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Abstract
Functional traits can covary to form “functional syndromes.” Describing and under‐
standing functional syndromes is an important prerequisite for predicting the effects 
of organisms on ecosystem functioning. At the intraspecific level, functional syn‐
dromes have recently been described, but very little is known about their variability 
among populations and—if they vary—what the ecological and evolutionary drivers of 
this variation are. Here, we quantified and compared the variability in four functional 
traits (body mass, metabolic rate, excretion rate, and boldness), their covariations and 
the subsequent syndromes among thirteen populations of a common freshwater fish 
(the European minnow, Phoxinus phoxinus). We then tested whether functional traits 
and their covariations, as well as the subsequent syndromes, were underpinned by 
the phylogenetic relatedness among populations (historical effects) or the local envi‐
ronment (i.e., temperature and predation pressure), and whether adaptive (selection 
or plasticity) or nonadaptive (genetic drift) processes sustained among‐population 
variability. We found substantial among‐population variability in functional traits and 
trait covariations, and in the emerging syndromes. We further found that adaptive 
mechanisms (plasticity and/or selection) related to water temperature and predation 
pressure modulated the covariation between body mass and metabolic rate. Other 
trait covariations were more likely driven by genetic drift, suggesting that nonadap‐
tive processes can also lead to substantial differences in trait covariations among 
populations. Overall, we concluded that functional syndromes are population‐spe‐
cific, and that both adaptive and nonadaptive processes are shaping functional traits. 
Given the pivotal role of functional traits, differences in functional syndromes within 
species provide interesting perspectives regarding the role of intraspecific diversity 
for ecosystem functioning.
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1  | INTRODUC TION

Phenotypic variability measured within species has historically been 
the core of evolutionary studies, as it constitutes the visible outcome 
of evolutionary processes (Darwin, 1859; Roff, 1992; Stearns, 1992). 
It is now increasingly acknowledged that intraspecific phenotypic 
variability can strongly affect community structure and ecosystem 
functioning (Des Roches et al., 2018; Raffard, Santoul, Cucherousset, 
& Blanchet, 2018). In particular, functional traits, such as excretion 
rate, are extremely important for understanding and predicting how 
organisms affect their own biotic and abiotic environment (Díaz 
et al., 2013; Violle et al., 2007). Functional traits display variability 
both within and among populations (Helsen et al., 2017; Villéger, 
Brosse, Mouchet, Mouillot, & Vanni, 2017). For instance, the nutri‐
ent excretion rate (a trait potentially affecting nutrient availability in 
ecosystems, Vanni, 2002) can vary substantially among and within 
populations (Evangelista, Lecerf, Britton, & Cucherousset, 2017; 
Villéger, Grenouillet, Suc, & Brosse, 2012). Since functional traits de‐
termine the way organisms modulate the environment, it is import‐
ant to investigate the spatial distribution of these traits (Funk et al., 
2016; Villéger et al., 2017).

Functional traits are highly variable across landscapes. For in‐
stance, the metabolic rate of ectotherms is, on average, higher in 
warm than in cold environments (Brown, Gillooly, Allen, Savage, 
& West, 2004; Hildrew, Raffaelli, & Edmonds‐Browns, 2007). 
Moreover, trait covariations are also expected to be heterogeneous 
across landscapes (Reale et al., 2010). The covariations among mul‐
tiple traits have been referred to as syndromes (Dingemanse et al., 
2007). Syndromes have primarily been investigated for life‐history, 
behavioral, and physiological traits (Roff, 1992; Sih, Bell, & Johnson, 
2004), and have greatly contributed to our understanding of life‐his‐
tory strategies in wild populations (Reale et al., 2010). In the mean‐
time, community ecologists have investigated how covariations in 
functional traits, measured at the community level, can affect eco‐
system functioning (Díaz et al., 2016; Lavorel & Garnier, 2002). More 
recently, it has been demonstrated that functional trait covariations 
also occur within species, forming a so‐called functional syndrome 
(Raffard et al., 2017). Functional syndromes have been shown to 
exist in several species (e.g., Defossez, Pellissier, & Rasmann, 2018; 
Raffard et al., 2017), but the variability of these syndromes across 
populations and environmental conditions remains unexplored.

Functional syndromes are also expected to vary among popu‐
lations within a single species (Peiman & Robinson, 2017). Indeed, 
it has been suggested that environmental conditions can modulate 
trait covariations and the associated syndromes (Killen, Marras, 
Metcalfe, McKenzie, & Domenici, 2013). Notably, experimental 
studies have demonstrated that some environmental conditions 
can induce biological constraints (e.g., energetic requirement) 
that modulate trait covariations (Finstad, Forseth, Ugedal, & 
NæSje, 2007; Killen, Marras, & McKenzie, 2011). For instance, 
food availability has been demonstrated to produce a covariation 
between metabolic rate and risk‐taking behavior in European sea 

