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Climate warming and landscape fragmentation are both factors well known
to threaten biodiversity and to generate species responses and adaptation.
However, the impact of warming and fragmentation interplay on organismal
responses remains largely under-explored, especially when it comes to gut
symbionts, which may play a key role in essential host functions and traits
by extending its functional and genetic repertoire. Here, we experimentally
examined the combined effects of climate warming and habitat connectivity
on the gut bacterial communities of the common lizard (Zootoca vivipara)
over three years. While the strength of effects varied over the years, we
found that a 2°C warmer climate decreases lizard gut microbiome diversity
in isolated habitats. However, enabling connectivity among habitats with
warmer and cooler climates offset or even reversed warming effects. The
warming effects and the association between host dispersal behaviour and
microbiome diversity appear to be a potential driver of this interplay. This
study suggests that preserving habitat connectivity will play a key role in
mitigating climate change impacts, including the diversity of the gut micro-
biome, and calls for more studies combining multiple anthropogenic
stressors when predicting the persistence of species and communities
through global changes.
1. Introduction
Contemporary climate change is a major threat to biodiversity with an expected
extinction rate of 15–37% of species by 2050 [1]. Species may respond to climate
change through two compensatory processes. First, individuals can avoid extreme
climatic conditions by dispersing towards more suitable thermal environments
over small distances [2], a process that offsets climate impacts on populations
and can lead to species range shifts. Second, species can adjust their phenotype
to new environmental conditions through the selection of more adapted pheno-
types or through intra- and inter-generational phenotypic plasticity [3,4]. Both
processes strongly rely on the ability of individuals to disperse. Dispersal controls
species movement distances and hence ability to track their shifting habitat [5].
It further influences the genetic composition of a population through individ-
ual/gene flows [6]. Dispersal is however hampered by the increasing destruction
and fragmentation of habitats [7,8]. This reduces species abilities to track their
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suitable thermal habitats [9] and influences species adaptation to local climate by reducing gene flows [10]. Assessing the effects of dis-
persal ismuchmore challenging and requires better understanding of the complex interplayof climate and fragmentation for ecological
and evolutionary processes [11].

A large body of literature already documented phenotypic changes with climate change and habitat fragmentation, including
changes in reproduction phenology [12,13], physiology [14] or body size [15,16], as well as their interplay [16–18]. However, a still
largely overlooked aspect is the role of host-associated microbiome responses to climate change. In animals, gut microbial sym-
bionts play a key role in many essential host functions and traits related to, for exmaple, metabolism, nutrition, immunity,
behaviour and morphology [19,20]. By harbouring its own genes and functions, the microbiota can thus extend both the functional
and genetic repertoires of the host. The gut microbiome is therefore increasingly considered as the host’s ‘extended phenotype’ [21]
or even ‘extended genotype’ [22]. This, together with microbes’ short generation time and rapid response to environmental
changes [19], suggests that the gut microbiome could play a significant role in the host response to environmental changes
[23]. For example, manipulating microbiome composition can have effects on host thermal tolerance, fitness and acclimation to
heat stress [24,25]. However, because gut microbial community structures are complex and not necessarily adaptive for their
host, the relationship between variations in gut communities and host fitness and their changes with environmental changes
need to be clearly established to draw reliable conclusions on the evolutionary consequences of these changes [19,26,27].

As for any biological community, the gut microbiome is expected to be shaped by four fundamental assembly processes, namely
selection by the host or its biotic/abiotic factors, dispersal, drift and speciation [28], of which exact nature and relative importance is
context or scale dependent [29]. Climate change can positively or negatively affect certain taxa through environmental selection, direct
climate effects, and/or climate-induced changes in host condition and physiology. Short-term responses of the gutmicrobiome diver-
sity and composition towarmer temperatures have been reported in various animals (reviewed in [30]). As found inmany vertebrates
species [30], they usually translate into a reduction in diversity and/or a reduction of Firmicutes abundance, with potential sub-
sequent negative consequences on host survival and health [31], for instance through a decrease of digestive efficiency or energy
assimilation [32]. The gut microbiome composition can also exhibit greater variability among host individuals subjected to thermal
stress. This may result from the decreased abundance of some bacteria taxa that usually fill the ecological niche space available
in the gut habitat (e.g. in terms of food or adherence sites) and/or actively inhibit opportunistic colonization of the gut from the
environmental microbial pool, including pathogens [30]. However, it remains unclear whether these effects remain through
the host-generation time scale, since existing studies report only short-term responses (inferior to 1 year).

Likewise, the gut microbiomemay be involved in the adaptation and phenotypic plasticity of the host through temporal changes in
microbial diversity and composition. These microbial dynamics throughout an individual’s lifespan (hereafter referred to as gut micro-
biome plasticity according to an extended phenotype viewpoint) can arise either from stochastic processes or from the host or
environmental contexts [33] and may or may not have consequences on host phenotype and life history at different temporal scales
[23,34]. Host dispersal can also influence the gut microbiome [35]. For example, high dispersal can increase the number of habitats,
food resources, sexual and social partners experienced by hosts, hence exposing them to a greater diversity of environmental and/or
gut bacterial species (reviewed in [36,37]). At the opposite, habitat fragmentation and host dispersal limitation might homogenize the
gut microbiome across hosts, by increasing the density of individuals locally, and hence of contacts and bacterial transmission between
hosts. Finally, dispersal limitation can also lead to a differentiation of the gut microbiome among populations at the regional scale.

