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Abstract. An enduring challenge for ecology is identifying the drivers of ecosystem and pop-
ulation stability. In a spatially explicit context, key features to consider are landscape spatial struc-
ture, local interactions, and dispersal. Substantial work has been done on each of these features as
a driver of stability, but little is known on the interplay between them. Missing has been a more
integrative approach, able to map and identify different dynamical regimes, predicting a system’s
response to perturbations. Here we first consider a simple scenario, i.e., the recovery of a homoge-
neous metapopulation from a single localized pulse disturbance. The analysis of this scenario
reveals three fundamental recovery regimes: Isolated Regime when dispersal is not significant,
Rescue Regime when dispersal mediates recovery, and Mixing Regime when perturbations spread
throughout the system. Despite its simplicity, our approach leads to remarkably general predic-
tions. These include the qualitatively different outcomes of various scenarios of habitat fragmen-
tation, the surprising benefits of local extinctions on population persistence at the transition
between regimes, and the productivity shifts of metacommunities in a changing environment. This
study thus provides context to known results and insight into future directions of research.

Key words: dispersal; ecological stability; habitat fragmentation; local extinctions; metacommunity;
metapopulation; pulse disturbance.

INTRODUCTION

How can dispersal, ecosystem size, and local dynamics
interact to determine recovery from a disturbance? This
question is fundamental to ecology, not only due to its
relevance for conservation and management, but
because it connects key concepts of ecology, such as sta-
bility, landscape, metapopulations, and disturbance.
Dispersal plays a fundamental role in all aspects of

ecology, affecting the stability of populations (Abbott
2011), biodiversity patterns (Haegeman and Loreau
2014), trophic interactions (McCann et al. 2005) and evo-
lutionary dynamics (Baskett et al. 2007). Dispersal is
often studied because of two main effects it has on ecosys-
tems: sustaining diversity (Kerr et al. 2002) and generat-
ing population synchrony (Lande et al. 1999, Abbott
2011). When dispersal is weak, it can promote diversity,
allowing populations to benefit from spatial insurance

effects, whereby good patches prevent local extinctions in
less favored locations (Loreau et al. 2003). This effect is
fundamental in the context of biodiversity loss caused by
human-induced landscape fragmentation, which impedes
dispersal (Burkey 1989, Fischer and Lindenmayer 2007).
Dispersal, however, is not always beneficial. Strong dis-
persal may synchronize population dynamics and cause
global extinctions. It can inhibit spatial insurance effects,
causing generalist species to competitively exclude special-
ists (Abbott 2011). The opposite scenarios described, i.e.,
extinctions caused by dispersal limitations, or global syn-
chrony due to strong dispersal, are extreme cases where
there is a clear separation of timescales between the local
dynamics and the time it takes to disperse across the sys-
tem. In between is an intermediate regime without a clear
separation of timescales, which has not been investigated
much or even well defined.
Not all relevant spatial aspects of ecosystems are cen-

tered on dispersal and interactions across space. Sheer
size is also important as spatial processes are effectively
mediated by the system size (Galiana et al. 2018). Larger
regions can allow for substantial spatial heterogeneity,
from asynchrony due to nonlinear local dynamics or
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disturbance regimes (Bjørnstad et al. 1999, Gouhier and
Guichard 2007), to an imposed structure due to topog-
raphy or climatic gradients (Qian et al. 2009). Spatial
averaging over such heterogeneities has led to many
well-known concepts in ecology, such as the species–area
relationship (Connor and McCoy 1979) and landscape
equilibrium (Turner 1989).
The ecological concepts discussed above, such as syn-

chrony and spatial averaging, are non-trivial due to local
dynamics that act in conjunction with spatial effects.
Ecology has long focused on local non-spatial behavior,
with central issues such as the diversity–stability debate
(MacArthur 1955, May 1973, McCann 2000, Loreau
and de Mazancourt 2013) largely addressed by focusing
on local interactions between species. Assumptions on
local dynamics vary greatly from linear behavior around
an equilibrium to highly nonlinear dynamics far from it.
This is evident in stability research where noisy time ser-
ies are typically assumed to be close to equilibrium (Ives
1999), while catastrophic regime shifts are inherently
nonlinear (Scheffer and Carpenter 2003). When consid-
ering spatial aspects, however, most studies implicitly or
explicitly assume linear behavior, while research into
nonlinear behavior is mostly focused on specific scenar-
ios such as emergent stationary spatial patterns in dry-
lands (von Hardenberg et al. 2010) or chaotic behavior
of algae blooms (Franks 1997).
Stability is a central notion in ecology, and it can be

