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Abstract

Context Anthropogenic activities readily result in

the fragmentation of habitats such that species persis-

tence increasingly depends on their ability to disperse.

However, landscape features that enhance or limit

individual dispersal are often poorly understood.

Landscape genetics has recently provided innovative

solutions to evaluate landscape resistance to dispersal.

Objectives We studied the dispersal of the common

meadow brown butterfly, Maniola jurtina, in agricul-

tural landscapes, using a replicated study design and

rigorous statistical analyses. Based on existing behav-

ioral and life history research, we hypothesized that

the meadow brown would preferentially disperse

through its preferred grassy habitats (meadows and

road verges) and avoid dispersing through woodlands

and the agricultural matrix.

Methods Samples were collected in 18 study land-

scapes of 5 9 5 km in three contrasting agricultural

French regions. Using circuit theory, least cost path

and transect-based methods, we analyzed the effect of

the landscape on gene flow separately for each sex.

Results Analysis of 1681 samples with 6 microsatel-

lites loci revealed that landscape features weakly

influence meadow brown butterfly gene flow. GeneElectronic supplementary material The online version of
this article (doi:10.1007/s10980-016-0348-z) contains supple-
mentary material, which is available to authorized users.
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flow in both sexes appeared to be weakly limited by

forests and arable lands, whereas grasslands and

grassy linear elements (road verges) were more likely

to enhance gene flow.

Conclusion Our results are consistent with the

hypothesis of greater dispersal through landscape

elements that are most similar to suitable habitat. Our

spatially replicated landscape genetics study allowed

us to detect subtle landscape effects on butterfly gene

flow, and these findings were reinforced by consistent

results across analytical methods.

Keywords Agricultural landscape � Gene flow �
Landscape resistance � Lepidoptera � Linear mixed-

effect model � Movement � Spatial replication

Introduction

As a consequence of climate and land use change,

species have to adapt to increasingly challenging

conditions. To do so, they can remain in the same

places and modify their phenotypic and genotypic

variations to improve their fitness, or/and they can

disperse in search of better environmental conditions.

In this context, dispersal—the movement of individ-

uals that can sustain gene flow (Ronce 2007)—is of

increasing interest. The resistance of the landscape

mosaic to dispersal is not homogeneous; some land-

scape features can enhance dispersal whereas others

act as barriers (Taylor et al. 1993). A variety of

research approaches have been used to estimate

landscape resistance to dispersal, including telemetry

or tracking studies, and movement data analysis

(Zeller et al. 2012). However, these direct methods

are not feasible for all species and are time- and labor-

consuming. Furthermore, they quantify short term

dispersal and may miss rare long distance events that

can be critical to maintaining gene flow among

populations (Nowicki et al. 2014). Finally, most direct

observations of dispersal focus on the process, but

make no assessment of the outcome (i.e. reproductive

success, Baguette et al. 2013).

Indirect method based on gene flow estimates

reflects dispersal events across generations accounting

for reproductive success, thus quantifying ‘effective

dispersal’ (i.e. dispersal plus reproductive success),

and giving a more integrative view of landscape

effects on movement. Recently, landscape genetics—

a research discipline which combines landscape

ecology, population genetics and spatial statistics—

has begun to provide alternative means to evaluate

landscape resistance to multi-generational plant and

animal dispersal (Manel and Holderegger 2013).

Landscape genetics relies upon the fact that dispersal

plus reproduction drive gene flow, so assessing the

relationship between genetic patterns and landscape

structures can provide insight into how landscape

features impede or support dispersal.

To assess the relationship between genetic patterns

and landscape structures, landscape modeling is often

used in landscape genetics studies to conceptualize

and synthesize the interactions between environmen-

tal conditions and individual behavior. It is important

to recognize the assumptions and limitations inherent

to different modeling approaches: least cost path

(Adriaensen et al. 2003) assumes a unique path

between two locations, hypothesizing that individuals

perceive their environment in a way that leads them to

‘‘select’’ the optimal path, whereas circuit theory

(McRae et al. 2008) evaluates all possible pathways,

assuming that movements follow random walks. Both

methods require parameterizing resistance surfaces

with cost values reflecting energy cost, mortality risk,

or the willingness of the species to traverse landscape

features or cross ecotones. Parameterizing resistance

surfaces has been highly criticized in previous studies

because it often relies on expert opinion (Rayfield

et al. 2010; Spear et al. 2010; Koen et al. 2012). A

simpler approach is to use a transect-based or strip-

based analysis (Pavlacky et al. 2009; Emaresi et al.