Host dispersal may thus influence the way the gut microbiome responds to climate change. For example, a regional-scale study
of the gut microbiome in isolated versus dispersing moose populations shows that only isolated populations are influenced by
local temperatures, with potential implications in terms of metabolic adaptations [38]. However, such in natura studies do not
allow to disentangle effects of potential confounding factors covarying with climate and habitat isolation. Experimental studies
can circumvent this limitation, but have so far only singularly manipulated the effect of climate change [31,32,39] or connectivity
[35,40], hence precluding potential interactive effects.

Here,weworkon the gutmicrobiomedata sampled during the experiment described in [16]. This studywas built on a previous one
year experiment examining the effect of climate change on the gut microbiome of the common lizard, Zootoca vivipara [31] to perform a
new experiment wherewe investigated the dependency of climate effects on gut microbiome diversity to habitat connectivity for three
years. The experiment is conducted in a semi-natural experimental set-up composed of connected or isolated mesocosms subjected to
climate treatments, a present-day climate and approximately 2°Cwarmer climate, following IPCC’s projections for southern Europe in
2080 [41]. This design allows us to study the impacts of warmer conditions on microbiomewhen lizards could move between thermal
habitats and have access to a cooler microclimate or when they were facing warmer habitats only. The common lizard is a relevant
model species to investigate these questions, because the body temperature, vital functions (e.g. nutrition), and awide range of life his-
tory or extended traits (e.g. growth rate, survival, reproduction, dispersal propensity, gut microbiome) in ectotherms depend on
external temperatures (e.g.[5,31,42–45]). We expect the gut bacterial diversity to be lower in warmer climate, in particular through a
decrease of Firmicutes abundance, as well as changes in compositional similarity among host individuals. We further expect climate
effects to be buffered in more connected habitats through the access to more diverse thermal habitats, food resources and microbial
species pool, as observed for the impacts on life-history traits [16]. Finally, using an extendedphenotype viewpoint, we studiedwhether
changes in host microbial diversity resulted from host survival, microbiome plasticity and host dispersal.
2. Results
(a) Lizard gut diversity over years
We found an overall negative effect of warm climate on gut diversity varying with habitat connectivity (figure 1; electronic sup-
plementary material, table S1). We also found that the interdependency between climate and connectivity became stronger over
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Figure 1. Gut diversity in each climate and habitat connectivity over time. Gut microbiota diversity, calculated as the exponential of Shannon index (exp(H)), in
present-day and warm climates each year for isolated and connected mesocosms.

Table 1. Effects of centred years and warming interaction on the gut microbial diversity as expressed by the exponential Shannon index in isolated (nlizards =
395) and connected mesocosms (nlizards = 230). Age class, sex and snout–vent length were included as covariates. References levels of the factors are present-
day climate, adults, and females. Interactions and parameters were excluded from models according to AIC procedure. Models explain 6.1% and 6.3% of the
marginal variance and 6.1% and 7% of the conditional variance explained, respectively.

parameters estimate SE z-value RI p-value

isolated mesocosms

intercept 21.307 0.923 23.009 1 <0.001***

year 2 −4.079 2.082 1.953 1 0.051

year 3 0.598 1.870 0.319 1 0.750

warm climate −2.924 1.111 2.623 1 0.009**

year 2 × warm climate −2.453 2.915 0.839 1 0.402

year 3 × warm climate −3.074 2.660 1.152 1 0.249

sex −0.554 1.115 0.495 0.52 0.621

age class 0.407 1.134 0.358 0.51 0.720

connected mesocosms

intercept 21.029 1.496 13.986 1 <0.001***

year 2 −3.340 2.656 1.351 1 0.211

year 3 −3.146 2.733 1.140 1 0.254

warm climate −0.285 1.656 1.171 1 0.864

year 2 × warm climate 0.726 3.686 1.196 1 0.845

year 3 × warm climate 9.478 3.669 2.569 1 0.010*

age class −1.152 1.551 0.739 0.63 0.460

sex −0.293 1.515 0.193 0.56 0.847
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time, as shown by the triple interaction between climate, connectivity between mesocosms and centred years effects, with a
slightly stronger interaction between climate and connectivity for year 2 (RI = 1, p-value = 0.510; electronic supplementary material,
table S1), and a much stronger interaction in year 3 (RI = 1, p-value = 0.005; electronic supplementary material, table S1).