bass (Dicentrarchus labrax), probably because individuals with high 
metabolic rate have high energetic demands and should be more 
active to acquire resources to sustain this demand (Killen et al., 
2011). Variation in syndromes has also been reported among wild 
populations living in heterogeneous environments (Dingemanse et 
al., 2007; Peiman & Robinson, 2012; Pruitt et al., 2010; Závorka et 
al., 2017). Beyond the direct effect of environmental characteris‐
tics (e.g., temperature, predation) on syndromes, the evolutionary 
history of populations—such as the past demographic and coloni‐
zation history that often generates bottlenecks and founder ef‐
fects—may also play an underestimated role in shaping syndromes 
(Armbruster & Schwaegerle, 1996; Peiman & Robinson, 2017). For 
instance, populations can exhibit different syndromes because 
they may have been colonized by two independent lineages having 
evolved divergent syndromes in their past respective refuge (“the 
ghost of colonization past”). This past evolutionary legacy is likely 
to be identified at the level of the genetic lineages; two closely 
related populations being more likely to display similar syndromes 
than two distantly related populations. This possible evolution‐
ary legacy of syndromes has—up to our knowledge—rarely been 
considered.

In this study, we investigated the variability of functional traits 
and the syndromes they form in wild populations inhabiting het‐
erogeneous environments. Using a common freshwater fish (the 
European minnow, Phoxinus phoxinus) as a model species, we aimed 
at testing (a) whether functional traits and their covariations vary 
between populations, and (b) whether this variability is explained 
by environmental factors and/or the evolutionary history of popu‐
lations. Focusing on four functional traits (i.e., excretion rate, me‐
tabolism, body mass, and boldness), we first expected that both 
mean values and covariations of traits differ between populations 
because of their contrasting environments and evolutionary histo‐
ries. Second, we focused on two environmental characteristics (tem‐
perature and predation intensity) that affect functional traits (e.g., 
metabolism, Gillooly, 2001), and that are hence likely to also mod‐
ulate their covariations. Temperature is indeed a key abiotic factor 
for ectotherms as it can affect their metabolic rate, behavior, and 
body mass (Biro, Beckmann, & Stamps, 2010; Brown et al., 2004; 
Gillooly, 2001). Additionally, predation risk can affect the physiol‐
ogy and behavior of individuals by inducing strong stresses (Bell & 
Sih, 2007; Hawlena & Schmitz, 2010). We concomitantly tested the 
contribution of the past evolutionary history of populations to ex‐
plain variation in covariations among functional traits using phylo‐
genetic models. Specifically, we assessed the relationships between 
genetic similarity (inferred from microsatellite markers) and syn‐
drome similarity among populations. An influence of the environ‐
ment on traits would suggest potential adaptation (or plasticity of 
these syndromes), and we hence finally used a quantitative genetic 
approach (PST/FST, Leinonen, McCairns, O'Hara, & Merilä, 2013) to 
infer the evolutionary processes (genetic drift vs. selection/plas‐
ticity) underlying differences in trait variation and covariation among 
populations.
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2  | MATERIAL S AND METHODS

2.1 | Model species

The European minnow (P. phoxinus) is an abundant species in 
Western Europe in cold lakes (e.g., mountains lakes) and rivers (e.g., 
from small rivers at intermediate altitude to mountain streams) with 
summer water temperature generally lower than 22–24°C (Keith, 
Persat, Feunteun, & Allardi, 2011). It is a small‐bodied fish species 
(<12 cm long, 5–8 cm long as an adult in general) living approxi‐
mately 3 to 5 years, and which displays a generalist diet composed of 
small invertebrates, algae, or zooplankton (Collin & Fumagalli, 2011; 
Frost, 1943). The European minnow is considered as a genotypically 
and phenotypically variable species (Collin & Fumagalli, 2011, 2015; 
Fourtune et al., 2018).

2.2 | Sampling sites and animal rearing

We focused on riverine European minnow populations from the 
Dordogne–Garonne river basin in southwestern France (Figure 1). 

We selected thirteen sites (coded from A to M) in different rivers 
to reflect their potential colonization history (Fourtune, Paz‐Vinas, 
Loot, Prunier, & Blanchet, 2016; Paz‐Vinas et al., 2018). Sampled riv‐
ers were selected based on previous knowledge in terms of environ‐
mental and geographic characteristics of the area (Fourtune et al., 
2016, 2018).