2011), which avoids these subjective parameterization

issues, but implicitly assumes rectilinear migration

routes (Spear et al. 2010). Transect-based methods can

be used to quantify not only landscape composition

(i.e. the proportion of each land use), but also

landscape configuration (e.g. patch density, Coster

et al. 2015) between each pair of locations. The width

of the transect reflects the distance at which the species

perceives its environment—its perceptual range
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(Emaresi et al. 2011). As resistance methods (i.e.

circuit theory and least cost path) and transect-based

methods rely on different theoretic assumptions and

because each method has its own advantages and

drawbacks, it is worth comparing them in explaining

biodiversity patterns (Zeller et al. 2012).

In this study, we used these three analytical methods

to test hypotheses concerning how butterflies disperse

through the landscape. Butterflies are emblematic of

agricultural landscapes but their populations have

declined dramatically in recent decades, mainly

because of the loss and fragmentation of their habitats

(EEA 2013). We chose to focus on the meadow brown

butterfly (Maniola jurtina), a widespread butterfly

capable of dispersing 50–300 m, depending on studies

(Schneider 2003; Stevens et al. 2013).

Our first objective with this study was to determine

the best analytical approach for modeling landscape

effects on butterfly dispersal, as measured by gene

flow. Indeed, comparing the models fits obtained with

transect-based analysis, least cost path and circuit

theory would give us insight into how butterflies

perceive and disperse across the landscape. Then, we

sought to determine which landscape features enhance

and inhibit dispersal in a grassland butterfly in

agricultural landscapes.

Following the expectation of greater dispersal

through favorable habitats than through non-habitats

(Eycott et al. 2012), we hypothesized that suit-

able habitats for meadow brown butterflies such as

grasslands, forest edges and, to a lesser extent, road

verges, green lanes and grassy field margins would

enhance gene flow, whereas arable lands and forest

interiors would limit their movements. We predicted

that terrain irregularity would inhibit butterfly effec-

tive dispersal (effect detected in other taxa: Dickson

et al. 2005; Watts et al. 2015), and that solar exposure

would enhance the movements of this ectotherm

(Cormont et al. 2011). In addition, as the dispersal

behavior of the meadow brown butterfly is known to

differ between sexes (Brakefield 1982; Ducatez et al.

2014), we assumed that the response to landscape

features would also differ between sexes. Specifically,

because males actively and intensively search for

females, we expected a lower resistance of all

landscape features in males than in females.

To test these hypotheses, we used a replicate

landscape-level sampling design with 18 study land-

scapes of 5 9 5 km located in three contrasting

regions in France, with six replicate landscapes per

region. Because the distribution of the meadow brown

butterfly is continuous rather than patchy in our study

landscapes, making delineation of population bound-

aries challenging, we utilized an individual-based

sampling design (Landguth and Schwartz 2014). This

sampling scheme also enhances the power of statis-

tical analyses by increasing the number of sampling

points, while keeping sample size constant (Prunier

et al. 2013).

Methods

Study species

The meadow brown butterflyM. jurtina is a univoltine

species broadly distributed throughout Europe. This

butterfly inhabits meadows, and to a lesser extent, road

verges, glades, hedgerows and forest paths, where its

caterpillars feed on a variety of grasses (Festuca spp.,

Agrostis spp., Brakefield 1982). Although it is an

abundant butterfly in France, meadow brown butterfly

has been declining over the two last decades (EEA

2013) and is suffering from habitat loss in intensively

cultivated landscapes where the patchiness of remnant

suitable habitats makes dispersal ability crucial (De-

lattre et al. 2013a). The meadow brown butterfly is an

intermediate disperser with mean dispersal distances

reported to range from 50 to 300 m (Öckinger and

Smith 2007; Ouin et al. 2008; reviewed in Schneider

2003; Stevens et al. 2013). While capable of dispers-

ing several kilometers (Schneider et al. 2003), most

meadow brown butterflies are quite sedentary, spend-

ing their whole lifetime in a small area (Grill et al.

