation-related differ-
ences in reversal learning improvement, and a random slope of  ID 
× reversal number to account for individual variation in improve-
ment in accuracy over reversals (Schielzeth and Forstmeier 2008). 
To check for a site effect in the serial reversal learning models we 
compared a model with and without the random effect of  site using 
a likelihood ratio test; as it was not significant (χ2 = 24073, P = 1), 
we excluded it from further analysis.

LMMs and GLMMs were fit using the statistical package lme4 
(Bates et  al. 2015) in R (version 3.4.4, R Core Team, 2018). We 
used Akaike’s Information Criterion adjusted for small sample 
size (AICc) for model selection (R package MuMIn; Bartoń 2018).  

We performed model averaging using models within < Δ2 AICc 
of  the top model (Grueber et  al. 2011). All continuous predictor 
variables were standardized by grand mean centering and dividing 
by 1 standard deviation. Means are presented with their standard 
errors. Three low elevation birds from the fall experiments were 
exposed to a similar task during pretrials in the previous winter; 
2 did not contact the device and 1 only passed the motor train-
ing stage. We reran all analyses (Participation, Initial Contact and 
Motor Training, ITI, Initial Reversal and Serial Reversal) while 
excluding these data points; our conclusions were unchanged and 
therefore we report results from the full dataset below.

Ethical note

This work was conducted under animal care permits to from the 
French bird ringing office (CRBPO; n°13619) and animal experi-
mentation review from the state of  Ariège (Préfecture de l’Ariège, 
Protection des Populations, n°A09-4) and the Région Midi-
Pyrenées (DIREN, n°2012-07). Birds were housed in the Moulis 
experimental aviaries (Préfecture de l’Ariège, institutional permit 
n°SA-12-MC-054) under animal captivity permits (Préfecture de 
l’Ariège, Certificat de Capacite, n°09-321). One great tit from win-
ter capture died during acclimatization.

RESULTS
Participation

All birds pecked the device at least once (High: 28/28; Low: 24/24).
We found no significant difference between high and low elevation 
birds in the proportion of  birds that passed the motor training 
phase (High: 24/28, 22/24. Contingency table: χ2 = 0.055, df = 1, 
P  =  0.815), passed at least one reversal (High: 18/28, 13/24. 
Contingency table: χ2 = 0.210, df = 1, P = 0.647), nor in the pro-
portion of  birds that completed the final reversal (High: 11/28, 
Low: 10/24. Contingency table: χ2 < 0.001, df = 1, P = 1).

Initial contact and motor training

There was no significant difference between elevations in the 
number of  learning sessions before they first pecked a key (High: 
4.00  ±  4.17; Low: 2.21  ±  2.02; Wilcoxon rank sum test, high vs. 
low: W  =  416.5, P  =  0.066, N  =  51), or before they passed the 
motor training phase (High: 7.48  ±  6.10; Low: 7.23  ±  6.89; 
Wilcoxon rank sum test, high vs. low: W = 261, P = 0.864, N = 46).

Initial reversal learning

Elevation, sex, age, capture season, and group size had no signifi-
cant effect on reversal learning accuracy in the first reversal. Trial 
number had a significant positive effect on accuracy which indi-
cates that the birds improved their accuracy within the first reversal 
(Tables 1 and 2).

Serial reversal learning

The reversal number × elevation interaction was not a significant 
predictor of  accuracy (GLMM: z = 0. 423, P = 0.672), suggesting 
that the rate of  improvement over successive reversals did not differ 
between high and low elevation birds (see Supplementary Materials 
S7 and S8). This interaction was excluded from further analyses. 
Across all reversals, low elevation birds performed significantly 
more accurately than high elevation birds (Figure 1). There was no 
significant difference between capture season, sex, age, and group 
size in reversal learning accuracy. Both trial and reversal number 

had significant positive effects on accuracy, which indicates that the 
birds improved their performance within reversals (trials) and across 
successive reversals (Tables  3 and 4). Elevation was not a signifi-
cant predictor of  intertrial interval duration (GLMM: χ2 = 0.504, 
P = 0.478).