In isolated mesocosms, the gut microbiome diversity was 14.4% lower in warm climate across years (table 1). This negative
effect was slightly stronger through time. Indeed, the interactions between warm climate and years 2 and 3 were retained
in the best model but not significant (RI = 1, p-values = 0.402 and 0.249; table 1). By contrast, there was no overall effect of



Table 2. Difference in diversity within major bacterial clades between present and warm climates each year within isolated (nlizards = 395) and connected
mesocosms (nlizards = 230). Estimates show diversity in warm treatment minus diversity in present-day. Models explain 51% and 52% of the marginal variance
and 53% and 54% of the conditional variance explained, respectively.

isolated mesocosms connected mesocosms

phyla estimate s.e. t-ratio p-value estimate s.e. t-ratio p-value

year 1 Actinobacteria 1.141 0.777 −1.469 0.142 0.158 0.851 0.186 0.853

Alphaproteobacteria 0.024 0.777 0.030 0.976 −0.398 0.851 −0.469 0.640

Bacteroidetes 0.054 0.777 0.069 0.945 −0.773 0.851 −0.908 0.365

Deltaproteobacteria −0.149 0.777 −0.192 0.848 −0.327 0.851 −0.384 0.701

Firmicutes −2.342 0.777 −3.016 0.003** −3.129 0.851 −3.678 <0.001***

Fusobacteria −0.088 0.777 −0.113 0.910 −0.119 0.851 −0.140 0.889

Gammaproteobacteria −0.223 0.777 −0.287 0.774 −0.510 0.851 −0.599 0.549

year 2 Actinobacteria −0.213 0.792 −0.269 0.788 0.993 1.051 0.945 0.345

Alphaproteobacteria 0.231 0.792 0.292 0.770 0.503 1.051 0.479 0.632

Bacteroidetes −0.311 0.792 −0.393 0.694 −0.575 1.051 −0.547 0.584

Deltaproteobacteria −0.231 0.792 −0.292 0.771 0.380 1.051 0.361 0.718

Firmicutes −2.854 0.792 −3.605 < 0.001*** −3.058 1.051 −2.910 0.004**

Fusobacteria 0.061 0.792 0.077 0.939 0.132 1.051 0.125 0.900

Gammaproteobacteria −0.661 0.792 −0.835 0.404 −0.015 1.051 −0.014 0.989

year 3 Actinobacteria −0.316 0.646 −0.489 0.625 1.660 1.048 1.584 0.114

Alphaproteobacteria 0.042 0.646 0.065 0.948 0.634 1.048 0.605 0.546

Bacteroidetes −0.226 0.646 −0.350 0.727 1.116 1.048 1.065 0.288

Deltaproteobacteria −0.002 0.646 −0.003 0.998 0.148 1.048 0.141 0.888

Firmicutes −2.211 0.646 −3.420 < 0.001*** 3.955 1.048 3.775 <0.001***

Fusobacteria 0.056 0.646 0.087 0.931 0.034 1.048 0.033 0.974

Gammaproteobacteria 0.619 0.646 0.957 0.339 1.169 1.048 1.115 0.265
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warm climate on gut microbiome diversity across years in connected mesocosms. Instead, we observed a strong positive effect in
year 3 (RI = 1, p-value = 0.010; table 1). Moreover, we found no significant effects of age, sex and body length in models.

Most OTUs belonged to Firmicutes, Proteobacteria (mostly Gamma-, Delta- and Alphaproteobacteria), Bacteroidetes, Actino-
bacteria, Fusobacteria and Epsilonbacteraeota (electronic supplementary material, figure S1). Firmicutes was the only clade whose
diversity was strongly affected by climate and connectivity treatments and was likely responsible for the diversity patterns
observed for the whole community (table 2, electronic supplementary material, figure S2)

(b) Lizard gut composition over years
We found overall weak effects of the climatic and connectivity treatments on the bacterial community composition (PERMANOVA
R2 values < 1.5%; electronic supplementary material, table S2 and electronic supplementary material, method and results)
suggesting either stronger effects of unmeasured biotic/abiotic parameters, or of stochastic assembly processes. Our null model
analysis suggested that both explanations are possible, as 35–38% observed pairwise dissimilarities differed from those expected
by chance (electronic supplementary material, figure S3).

We further analysed differences in OTUs abundance. Only a few OTUs were identified by analysis of compositions of micro-
biomes with bias correction (ANCOM-BC). These were mainly affiliated to Firmicutes (electronic supplementary material, table
S3). Yet, analysing the distribution of log fold changes values from present-day to warm climates, on which the ANCOM-BC is
based, suggests an accumulation of small non-significant differences in OTUs abundances between climate treatments across
years. Indeed, log-fold changes distribution had lower kurtosis in year 1 regardless of the habitat connectivity (electronic sup-
plementary material, figure S4) and exhibited values that were more negative in year 3 for isolated mesocosms and in year 2
and 3 for connected mesocosms.

(c) Host survival, dispersal and microbiome plasticity
Host survival between year t and t + 1 was not related to gut diversity at year t neither in present-day nor in warm climates (elec-
tronic supplementary material, table S4, figure S5). In accordance with previous study [16], climate-dependent survival differed
according to habitat connectivity, with survival decreasing in warm climate in isolated mesocosms while increasing in connected
ones and varying over years (electronic supplementary material, table S4).
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Figure 2. Gut microbiota diversity, calculated as the exponential of Shannon index [exp(H)] depending on dispersal status and climate over the three experimental
years. Residents of present-day and warm climates are respectively in blue and red, and dispersers are in purple.