For each site, we focused and measured two environmental 
variables that have been shown to modulate functional traits in 
ectotherms (Bestion, Teyssier, Aubret, Clobert, & Cote, 2014; Biro 
et al., 2010; Gillooly, 2001), and hence potentially their covaria‐
tions. We first recorded water temperature, which was measured 
as the mean temperature between July and September 2017, 
using automatic sensors (HOBO®, one measure every hour). Mean 
summer water temperature varied from 15.5°C (site E) to 21.5°C 
(site D) (Figure 1). In addition, we measured the local predation 
pressure, a key biotic factor that can affect organisms’ phenotype 
(Langerhans, 2007). Predation pressure was calculated for each 
site as the density of piscivorous fishes (namely northern pike, Esox 
lucius; brown trout, Salmo trutta; rainbow trout, Oncorhynchus my‐
kiss; European perch, Perca fluviatilis; pikeperch, Sander lucioperca; 

F I G U R E  1  Distribution of the thirteen studied populations of European minnows (Phoxinus phoxinus). Names of populations were coded 
from A to M, and the number of individuals for each population is given as indication
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and European eel, Anguilla anguilla). This metric was similar to that 
described in Edeline, Lacroix, Delire, Poulet, and Legendre (2013). 
This index of predation was calculated by dividing the number of 
sampled predator individuals by the surface covered during sam‐
pling; these data—for each site—were sourced from Fourtune et 
al. (2016) and from the French Agency for Biodiversity (Poulet, 
Beaulaton, & Dembski, 2011).

In summer 2016, we collected adult fish on these thirteen sites 
using electrofishing (Figure 1). On each river, we collected approx‐
imately one hundred adults along a ~200‐m‐long river stretch to 
ensure representativeness of the fish habitat. Then, we randomly 
sampled 30–40 individuals among the sampled adults to have a rep‐
resentative subsample of each population. Electrofishing was per‐
formed under the authorization of “Arrêté Préfectoraux” delivered 
by the “Direction Départementale des Territoires” of each adminis‐
trative department (Haute‐Garonne, Ariège, Aveyron, Lot, Tarn and 
Corrèze). Laboratory rearing of fish was performed under authoriza‐
tions of the “Direction Départementale de la Cohésion Sociale et de 
la Protection des Populations (service Santé Protection des Animaux 
et Environnement) de l'Ariège,” Arrêté Préfectoraux SA‐013‐PB‐092 
and Certificat de Capacité 09‐273. Fish were brought to the labo‐
ratory and maintained in a thermoregulated room for two to four 
weeks before experiments. Fish from the different populations were 
held in independent 150‐L tanks in which water temperature was set 
to 17°C and photoperiod to a light:dark cycle of 12:12 (Golovanov, 
2013). They were fed with frozen bloodworms three times a week. 
Prior to experiments, fish were anesthetized (benzocaine, 25 mg/L), 
weighed (to the nearest 0.01 g), and tagged with a Passive Integrated 
Transponder (PIT) tags (8 × 1.4 mm, FDX‐B “skinny” PIT tag, Oregon 
RFID, USA) inserted in the general cavity using a sterile scalpel. Fish 
recovered and acclimatized to the rearing room for 10 days before 
the quantification of three functional traits in addition to body mass 
(boldness, excretion rate, and metabolic rate). Metabolic rate was 
measured on day 1 (morning), while excretion rate and boldness were 
measured on day 2 in the morning and in the afternoon, respectively. 
Before quantifying metabolic rate, individuals were starved for two 
days to ensure the same starvation level among individuals.

2.3 | Boldness

Boldness was assessed for each individual independently in circular 
containers (30 cm in diameter) filled with 5L of dechlorinated tap 
water at 17°C and 500 ml of water from a tank containing conspe‐
cifics. The containers were surrounded by curtains to standardize 
light conditions and to hide the experimenter. A shelter (pipe, 7 cm 
length × 3 cm diameter) was added in each container to allow the 
fish to hide. After having introduced each individual into the shelter 
and after 10 min of acclimatization to reduce stress level induced by 
handling, the shelter was opened and each individual was filmed for 
fifteen minutes. Video footage was subsequently analyzed with the 
software “BORIS” (Friard & Gamba, 2016). Boldness was quantified 
as the time spent outside of the shelter. The order and the contain‐
ers in which individuals were assayed were randomly attributed. All 

behavioral assays were performed in the afternoon (from 12:00 p.m. 
to 16:00 p.m.) to minimize the potential effects of circadian rhythms.

2.4 | Excretion rate

Excretion rate was quantified using nitrogen excreted by organisms 
as the dissolved form of ammonium NH+

4
. Quantifying excretion rate 

on starved individuals was done to avoid an effect of differential 
consumption, which is a strong factor affecting the rate of nitrogen 
excretion (Glaholt & Vanni, 2005). Changes in NH+

4
 concentration in 

water can affect ecosystem functioning through an increase in nu‐
trient availability (Capps & Flecker, 2013) and primary production 
(Bassar et al., 2016; Schmitz, Hawlena, & Trussell, 2010). Following 
Villéger et al. (2012), individuals were placed in plastic bags contain‐
ing 500 ml of spring bottled water for 1 hr at 17°C. Individuals were 
then removed and 100 ml of water was filtered through a glass micro‐
fiber filter (Whatman, GF/C, diameter = 25 mm), and samples were 
frozen at −20°C. Excretion rate (NH+

4
 in μg L−1 hr−1) was determined 

with a high‐performance ionic chromatograph (Dionex DX‐120).