2006).

The choice of the study species was a compromise

between availability of neutral molecular markers, the

abundance of the species in all our agricultural study

landscapes and species traits (specialization and

dispersal). Indeed, among the few butterfly species

for which markers are available, most are either

protected, rare/absent in France or infrequent in

farmland. The meadow brown butterfly is a model

species which has been studied for decades, and its

biology (Brakefield 1982) and ecology (Conradt and

Roper 2006; Öckinger and Smith 2007) are well

known. With this foundation of knowledge, we were

able to develop an appropriate and robust sampling
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scheme to test hypotheses about meadow brown

butterfly movement and landscape resistance.

Study sites

Our study took place in three contrasting agricultural

regions in France (Fig. 1). The northernmost region,

Burgundy, is dominated by annual crops (cereals, corn

and oilseed); mean elevation is 200 m (range

115–286 m). The second region, Aquitaine, is dom-

inated by of vineyards interspersed with woodland and

grassland patches; topography is flat [mean elevation:

63 m (4–133 m)]. The southernmost region, the hills

and valleys of Gascony, is a crop-livestock farming

system with many small woods embedded in a mosaic

of crops, grasslands and hedges; elevation ranges from

166 to 400 m (mean: 267 m).

Field sampling

In the three regions, we used a landscape-level

sampling design with six replicated 5 9 5 km land-

scapes per region (see Appendix A1 as Supplementary

Material for the methodology applied to select each

study landscape and the main characteristics of these

landscapes). In each of the 18 landscapes, our

objective was to collect tissue from two males and

two females at 25 locations randomly selected on a

regular 500 9 500 m grid (Fig. 1). The grid was

placed 500 m away from the border of the study

landscape (buffer zone, Fig. 1) to limit border bias

effect on the estimation of landscape resistance

between pairs of locations near the boundaries of the

study landscape (Koen et al. 2010). If fewer than 4

samples were collected at the selected locations,

additional locations were chosen to obtain 100 genetic

samples per study landscape. Genetic sample was

collected by removing a leg, which was stored in 95 %

EtOH at -20 �C until DNA extraction. To avoid

sampling the same individual twice, we always

removed the same leg from all butterflies (left leg of

the prothorax).

In summer 2013, we collected a total of 1681

samples: an average of 94 meadow brown butterflies at

18–30 locations (mean = 26.1) per study landscape.

At each location, we collected from one to seven

meadow brown butterflies (mean = 3.7). We obtained

1.9 times more males than females (Table S1 in

Supplementary Material), despite our attempt to

follow a sex-balanced sampling design.

Genotyping and genetic analyses

DNA extraction, PCR amplifications and genotyping

were performed as described in Richard et al. (2015)

using 15 microsatellite loci (Mj0008, Mj5287, Mj5647,

Mj5563, Mj7132, Mj0247, Mj3956, Mj5522, Mj7232,

Mj0283, Mj2410, Mj3637, Mj4870, Mj5331, Mj0272).

Fig. 1 Sampling design. Three regions and six 5 9 5 km study landscapes per region were considered. In each study landscape,

sample locations were randomly selected on a regular 500 9 500 m grid placed 500 m away from the border
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We used Genepop (Rousset 2008) to test for linkage

disequilibrium among pairs of loci, and the R package

‘popgenreport’ (Adamack and Gruber 2014) to obtain

the number of alleles per marker. We also used

Genepop to detect the presence of null alleles, a

phenomenon known to be frequent in Lepidoptera

(Meglecz et al. 2004), and discarded markers with

high null allele frequency rates ([0.2). To test for

possible sex-biased gene flow in the meadow brown

butterfly, we analyzed the data for each sex separately.