Table 3. Effects of dispersal status, climate treatment, year centred and their interaction on Shannon diversity. Snout–vent length, age and sex with the initial
mesocosm were considered as covariates. Interactions and parameters not shown in the table were excluded from models according to AIC procedure. References
levels of the factors are present-day climate, alive, adult and female. Interactions and parameters were excluded from models according to AIC procedure.
Models explain 7.6% and 8.9% of the marginal and conditional variance explained, respectively. n = 230.

parameters estimate s.e. z-value RI p-value

intercept 19.874 1.760 11.228 1 <0.001***

year 2 −3.722 2.921 1.267 1 0.205

year 3 −4.405 3.387 1.293 1 0.196

warm climate 1.443 2.034 0.706 1 0.480

dispersal status 2.719 2.337 1.157 1 0.247

dispersal status × warm climate −6.906 3.697 1.858 1 0.063

year 2 × warm climate 1.728 3.754 0.458 1 0.647

year 3 × warm climate 10.508 3.952 2.644 1 0.008**

year 2 × dispersal status 0.693 4.308 0.160 1 0.873

year 3 × dispersal status 1.155 4.380 0.262 1 0.793

age class −0.871 1.572 0.551 0.59 0.582

sex −0.275 1.539 0.177 0.56 0.859
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We also found that the gut microbiome plasticity, defined here as the intra-individual variation in microbiome diversity
between two consecutive years, responded negatively to warm climate, warm climate being included in the best averaged
model with a strong relative importance, despite a non-significant p-value (RI = 1, p-value = 0.476; electronic supplementary
material, table S5 and figure S6). Gut microbiome plasticity in diversity varied across years in a similar fashion in both climate
treatments (electronic supplementary material, table S5 and figure S6). However, in connected mesocosms, warm climate had a
positive effect on gut microbiome plasticity at the end of the experiment, but with a small sample size in the present-day treatment
(year 2 to year 3; electronic supplementary material, table S5 and figure S6).

Finally, we found lizards leaving warm climates display a less diverse microbiome than lizards staying in warm climate and
conversely for present-day climates (figure 2, table 3). It is supported by the negative interaction between annual dispersal status
and climate treatment maintain in the best averaged model with a relative importance of 1 and a marginally significant p-value
(Table 3).
3. Discussion
The gut microbiome plays a crucial role on host phenotype, health and fitness [20] and is increasingly acknowledged as an essential
component of species conservation [46].However, its response tomultiple anthropogenic stressors remains poorly understood assessed
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mostly in the short term and in either captivity in artificial conditions, or in naturawith confounding factors. Here, we investigated the
response of the gut microbiome of lizards over 3 years in an experiment manipulating jointly climate and habitat connectivity.

We found that warmer climates reduced the diversity of the gut microbiome by 14% over the 3 experimental years in isolated
habitats. However, the connectivity between climate treatments offset or even reversed the climate effects, with an increase in the
gut microbiome diversity through time in warm climates. This suggests that connectivity between thermal habitats contributes to
mitigating the effects of warming on gut microbiome diversity.

The reduction of gut diversity in warmer isolated conditions is consistent with previous short-term studies [30], including on the
common lizard [31]. The present effects explained a slightly lower variance in diversity and varied over time compared to [31]. This
differencemay lie in the different diversity indices used in [31] and here. Bestion et al. [31] used bacterial OTU richness as ameasure of
diversity, while we used a Shannon index which is less subjected to under-sampling problems [47] and a more robust estimates of
diversity frommolecular data [48]. So the difference in conclusion could, at least partly lie in theweight given to taxa frequency. Differ-
ences in external climatic conditions may also explain the difference of results, the mesocosms being subjected here to inter-seasonal
and inter-annual climatic fluctuations, which influence life-history traits and response of lizards to climate warming (environmental
data and inter-annual variations are described in [16]). For example, in Pellerin et al. [16], the impact of warming on life-history traits
varied across years and could be explained by inter-annual variation in climate treatments or/and by lizards adaptation/acclimation
to warming [49]. Our results further suggest that the climate effects become stronger in the long term, consistent with another study
that showed that the gut microbiome of the slender anole is resilient to warming in the short term but affected in the long term [50].
Both observations highlight that climate effects may progressively settle in time and emphasize the importance of long-term
experiments when studying the response of the gut microbiome under climate change.

From an extended phenotype viewpoint, the observed loss of diversity in warmer conditions may either result from a lower
survival of lizards harbouring a higher gut diversity, or by temporal changes in gut diversity during the lizard life (i.e. gut micro-
biome plasticity [3]). We show that changes in the gut microbiome diversity resulted more from plastic changes of microbial
diversity than from differential survival.