2.5 | Metabolic rate

We measured the oxygen consumption rate as a proxy of the meta‐
bolic rate of individuals. Fish were individually placed in a custom 
made metabolic chamber filled with 500 ml of dechlorinated tap 
water and hermetically sealed. Chambers were set in a thermoregu‐
lated room at 17°C in the dark to lower the stress level. We meas‐
ured the metabolic rate just after handling so that the same stress 
was imposed to all individuals. Measurements of oxygen concentra‐
tion were taken after 10 min, allowing individuals to acclimate, and 
continuously every five seconds for 50 min using oxygen probes 
(OXROB10, Pyroscience). The metabolic rate was calculated as the 
absolute slope between oxygen quantity in the chamber and time, 
reflecting the hourly consumption of oxygen (mg/hr).

2.6 | Genetic analyses

Thirty additional adults from each of the thirteen sites were sampled 
for genetic material. For each of these thirty individuals, we collected 
and preserved in 70% ethanol a small piece of pelvic fin and individ‐
uals were then released in their respective sampling site. Genomic 
DNA was extracted using a salt‐extraction protocol (Aljanabi, 1997). 
Eighteen autosomal microsatellite markers were considered in this 
study: Polymerase chain reactions (PCR) and genotyping were per‐
formed as detailed in Supporting Information Appendix S1, result‐
ing in a final data set of 357 genotypes. We checked for multilocus 
deviation from Hardy–Weinberg equilibrium (HWE) and for gametic 
disequilibrium using GENEPOP 4.2.1 (Rousset, 2008) after sequen‐
tial Bonferroni correction to account for multiple related tests (Rice, 
1989). The presence of null alleles was then assessed at each locus by 
analyzing homozygote excess in five populations that did not follow 
HWE, using MICROCHECKER 2.2.3 (Van Oosterhout, Hutchinson, 
Wills, & Shipley, 2004). We discarded from further analyses any 
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locus showing significant gametic disequilibrium and/or evidence of 
null alleles, resulting in the withdrawal of one locus (CtoG‐075), for a 
total number of seventeen loci.

We computed Nei's standard genetic distance (Nei, 1973) be‐
tween each pair of populations using the diveRsity R‐package (func‐
tion diffCalc; Keenan, McGinnity, Cross, Crozier, & Prodöhl, 2013). A 
hierarchical cluster analysis was then performed to uncover genetic 
relatedness among the thirteen populations using the functions 
hclust (R‐package stats) and as.phylo (R‐package ape; Paradis, Claude, 
& Strimmer, 2004) to convert the genetic dissimilarity matrix into 
an unrooted phylogenetic tree based on complete linkage method.

Finally, we estimated the overall level of genetic differentiation 
FST among the thirteen populations using the hierfstat R‐package 
(Goudet, 2005). The resulting global FST corresponds to the inter‐
population variance component in allelic frequencies (Yang, 1998), 
and to the level of differentiation among populations due to genetic 
drift only (Leinonen et al., 2013). This value is directly comparable to 
the interpopulation variance component in quantitative traits (PST, 
see below). A 95% confidence interval (CI) was computed for the 
observed global FST value using a classical cluster bootstrap proce‐
dure with 1,000 iterations (Field & Welsh, 2007): CI lower and upper 
bounds were computed as the 95% percentiles of a theoretical dis‐
tribution of 1,000 FST values obtained from the random sampling of 
the thirteen populations with replacement.

2.7 | Statistical analyses

2.7.1 | Trait variability among populations

For each of the four traits separately, we tested whether there was 
significant variability among the thirteen populations using an analy‐
sis of variance (ANOVA) with the population of origin as the expli‐
cative categorical variable. To meet the assumptions of Gaussian 
models (normality of the residuals and homoscedasticity), data were 
transformed: Body mass, metabolic rate, and excretion rate were 
log‐transformed and boldness was square‐root‐transformed.

2.7.2 | Heterogeneity in trait covariations among 
populations

We tested whether covariations among the four traits (i.e., syn‐
dromes) were different among the thirteen populations. We first 
synthetized and described, for each population, patterns of trait 
covariation using path analysis. Traits were scaled to the mean 
within each population (i.e., each population displays a mean of 
zero with a variance of one for each trait), and a general path 
analysis linking each trait to the others (saturated path analysis) 
was computed for each population independently using the lavaan 
R‐package (Rosseel, 2012). These resulted in thirteen path mod‐
els (each path model corresponding to a population's syndrome) 
and thirteen associated covariance matrices. Then, we then tested 
whether these path models (and hence trait covariations) varied 
among populations using a test of heterogeneity on covariance 

matrices among groups (metaSEM R‐package, Cheung, 2015). 
Briefly, this analysis allows assessing the heterogeneity of covari‐
ance matrices with a combination of indices (Hooper, Coughlan, 
& Mullen, 2008): (a) root mean square error of approximation 
(RMSEA, expected to be higher than 0.06 if the matrices are het‐
erogeneous), (b) standardized root mean square residual (SRMR, 
expected to be higher than 0.09 if the matrices are heterogene‐
ous), and (c) comparative fit index (CFI, expected to be lower than 
0.96 if the matrices are heterogeneous).