DISCUSSION
The study of  the relationship between cognitive abilities and envi-
ronmental harshness is still a novel subject, and has only been 
examined in a restricted number of  ecological scenarios and spe-
cies. Here, we performed the first serial reversal learning com-
parison between individuals from different elevations. We found 
that there was no difference in the performance of  great tits from 
high and low elevation during the first reversal but when examin-
ing performance across all reversals, lower elevation birds were 
significantly more accurate than high elevation birds. There were 
no elevation-related differences in the rate of  improvement across 
reversals, although birds from both elevations significantly increased 
their choice accuracy over successive reversals.

The “harsh environment” hypothesis predicts that reversal learn-
ing ability should increase with harshness (Tebbich and Teschke 
2014). In contrast we report: 1)  no significant difference in initial 
reversal accuracy, and 2) higher accuracy over all reversals in birds 
from low, less harsh environments than in birds from high elevations. 
Tebbich and Teschke (2014) found support for the “harsh envi-
ronment” hypothesis with woodpecker finches: individuals from a 
harsher desert habitat completed a reversal learning task faster than 
those from a less harsh cloud forest habitat. The opposing results of  
our study and Tebbich and Teschke’s (2014) are surprising, given 
that our study species, the great tit, and the woodpecker finches in 
Tebbich and Teschke’s (2014) study, are both non-migratory and 
non-scatter hoarders (Gosler 1993; Tebbich et  al. 2002). However, 
the 2 species differ in other aspects; for instance, woodpecker finches 
came from populations that differ in tool use, with finches from the 
harsher environment utilizing tools more frequently than those from 
the less harsh environment, which may select for greater reversal 
learning ability in the population from the harsher environment 
(Tebbich et al. 2002, but see Teschke et al. 2011).

Our results across all reversals concur with those of  Croston 
et al. (2017), who utilized a scatter-hoarding species and found that 
performance on a single spatial reversal of  mountain chickadees 

Table 1
Models within <Δ2 AICc of  the top model for initial reversal 
learning accuracy (1: correct 0: incorrect), their coefficients, 
degrees of  freedom, AICc, Δi, and Akaike weights

Candidate Models df AICc Δi ωi

Sex+Trial+(1|ID) 4 1919.47 0.00 0.14
Trial+(1|ID) 3 1919.56 0.10 0.14
Elevation+Sex+Trial+(1|ID) 5 1919.65 0.18 0.13
Group Size+Trial+(1|ID) 4 1920.78 1.31 0.07
Season+Trial+(1|ID) 4 1920.85 1.39 0.07
Season+Sex+Trial+(1|ID) 5 1920.91 1.44 0.07
Elevation+Season+Sex+Trial+(1|ID) 6 1920.93 1.46 0.07
Age+Sex+Trial+(1|ID) 5 1921.10 1.63 0.06
Season+Group Size+Trial+(1|ID) 5 1921.22 1.75 0.06
Elevation+Group 
Size+Sex+Trial+(1|ID)

6 1921.23 1.76 0.06

Elevation+Trial+(1|ID) 4 1921.24 1.77 0.06
Group Size+Sex+Trial+(1|ID) 5 1921.26 1.79 0.06
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(Poecile gambeli) was inversely related to elevation. The authors sug-
gested that this difference was due to the high elevation chickadees’ 
stronger spatial memory causing proactive interference, i.e. their 
stronger memories make it difficult to forget past associations and 
remember new ones (Gonzalez et  al. 1967; Croston et  al. 2017). 
This interpretation may also apply to our study population; if  
food is less abundant at high elevation (reviewed in Boyle et  al. 
2016), high elevation great tits may rely more strongly on spatial 
memory to remember patches of  food as they find them, so they 
can efficiently return when their current patch has been depleted 
(reviewed in Milton 1981; Janmaat et al. 2016). Consequently, they 
may suffer from greater proactive interference than low elevation 
great tits, and perform worse at the serial spatial reversal learning 
task, which required frequently switching spatial associations. It is 
not currently known whether great tits from the harsh, high eleva-
tion sites exhibit increased spatial memory compared with their low 
elevation counterparts. If  this is the case, then high elevation great 
tits may rely on durable, rather than flexible, spatial memory, to 
survive in a harsh environment.

Another possible explanation for our results is that environmen-
tal harshness itself  may not be the main driver of  reversal learning 
ability in our system. Instead, our results may be due to other eco-
logical differences, such as population density or resource breadth. 