A higher bacterial diversity index (i.e. Shannon’s diversity index) is often associated with positive impacts on host fitness
and performances [30–32], favour its own resilience [51] and prevent intestinal dysbiosis [52]. Thus, we could have expected a
warming-induced reduction to impair host fitness and heat tolerance. But contrary to our expectations and short-term effects
[31], our result suggests that the lower survival of adults [16] and the microbial changes in warmer treatments observed here
over three years do not likely result from a relationship between gut microbiome diversity and host survival. This discrepancy
can also be explained by differences in diversity metrics used or by temporal variation in climatic conditions, as discussed for
diversity changes. The variation in external temperature across years may influence the strength of our climatic treatments and
of the relationship between gut diversity and host survival. Moreover, given its correlative nature, this relationship may result
from direct effects of diversity on survival or from effects on other traits (as thermal preference or optimal temperature) related
to both microbiome and host survival responses to climate. Typically, the impact of warmer climates on the survival of the lizards,
whose microbiome is under investigation in the present study has been shown to vary substantially across years [16]. Another
possible explanation is that the diversity loss may be buffered by functionally redundant taxa preventing the loss of specific func-
tions central to the host [53,54]. Our functional analysis shows no specific function affected by climate treatments, but many OTUs
could not be functionally annotated (see electronic supplementary material, table S7–S8). In addition, we cannot exclude that the
phylogenetic resolution of our DNA marker is insufficient to unveil eco-evo dynamics in microbes that would have functional
consequences. This would require further functional analyses (e.g. with metagenomics).

Both stochastic and/or selection processes can generate variation in gut microbial composition in a non-exclusive manner
[29,55]. Coupling multivariate analyses and null models, we found that our experimental treatments had weak effects on gut
microbiome compositional dissimilarity patterns, which were already large between individuals from a same treatment. As
such, about 65% of community changes did not differ from random expectation, the remaining dissimilarities out of the null dis-
tribution being potentially driven by drift with limited dispersal, or by selection by our treatments and/or unmeasured
environmental parameters [28,56]. These results on community dissimilarity patterns contrast with that of diversity, which suggest
an effect of our treatment on the community structure, regardless of the community taxonomic composition. For example, climate
may affect the gut community carrying capacity (i.e. number of individuals, and hence potential number of species than can be
present through a simple sampling process) without selecting specific bacterial clades [57].

Accordingly with the above we could not identify many bacterial OTUs whose abundance significantly changed in warmer cli-
mates. This might be due again to the intrinsic high compositional variability of the gutmicrobiome between lizards at the OTU level,
together with the high conservatism of ANCOM-BC to detect subtle differences in abundance between climate treatments, in particu-
lar for low-abundance OTUs [58]. More OTUs exhibited small changes in abundance in the third year compared to the previous years,
suggesting that small changes in abundancemay accumulate over timewithout significance threshold in theANCOM-BC.Here again
it emphasizes the importance of longer studies when studying the response of the gut composition to climate changes.

Focusing back on more emergent properties of the community that are less likely heterogeneous, here the diversity of each
phylum, we found that the decrease of gut diversity in warm climate was mainly driven by Firmicutes. This phylum is character-
istic of vertebrate gut microbiome [59], and has been repeatedly found to decrease in abundance and/or diversity under warmer
conditions in many species [30,60]. Firmicutes taxa are known to play a key role in the production of easily absorbable short fatty
acids in human guts [61], which are involved in mass gain and metabolic efficiency [62,63]. As such, depletion of this clade has
been associated with a decrease in the host digestive capacity in the red-backed salamander [32]. This may result from an invest-
ment of the host in the maintenance of particular beneficial members of Firmicutes against heat stress at the expense of others [64].
As certain members of Firmicutes, in particular Ruminococcaceae, have been found promoted by high-fat diet in mice [65], this
observation might also suggest an increase of metabolic rate and energetic needs of lizards in warm climates [66].
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Habitat connectivity buffered the effects of warming on gut diversity in the short term, and even reversed it at the end of the
experiment, with higher diversity in warm conditions. Habitat connectivity may have influenced the climate impacts on gut micro-
biome, through effects on plasticity and/or selection, or through the spatial distribution of lizards according to their microbiome
diversity. Corridors between present-day and warm mesocosms may allow lizards to access cooler climatic refugees to avoid at
least temporary warming-induced physiological stress and potentially related impacts on gut microbiome. While habitat connec-
tivity indeed reduced and even reversed the negative effects of warming on adult lizards’ survival [16], it did not influence the
climate-dependent selection or plasticity on microbiome diversity. However, for the final year in present-day climate,
the sample size was too limited and prevented us to precisely estimate these mechanisms. Instead, lizards dispersed more from
present-day climates to warm climates suggesting an effect of host dispersal on the buffering effect of connectivity on life-history
traits and potentially on gut microbiome.

Individuals leaving warm climates for a present-day climate indeed tended to display a less diverse microbiome than individuals
staying in warm climates, with a reversed pattern for individuals leaving present-day for warm climates. This dispersal-microbiome
association may therefore counteract the negative effect of warming on the gut microbiome diversity and even reverse its effects, as
observed in the third year, because immigrants dispersing to warmer climates had more diverse microbiome and emigrants leaving
for present-day climates had less diverse ones. The question remains why dispersal behaviour is related to microbiome and why it
varies with climatic conditions. Dispersing individuals often display a range of morphological, behavioural or physiological traits
that differs from resident individuals (i.e. dispersal syndrome [67,68]) because phenotypic specialization reduces the costs of move-
ments, increases the success of movements or is related to individuals’ habitat preferences in heterogeneous landscapes [67,68]. The
gut microbiome could be related to climate-dependent dispersal because gut microbiome influences the probability or the success of
movements or the habitat choice among thermal habitats. For instance, gut microbiome has been shown to relate to hosts exploratory
and cognitive behaviours [69,70] as well as locomotor behaviour [71]. Alternatively gut microbiome can be related to other host phe-
notypic traits [19] involved in or influencing this climate-dependent host dispersal. Gutmicrobiomediversity and composition can for
example be related to host food preferences, metabolism or thermal performances, traits which can influence climate-dependent dis-
persal choices, as found for thermal preference in common lizards [43]. The dispersal-traits association could therefore carry along the
gut microbiome without being directly related to individual performance in and preference for thermal habitats.