2.7.3 | Heterogeneity of pairwise covariations

We tested whether the six covariations considered separately dif‐
fered among populations using a test of heterogeneity (Rosenberg, 
Adams, & Gurevitch, 1997). We estimated and extracted the covari‐
ations between each pair of traits (six pairs in total: mass–metabo‐
lism; mass–excretion; mass–boldness; metabolism–excretion; 
metabolism–boldness; and excretion–boldness) from the path mod‐
els described above so as to control for all relationships among traits 
simultaneously. We applied meta‐analytic tools to analyze the het‐
erogeneity in covariances. We applied the Z‐Fisher transformation 
to each covariance value (Cov) to obtain a standardized Zr using the 

following formula: Zr=0.5 ln
(1+Cov)
(1−Cov)

, and we calculated the corre‐

sponding standard error as: seZr=
1

√

n−3
 (Nakagawa & Cuthill, 2007) 

where n is the sample size of the considered population. We esti‐
mated the degree of variability of Zr for each pair of traits among 
populations with a test of heterogeneity (Higgins & Thompson, 
2002; Viechtbauer, 2010). This index (H) indicates the percentage of 
heterogeneity and tests whether heterogeneity in a data set is 
higher than that expected by chance. The standard error of Zr was 
added as a pondering parameter to the heterogeneity test to give 
more weight to populations with more individuals.

2.7.4 | Effect of phylogeny

We tested whether phylogenetically related populations displayed 
similar traits and trait covariations using phylogenetic models (PGLS, 
Garland & Ives, 2000). These models allow incorporating the genetic 
relatedness among populations through a phylogenetic tree used to 
estimate a λ value corresponding to the degree of phylogenetic con‐
servatism in the response variable. λ is expected to vary between 0 
and 1, where 0 means no phylogenetic dependence in a trait among 
populations, and 1 means that the focal trait is phylogenetically con‐
served (Comte, Murienne, & Grenouillet, 2014; Harvey & Purvis, 
1991). We calculated λ independently for each trait and each co‐
variation (calculated from path analyses; see above) using only the 
intercept as fixed effect.

2.7.5 | Effect of environmental characteristics

We used phylogenetic models to assess the effects of temperature 
and predation on traits and covariations. We ran PGLS for each trait 
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and covariation (Zr) independently, with temperature, predation 
pressure (measured at the site level), and the resulting two‐term in‐
teraction as explanatory variables. The phylogenetic tree based on 
microsatellite markers was incorporated into each model to account 
for genetic relatedness among populations. When λ = 0, the model 
is equivalent to a classical linear model, whereas when λ = 1 it ac‐
counts for phylogenetic conservatism in trait. We then used an in‐
formation‐theoretic approach, based on Akaike Information Criteria 
(AIC) comparisons, to select the model(s) that best fit the data. We 
considered model(s) that fell within a ΔAIC <4 as “best” model(s) as 
they would maximize the likelihood of the model while taking into 
account the number of parameters, and we rejected those with a 
ΔAIC>4 (Burnham & Anderson, 2002). We ran PGLS models using 
the pgls function from the caper R‐package (Orme et al., 2013).

2.7.6 | FST/PST comparison

Finally, we tested whether variability in traits and covariations 
among populations were higher or not than expected under the hy‐
pothesis that differentiation is due to genetic drift only. To do so, we 
compared FST calculated on neutral genetic markers (corresponding 
to the level of differentiation among populations expected if genetic 
drift only is affecting traits) to PST values calculated for each trait 
and covariation independently. PST is the phenotypic equivalent of 
the QST index, although calculated for wild populations when no 
information on the parental relatedness among individuals is avail‐
able (Leinonen, Cano, MäKinen, & Merilä, 2006). A PST value higher 
than the global FST value indicates that phenotypic differentiation 
among populations is higher than expected by genetic drift only, and 
that mechanisms such as plasticity and/or selection might explain 
these differences (Leinonen et al., 2013). The use of F0 individuals 
allows comparison of natural trait variability and covariations exist‐
ing among wild populations. However, this approach does not enable 
to tease apart genetic and plastic contributions to trait variability 
and covariations. Therefore, PST here represents the level of pheno‐
typic differentiation that is due to both genetic and developmental 
components. We estimated a PST for each trait as: �

2

B
∕�2

B
+�

2

W
 where 

�
2

B
 and �2

W
were, respectively, the among‐ and within‐population 

variance in the considered trait (Leinonen et al., 2013). Among‐ and 
within‐population variance components were estimated from gen‐
eralized linear mixed models with the trait as response variable, the 
intercept as a fixed effect, and the population as a random effect 
(Leinonen et al., 2013).