There was no linkage disequilibrium between pairs

of loci, but locus Mj2410 showed sex linkage: all the

females were homozygotes. Evidence of frequent null

alleles ([0.2) was detected at loci: Mj5522, Mj5287,

Mj5647, Mj3956, Mj5563, Mj0272, Mj0283 and

Mj3637. As a consequence, we only retained loci

Mj0008, Mj7132, Mj0247, Mj7232, Mj4870 and

Mj5331 in further analyses (see descriptive statistics

in Table 1). Only complete genotypes for the six

selected microsatellite markers were analyzed, leading

to a total sample size of 1526 samples (92 % of the

samples collected, 1000 males, 526 females).

With the six retained loci, we estimated inter-

individual genetic distances and calculated the mean

genetic distances between individuals for each pair of

locations within the same landscape. We tested the

Kosman (Kosman and Leonard 2005) and Smouse

(Smouse and Peakall 1999) genetic distances (both

computed with the R package ‘popgenreport’)—two

metrics widely used in individual-based landscape

genetics studies (Adamack and Gruber 2014).

Landscape genetics analyses

For each study landscape, we combined available

national GIS data to obtain a preliminary land use

map, then corrected and updated this map with aerial

photographs and field observations (Appendix A1 as

Supplementary Material). Our final maps distin-

guished eight land uses: woodlands, woodland edges,

semi-natural grasslands, arable lands, roads, built-over

areas, grassy strips (road verges, grassy field margins

and green lanes) and vineyards/orchards. Built-over

areas were not retained for subsequent analyses

because they represented a very small fraction of the

landscapes (mean cover: 3 % ± 1 SD). We used a

30 m digital elevation model and the Geomorphom-

etry and Gradient Metrics Toolbox for ArcGIS 10.2

(Evans et al. 2014) to derive topographic roughness

(rough), and heat load index (hli). Topographic

roughness is a measurement developed by Riley

et al. (1999) to express the elevation difference

between adjacent cells of a digital elevation grid.

Heat load index takes into account latitude, slope, and

aspect to quantify solar exposure (McCune and Keon

2002).

We utilized two different resistance methods, least

cost path and circuit theory, to assess the influence of

different landscape features on butterfly movement.

For both methods, we hypothesized that each land use

can either reduce or enhance gene flow (Prunier et al.

2014). To test for both conductance and resistance

effects, we created two resistance surfaces for each

land use and each topographic feature (i.e. topographic

roughness and heat load index). All resistance surfaces

had a cell size of 100 x 100 m (a compromise between

precision and computation time). We first created a

resistance surface to test for resistance to gene flow

where pixel values were the proportion of the land use

in the cell or mean roughness, and heat load index. We

then created the inverse resistance surface (1/propor-

tion) to consider conductance instead of resistance

Table 1 Main characteristics of the six selected microsatellite markers for the meadow brown butterfly

No. of alleles Null allele rate He Ho

Males Females Males Females Males Females Males Females

Mj0008 10 7 0.01 0.01 0.101 0.099 0.091 0.088

Mj7132 20 17 0.06 0.06 0.856 0.866 0.731 0.735

Mj0247 59 53 0.10 0.09 0.955 0.951 0.765 0.771

Mj7232 17 17 0.14 0.14 0.843 0.843 0.615 0.616

Mj4870 13 13 0.16 0.20 0.690 0.711 0.453 0.435

Mj5331 29 27 0.02 0.03 0.903 0.904 0.852 0.835

Number of alleles, null allele frequencies, expected and observed heterozygosis (He and Ho) are given for males (N = 1000) and

females (N = 526)
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(Fig. 2). This method, based on raw maps, reduces

subjectivity in assigning cost values. In addition, to test

for isolation by distance (IBD), we created a homoge-

neous resistance surface where all pixel values were

equal to 1. To summarize, we created 2 9 9 ? 1 = 19

resistance surfaces (where 2 = one surface to test for

resistance ? one to test for conductance; 9 = seven

land uses ? two topographic features; 1 = the IBD

resistance surface). For all resistance surfaces, values

were rescaled between 0.01 and 100 before least cost

path and circuit theory calculations. We computed

least cost paths with the R package ‘gdistance’ (van

Etten 2014), and usedCircuitscape (McRae et al. 2008)