Regardless of the mechanisms, this climate-dependent relationship between dispersal and microbiome may further influence
the spatial differentiation of microbiome composition among habitats and microclimates. Dispersal may favour the introduction of
taxa and communities homogenization, modifying the strength of stochastic and selective processes [35,72]. Hence, the effects of
local selection may be balanced. However, the mechanism at stake highly relies on the community structure and the dispersal rate
[73,74]. Here, it appears that the connectivity among heterogeneous thermal habitats altered the effects of warming on gut diver-
sity likely through a link between microbial diversity and climate-dependent dispersal decisions. However, other factors as
changes on prey community or changes on lizard’s prey preferences with climate [45] and connectivity may influence the lizards
gut communities. A remaining objective will be to integrate the climate- and connectivity-dependent effects on all phenotypic
traits and by considering jointly several factors internal or external to the host, including reproductive success, social interactions
and diet [70,75,76] in a holistic understanding of global change impacts. [23,45]
4. Material and methods
(a) Experimental system and population monitoring
The common lizard (Zootoca vivipara) is a small ovoviviparous lacertid lizard widely distributed in Eurasia. In our study system (see
below), it hibernates from November to March and mates right after emergence. Females lay approximately five soft-shelled eggs 2
months after mating, and juveniles emerge within one hour after laying. Life stages are juvenile (less than 1 year), yearling (1 to 2
years) and adults (greater than 2 years) for a lifespan of approximately 5 years.

Gut microbiome samples were collected during the experiment described in [16] in semi-natural mesocosms [77] (Metatron, Ariège,
France; electronic supplementary material, figure S7). Each mesocosm (10 m × 10 m) is a small ecosystem composed of natural lizard habi-
tat with rocks, logs, small water ponds and naturally occurring dense and diverse communities of plants (45.5 ± 5.2SD species per
mesocosm in 2018) and invertebrates (36.2 ± 4.8SD families per mesocosm averaged between 2015 and 2018 [44]). The plant and invert-
ebrate communities are naturally present on the Metatron site and are similar within and outside the mesocosms and between our
different treatments [44]. To reduce predation and insure hermeticity, mesocosms are delimited by tarpaulins buried 50 cm into the
soil and are covered with insect-proof nets, avoiding lizards to escape [77]. Within each mesocosm, temperature, illuminance and
hygrometry are recorded every 30 min and can be manipulated using motor-driven shutters and a sprinkler system. Mesocosms can
be connected through 19 m-long corridors, matching this species minimum dispersal distance [78]. The climate can be manipulated
through shutters that close automatically when ambient temperature exceeds either 28°C to maintain conditions equivalent to the pre-
sent-day climate, or 38°C to simulate warm climate [77]. The warm climate obtained is on average 1.4 and 2.6°C warmer (mean and
maximal summer daily temperature) than the present-day climate, but these differences vary through time because the temperature
within mesocosm depends on outdoor climatic conditions, hence allowing reproducing more realistic conditions with daily, seasonal
or inter-annual climatic fluctuations [16]. Our experiment has been set up with 8 pairs of mesocosms (i.e. 16 mesocosms in total)
composed of one ‘present-day’ and one ‘warm’ climate mesocosm, crossed with two levels of habitat connectivity (electronic supplemen-
tary material, figure S7). Four pairs of mesocosms had corridors opened to allow lizard movements between contrasted thermal habitats
(connected mesocosms) while corridors remained closed for the four remaining mesocosms (isolated mesocosms).

Lizards used in this experiment were descendants of lizards previously captured in the Cevennes between 2010 and 2012. Populations
were initiated in July 2015 (year 0) with 240 adults/yearling and 306 juveniles (10 females, 5 adults males and 19 ± 1 juveniles permesocosm),
matching the structure of natural populations. The genetic and phenotypic compositionwas homogenized amongmesocosms and diversified
withinmesocosms by spreading juveniles of each family among different mesocosms. Populations were thenmaintained for three years with
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the same procedures repeated each year. Each year in May before the laying period, all lizards were captured, identified, measured for body
length (i.e. snout–vent length), weighted, sampled for their microbiome, andmaintained in individual terraria in the laboratory. During cap-
tivity lizards are fed with two crickets daily and sprayed with water three times a day. Females laid eggs in the terraria and juveniles were
immediately isolated from their mother, weighted and marked by toe-clipping to allow longitudinal monitoring. In early July, adults were
released back into their mesocosms and juveniles into their mother’s mesocosms where they spent the year until next May. We monitored
annual survival status and phenotypic traits (e.g. body length, microbiome) by capturing all the lizards the following year in May through
multiple capture sessions until no further lizard was found. Within connected mesocosms, after one year, lizards were recaptured either
within the same or in another mesocosm than the previous year, and were classified as residents and dispersers respectively.