In the case of covariations, among‐ and within‐population vari‐
ance components were calculated in a similar way but with the 
addition of a random slope, corresponding to the covariable trait 
(Supporting Information Appendix S2). This allows estimating 
among‐ and within‐population variance in the covariation between 
each pair of traits (Mazé‐Guilmo, Blanchet, Rey, Canto, & Loot, 
2016). The generalized linear mixed models were run using the lme4 
R‐package (Bates, Maechler, Bolker, & Walker, 2014). We applied a 
classical bootstrap clustering procedure with 1,000 iterations (Field 
& Welsh, 2007) to assess the 95% confidence interval for PST. We 

then compared the CI of PST for each trait and each covariation (i.e., 
10 PST quantified in total: 4 single traits and 6 covariations among 
them) to the CI of FST. All analyses were performed using R (R Core 
Team, 2013).

3  | RESULTS

3.1 | Trait variability among populations

Body mass (F = 29.859, df = 12, 349, p < 0.001), metabolic rate 
(F = 14.538, df = 12, 350, p < 0.001), excretion rate (F = 14.842, 
df = 12, 322, p < 0.001), and boldness (F = 5.179, df = 12, 329, 
p < 0.001) were all significantly different among populations 
(Figure 2). There was no strong evidence for phylogenetic conserva‐
tism for any of the traits (see Supporting Information Figure S1): λ 
was highest for body mass (λ = 0.87) and metabolic rate (λ = 0.74), 
although none of these values were significantly different from zero 
(Table 1). Regarding determinants of trait means, the best models 
explaining body mass included temperature, predation pressure, 
and their interaction (Table 1). Body mass increases as temperature 
decreases (negative relationship), and this increase was exacerbated 
as predation pressure increased (Figure 3a). The model selection for 
the three other traits led to equivalent models, and the null models 
were, in all‐three cases, the best models (Table 1). This suggested 
that metabolic rate, excretion rate, and boldness were neither—or 
weakly—related to temperature, nor to predation pressure. Finally, 
the estimates of phenotypic differentiation among populations (PST) 
were high for body mass, metabolic rate, and excretion, and were sig‐
nificantly higher than the level of neutral genetic differentiation (FST) 
(Figure 4). Phenotypic differentiation measured for boldness was not 
different from what was expected under the drift hypothesis.

3.2 | Among population heterogeneity in functional 
trait syndromes and covariations

We found that populations varied in their syndromes of func‐
tional traits since the matrices of covariations were heterogene‐
ous (RMSEA = 0.266, CFI = 0.602, SRMR = 0.263, Supporting 
Information Figure S2). For instance, the syndrome in the popula‐
tion F was characterized by positive covariations among body mass, 
metabolic rate, and excretion rate, and a negative covariation be‐
tween boldness and excretion rate (Figure 5a); whereas population 
L displayed negative covariations between body mass and bold‐
ness, boldness and metabolic rate, and metabolic and excretion 
rates, while the body mass–metabolic rate covariation was positive 
(Figure 5b).

This was confirmed since we also found strong significant het‐
erogeneity among populations for several trait covariations. In 
particular, the covariations measured between body mass and ex‐
cretion rate (H = 72.03%, Q = 45.837, df = 12, p < 0.001), between 
excretion rate and metabolic rate (H = 69.20%, Q = 41.229, df = 12, 
p < 0.001), and between excretion rate and boldness (H = 58.26%, 
Q = 31.296, df = 12, p = 0.002) strongly (and significantly) varied 
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among populations (Figure 6b,e, and f). For instance, the covariation 
between metabolic and excretion rates was significantly positive 
for six populations, significantly negative for one population, and 
nonsignificant for the remaining populations (Figure 6e). The covari‐
ations between body mass and metabolic rate, between metabolic 
rate and boldness, and between body mass and boldness were ho‐
mogeneous (p > 0.052, Figure 6a,c, and d).

We did not find evidence for significant phylogenetic conserva‐
tism for any of the covariations (Table 1 and Supporting Information 
Figure S3). The best models explaining the covariation between 
body mass and metabolic rate included temperature, predation, and 

the temperature‐by‐predation interaction term (Table 1). For this 
covariation, the null model was strongly rejected from the set of 
best‐supported models (ΔAIC >4), and the results suggested that the 
strength of the covariation tended to increase as the temperature 
decreased, and when the predation pressure increased (Figure 3b). 
Regarding other covariations, models including temperature and 
predation pressure were not strongly supported by the data as the 
null models were always selected within the set of models displaying 
a ΔAIC <4 (Table 1).

Finally, covariation measured between body mass and metabolic 
rate displayed a PST value that was significantly higher than the global 

F I G U R E  2  Mean trait values for body mass (a), metabolic rate (b), excretion rate (c), and boldness (d) in function of the population origin 
of fish. Error bars represent ±1SE
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FST value (Figure 4). PST measured for the covariation between body 
mass and excretion rate was higher than the global FST, but the CIs of 
the two estimates overlapped. For other trait covariations, PST values 
were not significantly different from the global FST value (Figure 4).