Population density seems to decrease as elevation increases in our 
system (personal communication) and it has been hypothesized 
(Dunbar 1998) and shown that living in complex social structures 
can be associated with increased serial reversal learning perfor-
mance (Bond et  al. 2007; Ashton et  al. 2018). Larger flocks may 
require increased reversal learning ability to compete and interact 
with more conspecifics at low elevations. Furthermore, if  there is 
a higher density of  individuals foraging together at a single patch, 
food patches may deplete faster than those at higher elevations 
where only a few birds utilize them. If  patches are depleted faster at 
low elevations, then low elevation birds may require greater reversal 
learning ability than high elevation birds to more efficiently switch 
between rapidly depleting resources. Moreover, if  lower elevations 
have a greater diversity of  available types of  food (i.e., seed from 
various tree species; (Pausas and Austin 2001; reviewed in Pausas 
et  al. 2003) this may require greater reversal learning ability to 
maximize consumption of  the best available food. In contrast, high 
elevation birds may only have the opportunity to consume a few 
food types and rarely utilize reversal learning to switch between 
optimal food types.

Although we found a difference in overall reversal learning 
accuracy between high and low elevation great tits, these differ-
ences could potentially be due to differences in these population’s 
reactions to the testing environment (e.g., Calandreau et al. 2011; 
Thai et  al. 2013). For instance, high and low elevation birds may 
have differed in their motivation to start or continue through the 
task, which could affect reversal learning performance (e.g., Liu 
et  al. 2016). Both high and low altitude birds had at least 7  days 
to acclimate to the testing environment, but to ensure that the 
effect of  elevation on reversal learning performance was not due 
to differences in acclimatization to the test environment and/or 
motivation, we compared participation between the high and low 
elevation great tits. All birds participated in the task. There was no 
significant difference between elevations in the proportion of  birds 
that completed the motor training stage, at least one reversal, or 
completed all reversals. Drop-out rates are similar to those found 
in free-ranging great tits performing the same task (Cauchoix et al. 
2017). Additionally, there was no significant difference in the ses-
sion number the birds started the task nor when they successfully 
passed the motor training phase. Therefore, we believe the differ-
ences in reversal learning between low and high elevation birds 
were not due to differences in motivation and/or acclimatization. 
Finally, high and low elevation birds could have worked on the 
task at different rates; for example, high elevation birds could have 
waited less time between trials and thus retained a stronger mem-
ory of  the previous trial, increasing the accuracy of  their decisions 
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Figure 1
Mean accuracy of  the individual bird’s raw accuracy data, with 95% 
confidence intervals calculated using a non-parametric bootstrap, as a 
function of  reversal number, for high and low elevations. The trend line 
is estimated from a general linear model of  the relationship of  choice 
accuracy across reversals for high and low elevations. Black points are high 
elevation, gray points are low elevation.

Table 2
Summary of  results of  model-averaged coefficients for initial reversal learning accuracy (1: correct 0: incorrect)

Parameter Estimate Unconditional SE Confidence interval Relative importance P-value

Intercept 0.256 0.319 (−0.370, 0.882) 0.423
Sex (Female) 0.360 0.421 (−0.155, 1.362) 0.60 0.392
Trial 3.334 0.333 (2.681, 3.986) 1.00 <0.001
Elevation (Low) 0.149 0.312 (−0.310, 1.241) 0.32 0.633
Group Size −0.136 0.410 (−1.852, 0.780) 0.25 0.741
Season (Fall) −0.089 0.237 (−1.033, 0.376) 0.27 0.708
Age (Adult) 0.193 0.144 (−0.660, 1.266) 0.06 0.894

Τhe estimates are from the full average of  12 models <Δ2 AIC of  the top model. Full model: Correct/Incorrect = Group Size + Sex + Age + Season + 
Elevation + Trial + (1ID).
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(e.g., Rayburn-Reeves et  al. 2013). However, this explanation 
seems unlikely as ITI was also not significantly different between 
elevations.