(b) Microbiome sampling
Lizard gut microbiome was sampled only on adults and yearling before egg laying and hatching. To sample hindgut bacterial commu-
nities, we used a cloacal flushing sampling method. This method allows to easily collect gut bacterial communities in a non-invasive
way—a prerequisite for long-term monitoring. Moreover, cloacal sampling are also often considered as relatively good proxy of the hind-
gut microbiome due to their overall similarity with the lower intestines [79,80]. Prior to sampling, the edges of cloaca were cleaned with
alcohol. Samples were then collected by flushing the inside of the hindgut twice with a sterile pipette filled with 50 ml of a sterile saline
solution (Phosphate buffer saline, pH 7.4, Sigma) and gently introduced into the cloaca (0.5 mm). At least two flushes were performed on
each lizard (range 2–5). Samples were stored at −20°C in sterile 1.5 ml vials. Two types of negative controls of cloacal sampling were also
performed: using PBS buffer alone, to check for contaminants in this reagent, and using a saline solution collected with a pipette that
remained around 10 s in the open air, to control for local contaminants.

(c) Molecular and bioinformatic analyses
The diversity, composition and structure of the microbiome were studied through amplification by PCR and high-throughput sequencing
of the v5–6 region (approx. 250 bp length) of the bacterial 16S rRNA gene. DNA extraction, marker amplification and sequencing protocols
were performed as in [31]. Briefly, after a total DNA extraction with the Qiagen DNeasy Blood & Tissue Kit (Qiagen, Venlo, Netherlands),
PCR amplification was conducted using the BACTB-F (50-GGATTAGATACCCTGGTAGT-30) and BACTB-R (50-CACGACACGAGCT-
GACG-30) primers [81]. Both primers were labelled at their 50 end with two different 8 nt tags to discriminate PCR reactions. PCR
reactions were conducted for each sample in 30 µl containing 3 µl of 1/10 diluted DNA extract, 0.25 µM of each primer, 1 U of AmpliTaq
Gold DNA Polymerase (Applied Biosystems, Foster City, CA, USA), 2.5 mM of MgCl2, 1x of Taq Buffer, 0.2 mM of each dNTP and 4 ng of
bovine serum albumin (Promega Corporation, Madison, USA). The thermocycling conditions were as follows: 5 min of initial denatura-
tion at 95°C, followed by 35 cycles of denaturation (95°C for 30 s), annealing (57°C for 30 s) and elongation (72°C for 30 s). PCR products
were then pooled and purified with the QIAquick PCR purification Kit (Qiagen GmbH, Hilden, Germany). A library multiplexing all
amplicons was prepared with Fasteris’ MetaFast protocol, and included sampling, extraction and PCR negative controls. The library
was sequenced on an Illumina MiSeq platform with the 2*250 paired-end chemistry at Fasteris SA (Plan-les-Ouates, Switzerland).

In total, we obtained 11 359 947 sequencing paired-end reads that we processed bioinformatically similarly to [31], using the OBIT-
ools package [82]. Briefly, paired-end reads were assembled accounting for sequences quality and assigned to their respective samples by
authorizing no errors on the tag sequences, and no more than 2 mismatches on the primer sequences. After reads dereplication and exclu-
sion of low-quality sequences (i.e. of length <70 bp, containing ambiguous bases, or being singletons), the remaining sequences were
clustered into OTUs (Operational Taxonomic Units) using the sumaclust algorithm with a 97% similarity threshold [83]. We chose an
OTU approach over an Amplicon Sequence Variance one (ASV) primarily because the biological relevance of ASVs has been questioned
due to the intra-genomic variation of the 16S, a feature that has less impact when working with OTU-based approaches [84]. In addition,
ASVs and OTUs tend to yield similar diversity trends, especially when down-weighting rare taxa as done here [85–87] (see below).

We used the SILVA database (release r132) and the taxonomic assignment tool from the SILVAngs pipeline [88] to assign each OTU a
taxon, using default parameters. Taxonomic assignments with probability <80% were considered as unreliable. Finally, we used the
metabaR R package [89] to curate the data from contaminants and potential tag-jumps based on all experimental blank controls, to
exclude sequences assigned to chloroplasts or mitochondria, and to inspect the final dataset quality. At the end, the final data set included
10 017 573 reads, 7778 OTUs for 860 lizards sampled.