4  | DISCUSSION

We demonstrated that functional traits, trait covariations, and syn‐
dromes they form strongly varied across populations of European 

minnow sampled in a large riverscape. We further found that multi‐
ple processes explained variability in functional traits, their covaria‐
tions, and hence in syndromes of functional traits. For instance, we 
found evidence for adaptive mechanisms (plasticity and/or selec‐
tion) related to water temperature and/or predation for explaining 
the covariation between body mass and metabolic rate. In parallel, 
we found that other traits and covariations were consistent with 
the hypothesis that genetic drift is sufficient to explain variability, 
which would suggest that even nonadaptive processes could sustain 
intraspecific variation in functional traits. Finally, we do not detect 

TA B L E  1  Results of the model selection to explain the variability of functional traits and their covariations among populations. All 
possible phylogenetic models (PGLS, see the main text) were run for each trait and then compared based on AIC. Bold values represent 
models that fell in a ΔAIC <4

λ (p‐value)

Models

Null Temperature Predation
Temperature 
and predation

Temperature‐by‐ 
predation

Mass 0.87 (0.12) 7.982 7.018 9.997 0 0.194

Metabolism 0.74 (0.19) 0 1.451 1.997 2.907 4.547

Excretion 0 (1) 0 1.016 1.67 2.952 4.521

boldness 0.55 (1) 0 1.982 1.932 3.925 5.924

Mass–metabolism 0 (1) 4.123 3.528 1.966 3.929 0

Mass–excretion 0 (1) 0 1.411 1.8 0.732 1.617

Mass–boldness 0 (1) 0 1.93 1.057 2.559 2.27

Metabolism–excretion 0 (1) 2.719 4.611 4.64 5.963 0

Metabolism–boldness 0 (1) 0.35 1.698 0 1.757 3.332

Excretion–boldness 0 (1) 0 1.102 1.853 2.862 3.639

F I G U R E  3   Interaction between temperature (°C) and predation pressure (ind.m2) explains the variation in body mass (a), and in the 
covariation between body mass and metabolic rate (b). The R2 and the p‐values are extracted from the best models based on AIC selection 
(see Table 1), and “Pint” represents the p‐value for the interaction between temperature and predation
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any evidence of evolutionary conservatism in any of the functional 
traits nor in their covariations.

We showed that body mass, metabolic rate, and excretion rate 
differed among populations more than expected by genetic drift 
only, suggesting trait divergences arose from selection and/or devel‐
opmental plasticity. Although our design does not allow selection to 
be teased apart from developmental plasticity, our findings are theo‐
retically sound and may suggest adaptation to environmental condi‐
tions since the decrease in body mass with temperature is expected 
for ectotherms (Daufresne, Lengfellner, & Sommer, 2009). Here, we 
found that both temperature and predation intensity affected body 
mass. We can speculate that higher body mass could allow minnows 
to reach a size refuge from predators, and/or to increase their loco‐
motor performances to escape predators (Domenici, 2001; Villéger 
et al., 2017). Nonetheless, this result should be interpreted with 
care since our statistical power is weak and because of collinearity 
between water temperature and predation. Indeed, we could alter‐
natively argue (based on the visual inspection of biplot, Supporting 

Information Figure S4) that a quadratic relationship (Supporting 
Information Figure S4) exists between body mass and predation 
pressure that we may fail to properly identify because of the small 
sample size and the collinearity with water temperature (Prunier & 
Blanchet, 2018). Collinearity can, in some cases, lead to inappropri‐
ate conclusions since it is difficult to discriminate the causal links 
among explicative variables, or because model estimates may be bi‐
ased (Prunier & Blanchet, 2018; Prunier, Colyn, Legendre, Nimon, & 
Flamand, 2015). However, since the results are biologically sound, 
we are confident that body mass is adaptively related to environ‐
mental variables. We also found high variability in metabolic and 
excretion rates, which were also likely driven by adaptive mecha‐
nisms (Figure 4). Nonetheless, we failed to detect the environmental 
pressures driving divergences in these two traits. The variability in 
excretion rate probably stands in trophic and stoichiometric fac‐
tors, such as trophic niche, elemental composition of resources, 
or allochthonous nutrient inputs (El‐Sabaawi, Warbanski, Rudman, 
Hovel, & Matthews, 2016; Evangelista et al., 2017), which could be 