defined in various ways, which are typically context
dependent (Grimm and Wissel 1997). Nevertheless, the
concept of stability comes down fundamentally to the
ability of the system to recover from a perturbation
(Arnoldi et al. 2018), which may be affected by the tim-
ing of the perturbation (e.g., constant or single event),
the dynamical aspect considered (e.g., rate of conver-
gence or disturbance strength withstood), or the central
measure recovered (e.g., biodiversity or overall biomass).
Recent work has investigated the stability of popula-

tions and ecosystems in a spatial context, by explicitly
considering the issues of dispersal, system size and local
dynamics (Yaari et al. 2012, Dai et al. 2013, Plitzko and
Drossel 2015, Fox et al. 2017, Gilarranz et al. 2017,
Wang et al. 2017). The scenarios considered, however,
are often quite specific, and it is difficult to draw general
conclusions from them. Moreover, since there is no clear
framework in which to understand the phenomena
described, results are hard to compare, limiting the
potential for synthesis. Here we propose that answering
the preliminary question of how dispersal, ecosystem
size, and local dynamics interact to determine recovery
from a disturbance provides a unifying framework to
understand and compare the dynamical behavior of
spatially extended ecosystems. We first address this pre-
liminary question in a simplified setting, i.e., a metapop-
ulation subject to a disturbance (a sudden change in
abundance) in a uniform one-dimensional landscape. We
monitor the time needed for the system to return to its
pre-disturbed state. This notion is easily measured and

understood, while having clear relations to other notions
of stability (Arnoldi et al. 2016). This allows us to draw
an exhaustive map of dynamical behavior, predicting the
transitions between three qualitatively different recovery
regimes: Isolated Regime (IR), Rescue Regime (RR),
and Mixing Regime (MR). In IR, dispersal is not essen-
tial for recovery. In RR, propagation of biomass is key
for recovery. Finally, in MR, recovery occurs after the
disturbance’s effect has spread throughout the system.
We then translate this approach to more complex eco-

logical settings: early warning signals of catastrophic
transitions, the interplay between local extinctions and
metapopulation persistence, and productivity of meta-
communities in a changing environment. Our approach
thus defines a powerful methodology for the analysis of
spatial ecosystems and proposes new directions of
research for fundamental and applied ecology.

CONCEPTUAL FRAMEWORK

We look for the general mechanisms that underlie spa-
tial dynamics of ecosystems. In this section, we reveal them
in the simplest possible setting, focusing on the behavior of
a single species that is at a stable equilibrium before a dis-
turbance occurs. As we shall see in Examples, the basic
recovery regimes at play in this specific setting also play
out in systems with more complex spatial structure, multi-
ple interacting species, and even in systems that do not
have a stable equilibrium state. We use a partial differential
equation as a mathematical description of our system, so
that its behavior is governed by the combination of local
interactions of individuals, and dispersal in space of these
individuals. The dynamics of the system read

@TN ¼ rNFðNÞ þ dr2N (1)

where N is the density of individuals at a location, r the
characteristic, local, dynamical rate of growth, and d
the dispersal coefficients. The expression @T denotes the
time derivative, r2 the diffusion operator (in a one-
dimensional system, it amounts to the second spatial
derivative @XX), and F describes the local (non-dimen-
sional) growth rate of the population, which we assume
has an equilibrium solution for N ¼ K. We denote the
size of the system by L.
An important feature of the system is the nonlinearity