Birds from both elevations were able to increase their serial rever-
sal learning accuracy across reversals, and did not differ in their rate 
of  performance improvement. The ability to improve performance 
over successive reversals is conserved across taxa (e.g., Passeriformes: 
Bond et al. 2007; Squamata: Gaalema 2011; Hymenoptera: Strang 
and Sherry 2014; Anura: Liu et  al. 2016; Rodentia: Chow et  al. 
2017; Primates: Hassett and Hampton 2017), and has been reported 
before in free-ranging and captive great tits (Cauchoix et al. 2017). 
To further our understanding of  how great tits were able to increase 
their serial reversal learning accuracy, future studies could add 
modifications to the serial reversal learning task. The addition of  
a second reversal test using a different type of  cue (e.g., colour and 
spatial: Bond et al. 2007) or different subsets of  cues (e.g., multiple 
combinations of  colours: Parker et al. 2012) could provide evidence 
of  rule learning. The addition of  a third, middle option to our test 
would allow us to determine whether proactive interference errors 
(i.e., peck the previously rewarded buttons) or exploration errors 
(i.e., peck the button not previously rewarded to collect more data) 
occurred (reviewed in Izquierdo et al. 2017).

Overall, our results suggest that lower elevation great tits per-
form more accurately on a serial spatial reversal learning task 
than higher elevation birds. This difference was detected only over 
multiple reversals, possibly because of  increased statistical power 
compared with an analysis on a single reversal, pointing to the use-
fulness of  serial reversal learning as a paradigm to examine differ-
ences in reversal learning performance. More generally, our results 
suggest that the relationship between food variability, food scarcity, 
and cognition may not be consistent across all species or all harsh-
ness gradients. Furthermore, trade-offs between useful cognitive 
abilities such as spatial memory (Croston et al. 2017) and alternative 

factors, such as social complexity (Bond et al. 2007), may also drive 
variation in reversal learning ability. On their own, these results do 
not allow rejection of  the “harsh environment” hypothesis, but sug-
gests that we need a clearer definition of  what constitutes a “harsh” 
environment. Future studies would benefit from measuring the spa-
tial and temporal variation in ecological variables to properly define 
the “harshness” of  a system, so as to build a greater understand-
ing of  the links between cognition and the environment (Kozlovsky 
et al. 2017).
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Table 3
Models within <Δ2 AICc of  the top model for serial reversal learning accuracy (1: correct 0: incorrect), their coefficients, degrees of  
freedom, AICc, Δi, and Akaike weights

Candidate models df AICc Δi ωi

Elevation+Season+Reversal Number+Trial+(1+Reversal Number|ID) 8 24,091.56 0.00 0.26
Elevation+Reversal Number+Trial+(1+Reversal Number|ID) 7 24,091.75 0.18 0.24
Elevation+Season+Group Size+Reversal Number+Trial+ (1+Reversal Number|ID) 9 24,091.99 0.42 0.21
Elevation+Group Size+Reversal Number+Trial+(1+Reversal Number|ID) 8 24,093.34 1.77 0.11
Elevation+Season+Sex+Reversal Number+Trial+(1+Reversal Number|ID) 9 24,093.54 1.98 0.10
Age+Elevation+Season+Reversal Number+Trial+(1+Reversal Number|ID) 9 24,093.55 1.98 0.10

Table 4
Summary of  results of  model-averaged coefficients for serial reversal learning: effects of  each parameter on the accuracy (1: 
correct, 0: incorrect) of  choice during reversals 1–18

Parameter Estimate Unconditional SE Confidence interval Relative importance P-value

Intercept 0.111 0.066 (−0.018, 0.239) 0.093
Elevation (Low) 0.242 0.084 (0.077, 0.408) 1.00 0.004
Season (Fall) −0.090 0.094 (−0.301, 0.027) 0.66 0.337
Reversal Number 0.525 0.148 (0.235, 0.814) 1.00 <0.001
Trial 3.398 0.106 (3.190, 3.606) 1.00 <0.001
Group Size −0.059 0.136 (−0.552, 0.175) 0.32 0.662
Sex (Female) −0.001 0.027 (−0.183, 0.157) 0.10 0.963
Age (Adult) 0.001 0.033 (−0.192, 0.221) 0.10 0.966

Τhe estimates are from the full average of  6 models <Δ2 AIC of  the top model. Full model: Correct/Incorrect = Group Size + Age + Sex + Season + Trial + 
Elevation + Reversal Number + (1+Reversal Number|ID).
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