F I G U R E  4  Estimates of PST for 
each trait (body mass, metabolic rate, 
excretion rate, and boldness) and for each 
covariation (body mass–metabolic rate, 
body mass–excretion rate, body mass–
boldness, metabolic rate–excretion rate, 
metabolic rate–boldness, and excretion 
rate–boldness), and FST (vertical straight 
line) on neutral microsatellite markers. 
Horizontal bars represent 95% confident 
interval of PST, and vertical dotted line 
represents 95% confident interval of 
FST that were calculated using cluster 
bootstrap procedure
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F I G U R E  5  Syndromes of functional traits among populations of European minnow. Populations F and L were represented as examples in 
panel (a) and (b), respectively. Blue and red arrows denote significant positive and negative covariances, respectively, while the gray arrow 
represents nonsignificant covariance. Syndromes in all populations are displayed in Supporting Information Figure S3
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F I G U R E  6  Covariations between each pair of functional traits: (a) body mass–metabolic rate, (b) body mass–excretion rate, (c) body 
mass–boldness, (d) metabolic rate–excretion rate, (e) metabolic rate–boldness, and (f) excretion rate–boldness. Points represent the average 
trait value for each population, and lines on points represent the covariations (i.e., the slope) between traits within each population. Blue and 
red lines indicate significant (α = 0.05) positive and negative covariations, respectively. The dotted lines represent the relationship between 
traits across the thirteen populations
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characteristic of each geographical site. Hence, measuring stoichio‐
metric variability of individuals and populations would benefit to 
infer hypotheses regarding variability in excretion rate.

We found that traits can not only vary among populations, but 
also that functional traits formed different syndromes among pop‐
ulations of European minnow. Indeed, the sets of covariations were 
different among populations, and multiple patterns were identi‐
fied, with some trait covariations being more robust than others. 
For instance, the allometric relationships between body mass and 
metabolic rate, and between body mass and excretion rate were 
both positive across all populations, but the former was homoge‐
neous among populations (i.e., stable), whereas the latter was het‐
erogeneous and hence more flexible among populations (Figure 6). 
Similarly, the covariation between excretion rate and boldness was 
flexible, confirming that relationships between behavioral and phys‐
iological traits can be complex (Killen et al., 2013). These various 
functional trait covariations among populations subsequently gener‐
ated variability in syndromes. Such variability has been documented 
in behavioral traits (Dingemanse et al., 2007) and morphological 
traits (Berner, Stutz, & Bolnick, 2010), but rarely among multiple 
types of traits. The various biological mechanisms—such as pleiot‐
ropy or allometry—underlying the links among traits might therefore 
be modulated differently among populations, resulting in difference 
of syndromes (Peiman & Robinson, 2017). Hence, it would be worth 
further investigating the biological mechanisms driving trait covari‐
ations to better appraise the variability of functional syndromes 
(Killen, Atkinson, & Glazier, 2010; Raffard et al., 2017).

Although we detected variability in syndromes of functional 
traits, the lack of determinants (i.e., temperature or predation) 
and the low PST values for most covariations suggest that a non‐
negligible part of the heterogeneity in syndromes variability 
may—in our case—arise from the effect of genetic drift. Actually, 
the relationship between body mass and metabolic rate was the 
only covariation whose variability was likely driven by adaptive 
mechanisms. Indeed, as revealed by the PST/FST analysis and the 
trait–environment analysis, we found evidence that selection 
and/or plasticity associated with predation pressure and water 
temperature may drive variation observed among populations. 
Previous works have reported variability in the allometric rela‐
tionship between body mass and metabolic rate at both inter‐ and 
intraspecific levels in many organisms (Bokma, 2004; Glazier, 
2005; Seibel, 2007). Here, covariations increase as temperature 
decreases and predation increases (Figure 2b). Although this 
should be interpreted with care (see statistical caution above), 
the metabolic allometry might vary allowing individuals to op‐
timize energetic efficiency under different environmental con‐
straints (Glazier, 2005; Killen et al., 2010). Fish can notably adapt 
their lifestyle to increase or decrease their energetic assimilation 
in order to cope with biotic and abiotic constraints, such as pre‐
dation (Killen et al., 2010). This confirms that trait architecture 
within populations can be complex, and—in some cases—allow 
individuals to adapt/acclimatize to their environment (Peiman & 
Robinson, 2017).

To conclude, we found that syndromes in functional traits can 
strongly vary among populations, and that both adaptive (natural se‐
lection and/or plasticity) and nonadaptive processes (genetic drift) 
are driving intraspecific heterogeneity in these syndromes. Since 
functional traits can affect ecological processes (Lavorel & Garnier, 
2002; Raffard et al., 2017; Violle et al., 2007), the variability in func‐
tional syndromes may exert puzzling effects on ecological processes. 
For instance, the variability in covariations involving excretion rate 
may have implications for the dynamics of nutrient recycling and 
ecological stoichiometry (Atkinson, Capps, Rugenski, & Vanni, 2017; 
Vanni, 2002); while in some populations, large individuals should ex‐
crete a high quantity of nitrogen, they should excrete a low quantity 
of nitrogen in other populations, with potential consequences for 
primary production (Evangelista et al., 2017; McIntyre et al., 2008). 
Variability of syndromes may have further ecological effects through 
trophic mechanisms since individuals with different functional traits 
may have different trophic niches (Villéger et al., 2017). Trophic vari‐
ability can subsequently affect community structure and ecosystem 
functioning (Des Roches, Shurin, Schluter, & Harmon, 2013). Further 
studies should aim to experimentally test how heterogeneity in func‐
tional syndromes is acting on ecological dynamics.
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