(d) Statistical analysis
(i) General statistical methodology
Statistical analyses were performed using R (v. 4.0.3, R Core Team 2020), and mainly consisted of linear mixed models and the following
steps. First, using the lme4 package [90], we built a full model including (i) climate treatment and habitat connectivity, the year and their
interactions as fixed effects, (ii) age class, sex and snout–vent length as covariates, as these traits are influenced by climate treatment and
habitat connectivity and are known drivers of survival and dispersal [16,31], and (iii) lizards and mesocosm identities as random inter-
cepts. To interpret estimates of main climate and connectivity effects across years, years were treated as a categorical variable and then
centred as described by [91]. Indeed, the inclusion of interactions in a model prevents from interpreting mean/simple effects of vari-
ables/factors involved in the interactions. For example, in a model with an interaction between years and climate treatment, the
simple effect of climate treatment is estimated for a single year (i.e. the intercept year) and not across all years. To estimate the mean cli-
mate effects across all years, years should be centred as described by [91]. To this end, binomial variables (coded as 0 or 1) were created for
each year (year 1, year 2 and year 3). For example, an individual sampled in year 2 was coded 0 for year 1 and year 3 variables and coded 1
for the year 2 variable. The variables for year 1, 2 and 3 were then centred by subtracting the mean value of each year variable. Models
could then include the variables for each year and their interaction with treatments, allowing us to interpret simple effects of treatments on
top of their year-specific effects. Note that only variables for year 2 and 3 were included, because the effect of year 1 variable is redundant
with the additive effects of variables for year 2 and 3 together. The year 0 was before treatments and was hence not included in the ana-
lyses. All possible candidate models with the same random structure, from full to intercept only, were ranked by AIC and averaged for
models with ΔAIC < 2 [92]. Conditional estimates, standard errors, z-value, the relative importance of variables (RI) and p-values of vari-
ables kept in best averaged models were obtained using MuMIn package [93]. Normality and homoscedasticity were checked graphically
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on residuals. When the interaction between climate treatment and connectivity was maintained in the best averaged model, we ran sep-
arate models for each connectivity treatment. We did so to assess more directly the effect of climate across years in each connectivity
conditions, as the full model yielded dealing with triple interactions that are too challenging to interpret. Each computed model is
summarized in electronic supplementary material, table S6.

(ii) Lizard gut diversity over years
We first quantified the diversity of the gut microbiome for each lizard at each sampling year with Hill numbers [94,95]. Rarefaction curves
indicated a good coverage of sample diversity, in particular for q = 1, which corresponds to the exponential of Shannon index (exp(H);
electronic supplementary material, figure S8). This index further down weights the impact of potential remaining rare molecular artefacts
in the dataset [48], as well as of insufficient sampling [47]. We hence used this index to quantify OTUs diversity using the vegan R pack-
age [96]. We ensured that climate treatment and habitat connectivity had no effects on the gut microbiome diversity in year 0 at the
beginning of the experiment (electronic supplementary material, figure S9), and then tested for these effects over the experimental
years (electronic supplementary material, table S6). We also tested for same effects on the diversity within the top 7 most abundant bac-
terial clades (electronic supplementary material, table S6). We further ran contrast analyses between climate treatments and clades with a
Bonferroni correction for multiple testing.

(iii) Lizard gut composition over year
We investigated what OTUs differed between climate treatments and habitat connectivity and years with an ANCOM-BC [97] (electronic
supplementary material, table S6).

We complemented the above analyses with a null model approach [56] to assess whether changes in community composition resulted
from stochastic processes rather than deterministic ones caused by unmeasured parameters [98]. For each sample, we resampled a fixed
number of reads, as defined by the rarefaction analysis, from the whole experiment meta-community while maintaining the sample
observed richness [56]. This procedure was repeated 999 times, hence producing a distribution of pairwise Bray–Curtis dissimilarities
under null expectations. Overall deviation of the distribution of observed dissimilarities from that of null expectation was assessed
using the overlap coefficient (shared area under both density curves).

(iv) Microbiome-dependent host survival, dispersal and microbiome plasticity
Considering gutmicrobiome as the host’s extended phenotype, we first studiedwhether climate-induced changes ofmicrobiome resulted from
differential selection.More specifically,we studied the relationshipbetween lizard survival andgut diversity (i.e. selection-likeprocess), changes
in gut diversity over a lizard lifetime (i.e. plasticity-like process), and the relationship between lizard dispersal and gut diversity. First, we ana-
lysed the effect of gut microbiome diversity at year t on lizards’ survival until year t + 1 (i.e. annual survival).We considered three time periods
for survival: year 0 to year 1, year 1 to year 2 and year 2 to year 3 (electronic supplementary material, table S6).

Second, we studied whether the gut microbiome plasticity could explain the observed effects of climate on the gut microbiome. To this
end, we first defined as ‘plasticity’ the extent to which the gut microbiome in lizards differ between two consecutive years (i.e. survivors
only) by calculating the difference of diversity values (i.e. exp(H)) between a given year and the preceding one. We then analysed how this
parameter varied between warm and present-day treatments (electronic supplementary material, table S6).

Finally, we investigated how dispersal could explain the effect of climate on the gut microbial diversity. In common lizards, dispersal
mostly occurs during the first year of life [99], but the small size of juveniles prevent their microbiome to be sampled. To consider all
lizards, including juveniles, we studied the relationship between the dispersal status from year t to year t + 1 and gut microbiome diversity
at year t + 1 (electronic supplementary material, table S6).

Ethics. The Station d’Ecologie Theorique et Experimentale has a national agreement for use of animals in the laboratory (number B09583).
Experiments were made in accordance with French ethics regulations (ethics permit numbers APAFIS#15897-2018070615164391 v3 and
APAFIS#19523-201902281559649 v3). Lizards were initially captured in the wild under licence number 2010-189-16 DREAL and 2013-274-0002.
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