to calculate current flow across each landscape

(Fig. 2). We obtained least cost path and electric

current values between each pair of locations for the 19

resistance surfaces, then each of these values was used

as an explanatory variable in separate regression

analyses (after center-scale transformation). Specifi-

cally, for each region, sex, method (i.e. circuit theory

and least cost path) and resistance surface, the R

package ‘nlme’ was used to fit linear mixed-effect

models to the data (Pinheiro et al. 2015), with the R

function corMLPE (https://github.com/nspope/

corMLPE) to account for multiple memberships with

maximum likelihood population effects parameteri-

zation (MLPE, Clarke et al. 2002). In our case, the term

‘‘population’’ in MLPE referred to sample location.

Selected land use: woodland

Width:
200 m

Resistancesurface

(A)

(B)

(C)

(D) Conductance surface

(E)

Transect based
method

Circuit theory

Least cost path(F)

Land use map

Width:
500 m

Width:
1000 m

Fig. 2 Flow-chart of methods used to assess landscape effect

on gene flow; example with two locations. a Land use map of the

study landscape. b Selection of a particular land use class, here

woodland (in black). c Illustration of the transect-based method.

d Creation of the two inverse resistance surfaces reflecting

woodland resistance and conductance hypotheses (black high

resistance value, white low resistance value). e Electric current
if we consider woodland as a dispersal enhancer (above) or as a

barrier (below). f Least cost paths if we consider woodland as a

dispersal enhancer (above) or as a barrier (below)
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Indeed, all the locations were present in different pairs,

causing some statistical dependency among pairwise

distanceswhen they shared a location (e.g. pairs i–j and

i–k, sharing the location i, Clarke et al. 2002). The

covariate structures of the models incorporated a

parameter q, which is the proportion of the variance

corresponding to that correlation between pairwise

distances. In all the models, pairwise genetic distance

was used as the dependent variable, and resistance

distance between locations (electric current or least

cost path) as the independent variable. In addition, we

included study landscape as a random factor.Data from

each region and sex were analyzed separately. We

compared the models for each resistance surface (in-

cluding the IBD surface) to the null model (no fixed

effect) with the same random effect structure. We

estimated model fit with the marginal coefficient of

determination for generalized mixed-effect models

with Nakagawa & Schielzeth’s R2 (Nakagawa and

Schielzeth 2013) from theRpackage ‘MuMIn’ (Bartoń

2013).

For the transect-based method, we delineated a

rectangular area in a straight line between each pair of

sample locations. In this transect, we estimated the

proportion and patch density of each intervening land

use and centered-scaled these proportions by region

(Fig. 2). Mean topographic roughness and heat load

index were also estimated in each transect. Dispersal

strategies depend on the perceptual range of the

species under study (Zeller et al. 2012); we therefore

tested different transect widths to determine the

corridor width between pairs of locations that best fit

our data. Consequently, we applied the transect-based

method with 200, 500 and 1000 m wide transects

(Fig. 2). We used a model selection method similar to

that described for resistance methods: for each sex,

region and transect width, we used linear mixed-effect

models with anMLPE correlation structure. To test for

IBD, we compared the null model (with intercept

only) with a model with the distances between each

pair of locations. Contrary to the two resistance

methods, the transect-based approach allowed us to

test for multiple effects without subjective assump-

tions (van Strien et al. 2012). We determined the best

model by sequentially adding explanatory variables to

the null model. We continued this stepwise procedure

until the next variable to be added failed to reduce AIC

by 2 points or more (Burnham and Anderson 2002).

Collinearity between explanatory variables was tested

and only uncorrelated variables (correlation thresh-

old\0.5) were included in the same model. All

statistical analyses were performed in R 3.0.2 (R Core

Team 2013).

To determine the best analytical approach to model

butterfly dispersal in farmland, we compared models

fits obtained with least cost path, circuit theory and

transect-based analysis.