of its local dynamics, in particular the difference in rates
between the dynamics close and far from equilibrium.
To explore this feature, we focus on one specific type of
local growth rate function FðNÞ ¼ ð1�N=KÞðN=KÞc,
where a large c leads to higher nonlinearity and slower
dynamics when far from the equilibrium N ¼ K . For
c ¼ 0, this is logistic growth in space, a well-studied
model (Lewis and Kareiva 1993, Gandhi et al. 2016)
within the general framework of Fisher fronts, represent-
ing the invasion dynamics of a stable state into a meta-
stable one (van Saarloos 2003). See also Fig. 1c for an
example of a front. For large values of c, the dynamics
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resemble more that of bistable dynamics in space (Lewis
and Kareiva 1993, Bel et al. 2012) where a stable state
can invade another stable state. We choose this func-
tional form for the growth rate as it allows us to more
clearly explore the role of different mechanisms, under
two main assumptions: (1) the system always recovers
from a single disturbance and (2) local dynamics around
the equilibrium are faster than those far from equilib-
rium, thus emphasizing the detrimental effects of locally
strong disturbances. We further comment on these
assumptions in the discussion, and in Appendix S4.
Having defined the system, we now study its recovery

from a single, localized, pulse disturbance. In Fig. 1 we
show the different possible responses of the system, and
how these map out in the parameter space spanned by r
and d. We see that the recovery follows one of three sce-
narios: Isolated Regime (IR), Rescue Regime (RR), and
Mixing Regime (MR).
For weak dispersal d and fast local dynamics r, the

system is in IR: the recovery of each location occurs

without any relation to other regions. We quantify this
notion by the ratio between the biomass recovery when
dispersal d ¼ 0 and when d[ 0, within the same time
frame. On the other hand, for large d and low r values,
the system is in MR: the recovery of all the locations of
the system effectively occurs together; dispersal homoge-
nizes the system before local recovery processes take
place. This can be quantified by defining a mixing time,
when all locations of the system reach similar biomass
densities (within some threshold), and attributing all
biomass recovered after this time to MR. Finally, for
intermediate values of d and r, the system is in RR,
where undisturbed regions aid the disturbed ones via
spatial spread processes. This occurs when non-spatial
dynamics of the disturbed region are sufficiently slow, so
that spatial recovery processes (e.g., front propagation)
can come into play, yet dispersal is not strong enough to
homogenize the system. While it is possible to define this
recovery directly, it is more simply defined as any recov-
ery that is not attributed to IRor MR.

FIG. 1. Three recovery regimes across the space of possible systems. (a) Parameter space of local dynamics rate r vs. dispersal
coefficient d, noting the three regimes of recovery: isolated (IR), rescue (RR), and mixing (MR). (b–d) Spatial profiles of biomass
at different times (shown by different colors), demonstrating the recovery under each regime, with black arrows showing the direc-
tion of recovery. The system’s equilibrium of N ¼ 1 is disturbed by setting one-half the system to N ¼ 0:15 (orange), with different
colors (yellow to blue) showing the recovery over time. (b) IR (d ¼ 0:01; r ¼ 4) shows recovery due to local processes alone. (c) In
RR (d ¼ 1; r ¼ 1), recovery due to spatial spread dominates. (d) In MR (d ¼ 8; r ¼ 0:01), the system first homogenizes (gray dashed
arrows) and then, at a later time, the recovery takes place.

February 2019 THE THREE REGIMES OF SPATIAL RECOVERY Article e02586; page 3

C
O
N
C
E
P
TS
&
S
YN

TH
E
S
IS



An important determinant of recovery is the distur-
bance itself. Here there are essentially three disturbance
properties to consider: overall strength s (total biomass
removed), spatial extent r, and intensity q ¼ s=r. As
shown in Fig. 2, these properties define a parameter
space in which we can map all possible disturbances,
and the system response they induce. For a given distur-
bance strength s there are two extreme cases (orange
circles in Fig. 2a): global disturbance (maximal extent
r), and localized disturbance (maximal intensity q).
These contrasting cases are met with very different
recovery behaviors. The recovery timescale is much
shorter in response to a global disturbance than to a
localized one, and the transient spatial profiles are
strikingly different: in Fig. 2b we see the formation of
fronts, while Fig. 2d only shows a uniform increase of
biomass in time.