Results

The Smouse and Kosman metrics were highly corre-

lated (Pearson = 0.86, p\ 0.001) and led to similar

conclusions (Table 2 and Table S2 in Supplementary

Material). Thus, we only present below the results

from the Kosman metrics (see Table S2 in Supple-

mentary Material for the results obtained with the

Smouse metric). Models that were lower than the null

model by 2 AIC points are displayed in Table 2.

The null model was often the best one (Table 2) and

environmental factors only explained a very small

proportion of the genetic differentiation between pairs

of male and female meadow brown butterflies in the

three study regions (all Rm
2 \ 5 %, Table 2).

Our analyses revealed some significant and consis-

tent trends across regions: (1) grasslands enhanced

gene flow in males in Gascony (transect-based method

500 m: p\ 0.05) and in females in Aquitaine (tran-

sect-based method 200 m: p\ 0.05, transect-based

method 500 m: p\ 0.001); (2) roads—a proxy for

grassy road verges—conducted females in Burgundy

(least cost path: p\ 0.05) and males in Gascony

(transect-based method 1000 m: p\ 0.05); (3) arable

lands limited males (transect-based method 100, 250

and 500 m: p\ 0.05) and females dispersal in

Aquitaine (circuit theory: p\ 0.05, least cost path:

p\ 0.001), despite an opposite effect detected for

females in Aquitaine (transect-based method 500 m:

p\ 0.05); (4) woodland and woodland edges seemed

to impede gene flow for females in Gascony (least cost

path: p\ 0.05) and males in Burgundy (circuit theory:

p\ 0.05, least cost path: p\ 0.05), (5) IBDwas never

detected, and (6) topographical features—roughness

and heat load index—were never selected.

In summary, among sexes and regions, none of the

three analytical methods seemed to outperform the

other ones, but the analytical approaches converged to

identify grasslands and, to a lesser extent, grassland-
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Table 2 Models with the Kosman distance for each analytical approach, region and sex. Models 2 AIC points lower than the null

model are displayed

Method Region Sex Effect(s) of the variable(s) selected q p value Rm
2 Rc

2

Wood W.edge Arable Road Grassld

Circuit theory Aquitaine Males 0.21 0.000 0.000

Females - 0.14 * 0.011 0.092

Burgundy Males - 0.22 * 0.004 0.012

Females 0.21 0.000 0.000

Gascony Males 0.20 0.000 0.000

Females 0.11 0.000 0.000

Least cost path Aquitaine Males 0.21 0.000 0.000

Females - 0.14 ** 0.038 0.115

Burgundy Males - 0.21 * 0.003 0.017

Females ? 0.20 * 0.006 0.006

Gascony Males 0.20 0.000 0.000

Females - 0.11 * 0.018 0.018

Transect-based method

200 m

Aquitaine Males - 0.21 * 0.003 0.003

Females ? 0.14 * 0.007 0.085

Burgundy Males 0.22 0.000 0.009

Females 0.21 0.000 0.000

Gascony Males 0.20 0.000 0.000

Females 0.11 0.000 0.000

Transect-based method

500 m

Aquitaine Males - 0.21 * 0.004 0.004

Females ? ?a 0.15 * and

**

0.018 0.114

Burgundy Males 0.22 0.000 0.009

Females 0.21 0.000 0.000

Gascony Males ?a 0.20 * 0.003 0.003

Females 0.11 0.000 0.000

Transect-based method

1000 m

Aquitaine Males - 0.21 * 0.006 0.006

Females 0.15 0.000 0.086

Burgundy Males 0.22 0.000 0.009

Females 0.21 0.000 0.000

Gascony Males ? 0.20 * 0.004 0.004

Females 0.11 0.000 0.000

Effect(s) of the variable(s) selected (-: limits gene flow, ?: enhances gene flow), q, p value(s), Rm2 and Rc2 are given. If no ‘?’ or

‘-’ is indicated, it means that the null model is the best supported. For least cost path and circuit theory, we tested simple mixed

effects regression models. In the transect-based analyses, we tested additive mixed effects regression models; if more than one

variable was selected, Rm
2 , Rc

2 and q correspond to the best additive model

Arable proportion of arable lands, grassld proportion of grasslands, g.strip proportion of grassy strips, road proportion of roads, wood

proportion of woodlands, w.edge proportion of woodland edges. Rm
2 , Rc

2 marginal and conditional coefficients of determination of the

generalized mixed-effect model (Nakagawa and Schielzeth 2013), q proportion of the total variance that results from a correlation

between two pairwise observations involving a common location, the maximum value of 0.5 occurring when the individual inter-

location effect is large

Significance levels: * p\ 0.05, ** p\ 0.01
a Patch density of the respective habitat was selected instead of proportion
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like linear habitats as enhancing gene flow; whereas

arable lands, woodlands and woodland edges gener-

ally impeded gene flow (Table 2).

Discussion

Our sampling design combined three regions, 18 study

landscapes, randomly selected sampling sites and

individual-based analyses. We compared three ana-

lytical approaches relying on different assumptions of

how animals perceive and navigate in the landscape

during dispersal (strait-line path, least-cost-path or

random walk). We carried out statistical analyses that

explicitly take into account the non-independence of

pairwise genetics data and consider multiple study

landscapes. Results showed that the analytical meth-

ods used and the explanatory variables tested had

limited ability to explain the pairwise genetic differ-

entiation of the meadow brown butterfly in our studied

landscapes. However, our replicated sampling design

combined with multiple analytical approaches gave us

the ability to detect and corroborate subtle effects of

landscape features on dispersal. Indeed, we found that

woodlands and arable lands limited meadow brown

butterfly gene flow, whereas grasslands and grassy

linear elements tended to enhance effective dispersal.

Landscape weakly impacts meadow brown

butterfly genetic structure

In the three study regions, for both sexes and all

analytical approaches, landscape features had a small

but measurable effect on gene flow. This result is not

rare in landscape genetics studies (Broquet et al. 2006;

Harrisson et al. 2012; Hahn et al. 2013; Coster et al.

2015; Meyer et al. 2015) and can result from different

factors (see below).

There was no IBD effect between locations up to

4 km apart, nor even between study landscapes sepa-

rated from one another by up to 60 km (results not

shown). The absence of a relationship between genetic

and geographic distances is expected when either gene

flow or genetic drift are dominate in shaping population

structure (Phillipsen et al. 2015). Here, we suspect that

gene flow is high across the regions because inter-

landscape Fst values are very low (0.005 on average,

Table S3 as Supplementary Material). In addition, an

allozyme study showed that genetic differentiation

among the meadow brown butterfly populations is

rather weak (Schmitt et al. 2005).

The type and magnitude of landscape effects on

gene flow depend on species’ biological characteris-

tics (Engler et al. 2014) and landscape context

(Jaquiéry et al. 2011; Graves et al. 2012; Cushman

et al. 2013). High abundance, low specialization, and

high dispersal ability are traits often linked with low

genetic differentiation in butterflies (Habel et al.

2013). The meadow brown butterfly is abundant and

can utilize resources in the arable mosaic, which can

make dispersal easier by reducing energy costs. Small,

grassland-like, sub-optimal habitats such as grassy

field margins and road verges can provide temporary

shelter and feeding opportunities, and facilitate but-

terfly movements between suitable patches. Thus, the

weak effect of landscape features on the genetic

structure of the meadow brown butterfly could reflect

ecological characteristics and/or disequilibrium

between genetic drift and gene flow.

Meadow brown butterfly dispersal in farmland

In general, animals disperse more through favorable

habitats than through non-habitats (Eycott et al. 2012),

but counterintuitive results showing an increase in

movement through sub-optimal or low quality habitats

have also been evidenced (Peterman et al. 2014;

Prunier et al. 2014). Even though we only detected

weak effects of environmental conditions on butterfly

gene flow, our findings are mainly consistent with the

hypothesis that dispersal is greater through landscape

features similar in structure to the preferred habitat.

Indeed, we found that grasslands and grassy linear

landscape elements enhanced gene flow, which can be

due to higher resource availability and population

density of the species in such environments (Eycott

et al. 2012). The negative effect of woodlands on

dispersal detected in this study can be linked to the

lack of sunlight butterflies need to fly in forest interior,

but also to the physical resistance of the thick

vegetation structure in forest that can limit move-

ments. Arable lands support fewer resources and

shelters. Dispersal through such environments can be

costlier—reducing reproductive success—and risk-

ier—decreasing survival rate—explaining the resis-

tance to gene flow we observed.