RECOVERY REGIMES

To complement the qualitative picture of the previous
section we now give a quantitative description of the
recovery process. To quantify recovery, we study return
time, defined as the duration needed for the system to
recover to 99% of its equilibrium biomass. In Fig. 3, we
map out return time as a function of disturbance extent,
disturbance intensity, and dispersal. While return time
grows with all three disturbance properties, q, r, and s,
there are substantial differences in how they affect return
time as we increase dispersal.
When dispersal is weak (Fig. 3a), the dynamics are

mostly governed by local processes. If the intensity q is

not too large, then local recovery dynamics are fast, so
that one can ignore spatial effects, and the return time is
effectively controlled by q. However, for high q, there is a
switch in behavior, and the spatial extent r becomes
dominant in determining return time. This is because
local recovery is now slow enough to allow for spread
processes to become relevant, and their timescale is lar-
gely set by r. For intermediate dispersal (Fig. 3b), the
spatial processes can have more of an effect, so that r
becomes important at lower values of q. Hence, we see
here the same picture as in Fig. 3a, except that the
switch in behavior occurs for lower q.
Finally, for strong dispersal (Fig. 3c) spatial processes

are fast enough to homogenize the system before local
dynamics become significant. Therefore the spatial
structure of the disturbance is irrelevant, only its overall
strength s is important.
We can understand the effect of disturbance properties

by knowledge of the recovery regimes (magenta lines in
Fig. 3 outline regime boundaries). In IR (low q, low and
intermediate d), the recovery is entirely local so that
return time is controlled by q. In RR (high q, low and
intermediate d), spatial spread processes are responsible
for recovery so that return time is controlled by r.
Finally, in MR (high d), recovery only takes place after
the disturbance has spread throughout the system, hence
s controls return time.
We now take a broader look at the three recovery

regimes, and the transitions between them. As suggested
by Fig. 1, we expect dispersal d and local dynamics r to
play similar but opposite roles in determining which type
of recovery takes place. IR would occur for low d (high
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FIG. 2. Space of possible disturbances, and the recovery that follows them. (a) Parameter space of disturbances: spatial extent
(r) vs. local intensity (q). The disturbance’s overall strength is s ¼ rq, where dashed curves show constant values of s. (b, c) Recov-
ery following a local disturbance (r ¼ 0:4; q ¼ 1). (d, e) Recovery following a global disturbance (r ¼ 1;q ¼ 0:4). Spatial profiles
of biomass at different times (orange through blue) are shown in panels b and d, while, in panels c and e, the overall biomass over
time is shown (with circles of corresponding colors to the profiles shown in panels b and d).
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r), MR would occur for high d (low r), and RR may
occur for intermediate values of both. We expect the sys-
tem size L to have a similar role to r, since for smaller
systems lower dispersal levels would be needed to
homogenize the system. This general intuition is vali-
dated from the contribution of each regime to the recov-
ery, as illustrated in Fig. 4a (see Appendix S3).
A final defining feature of the recovery regimes is the

ratio between the timespans of local and regional recov-
ery. Since the system may be far from its equilibrium
locally, the timespan of local recovery may be very large,
even infinite, depending on the disturbance intensity q
and the system’s nonlinearity, typified by c in our
model. By increasing either q or c, local recovery in the
disturbed region slows down considerably, while rescue
dynamics are essentially unchanged. This is because res-
cue dynamics are driven by a flow of biomass from an
undisturbed region, unaffected by the slow dynamics far

from equilibrium. Therefore, as c or q increases (Fig. 4b,
c), RR (red region) grows at the expense of IR (green
region), whereas MR (blue region) remains largely
unchanged.
We can now formalize the heuristic reasoning describ-

ed so far. Consider the dynamics of two adjacent
uniform domains, one in equilibrium and the other dis-
turbed. Due to dispersal, a smooth transition region
(front) will form between these two domains. Such fronts
have two main consequences for recovery: their motion
into the disturbed domain leads to rescue dynamics, and
hence RR, while if the fronts themselves are so large that
they take over the entire system, then the system is in
MR. If the fronts do neither of these things while recov-
ery takes place, then the system is in IR. As detailed in
Appendix S1, we use these implications of front dynam-
ics (Zelnik and Meron 2018) on recovery, combined with
a dimensional analysis (Legendre and Legendre 2012),
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to reach a prediction of the transitions between the
recovery regimes. The result can be summarized by visu-
alizing an axis of effective system size ‘eff ¼ L

ffiffiffiffiffiffiffi
r=d

p
. As

formalized in Eq. 2, when the effective size decreases,
the system transitions from IR to RR at ‘eff ¼ 2us0 and
from RR to MR at ‘eff ¼ k