The patterns we detected are concordant with mark

recapture studies on this species: Kindlmann et al.
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(2004) and Ouin et al. (2008) found that woodlands

and crops had a negative effect on movements,

whereas grassland cover could enhance movements

depending on the study site. Moreover, the positive

effect of linear landscape elements we detected

concurs with Delattre et al. (2013b): through direct

movement monitoring, they showed that grassy field

margins support a corridor function by enhancing

meadow brown butterfly effective dispersal. So, even

if meadow brown butterfly abundance and survival

rates are lower in linear elements (Öckinger and Smith

2007), these landscape features can still play a role in

their dispersal.

Analytical approaches in landscape genetics

Each analytical approach relies on specific assump-

tions of how animals perceive and navigate the

landscape during dispersal (transect-based method:

straight-line path, least-cost-path: optimal path selec-

tion, circuit theory: random walk). If one of these

methods had outperformed another, this could have

provided insight into meadow brown butterfly disper-

sal behavior in farmland. Unfortunately, the low fit of

our models prevented comparisons among the analyt-

ical approaches and among sexes.

In the future, it could be promising to compare our

results to those we would obtain applying individual-

based models which simulate individual dispersal

strategies. Such models can incorporate stochasticity

and model movement behaviors in more details and

with more ‘realism’ (Palmer et al. 2014). Somemodels

already exist for the meadow brown butterfly (Kindl-

mann et al. 2005; Aviron et al. 2007) and their

adaptation to our study contexts could improve our

understanding of the genetic patterns we observed.

Notwithstanding the assessment of alternative

hypotheses about how butterflies perceive and disperse

through the landscape, using multiple approaches and

replicating study landscapes (Short Bull et al. 2011)

can help increase the ability to detect subtle effects.

Despite the limited amount of variance explained in

our study, some signals are consistent among regions,

sexes, analytical approaches, and genetic metrics, thus

providing confidence in our inferences.

Although the different analytical methods we used

provided complementary information and robustness,

we note that the transect-based method produces

models which are both easy to compute and easy to

interpret. Moreover, it allows us to test for multiple

effects (additive effects of landscape variables) with-

out subjective assumptions. This is not currently

possible with resistance methods, even though the

simultaneous optimization of multiple surfaces is a

promising avenue (Peterman 2014; Peterman et al.

2014).

Study limitations

Similar to Richard et al. (2015), we detected a high

frequency of null alleles in many loci. Null alleles are

known to be an issue in insect genetics, particularly in

butterflies, because of high mutation rates which can

affect flanking regions of microsatellites (Meglecz

et al. 2004). Null alleles are particularly troublesome

with individual-based sampling scheme becausemeth-

ods to correct for the presence of null alleles are only

available at the population level (Chapuis and Estoup

2007). As a consequence, we used relatively few

markers which limited our ability to make rigorous

statistical inference. In addition, given the weak

effects of landscape features we detected, our results

have to be taken with caution.

Further studies including more microsatellite loci

and/or other genetic markers (mtDNA, Single Nucleo-

tide Polymorphism, Amplified Fragment Length Poly-

morphism) on the same species are therefore needed to

verify the patterns we detected. Moreover, an exciting

alternative lies on the development of genomic

approaches to have a greater power to assess dispersal

processes (Petren 2013).

Implications for conservation

In conclusion, this study demonstrates that the land-

scape features in our three study regions had little

impact on meadow brown butterfly gene flow. Habitat

connectivity at the landscape level does not seem to

limit gene flow in this species. We can, however,

suppose that the negative effects of woodlands and

arable lands would impact meadow brown butterfly

dispersal in more heavily fragmented landscapes.

These conclusions would likely extend to other

grassland species with stricter ecological demands

and lower dispersal abilities, thus making habitat

connectivity crucial to ensure dispersal and gene flow

across the landscape. Future research should seek to

further explore this hypothesis.
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