‘eff [2us0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
IR

; 2us0[ ‘eff [k|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
RR

; k[ ‘eff|fflfflfflffl{zfflfflfflffl}
MR

; ‘eff ¼ L
ffiffiffiffiffiffiffi
r=d

p
(2)

The three physical parameters, L, r and d, are the
same as described previously, while the three other quan-
tities, u, k, and s0 are nondimensional properties of the
model. The parameters u and k are the nondimensional
front speed and size, which do not depend strongly on
model or disturbance properties (with typical values in
the order of 1 and 10, respectively, see Appendix S4). On
the other hand, s0 is the recovery time without dispersal
(scaled by r), with values that can change by orders of
magnitude, depending on characteristics of both system
(c) and disturbance (q). To compute or estimate s0, we
set some arbitrary threshold to define full recovery (in
our case N = 0.99 K), and measure the time needed
(scaled by r) for the system to reach that threshold. We
show in Appendices S2 and S4 some typical values and
dependencies of u, k, and s0. It should be noted, how-
ever, that the definition of s0 can be generalized beyond
its specific definition of time to recovery from a single
disturbance. More generally, it can be defined with
respect to the fastest non-spatial timescale that rescue
dynamics must be compared to (and thus strongly
depends on the dynamical scenario considered as will be
evident in Examples). We will come back to this point in
the discussion, and go into details in Appendix S2.
The prediction of regime transitions are shown in

magenta lines in Fig. 4. The transitions themselves are
not sharp: as a parameter is changed, a smooth transition
occurs between the different regimes. The dimensional
parameters d, r, and L all occur in the same term, imply-
ing a similar role in determining the recovery regime, as
seen by the parallel lines in Fig. 4a due to changes in d
and L. On the other hand, the changes in s0 (Fig. 4b, c)
due to increasing either c or q lead to a larger region in
parameter space where RR is dominant instead of IR.
However, these same changes in c and q do not have
much of an effect on the values of u and k, so that the
RR-MR transition remains largely unchanged.

EXAMPLES

Our framework of recovery regimes can be applied to
a wide range of questions in ecology, such as stability in
a fragmented landscape and the interplay of synchrony
and local extinctions. We detail here a few concrete
examples and discuss their implications, to both demon-
strate the application of the framework, and give cre-
dence to its generality. In doing this, we will also show

that our initial assumptions, focusing on dynamics of a
single species around a stable equilibrium in one spatial
dimension, do not in fact limit the predictive power of
the framework.

Metapopulation stability

We start by an interpretation, in terms of our recovery
regimes, of two experimental studies (Dai et al. 2013,
Gilarranz et al. 2017) on the consequences of a localized
population extinction on a metapopulation. The first
(Dai et al. 2013) in order to consider a new spatial indi-
cator of impending collapse, and the second (Gilarranz
et al. 2017) to understand how modularity of the spatial
network (connected patches) can buffer disturbances.
Despite apparent similarities in the details of these stud-
ies, they are actually relevant in different recovery
regimes, and hence in entirely different settings.
Dai et al. considered a bistable system, where the

dynamics of populations close to the tipping point slow
down, leading to larger “recovery length,” the size of the
front connecting a disturbed region to a non-disturbed
region. Unlike the model used on Conceptual Framework
and Recovery Regimes, the front dynamics here are those
of a stable state invading another stable state. For such a
system, however, the three recovery regimes still exist
and the transitions between them are well predicted by
our approach (see Appendix S4). In the study of Dai
et al., a critical slowing down occurs when the system
approaches the tipping point (Dakos et al. 2011), which
effectively means that the system has smaller and smaller
r. This slowing down thus leads the system from IR to
RR and on to MR. In practice, however, the proposed
indicator (increase in recovery length) is limited to RR
since, in MR, this recovery length is larger than the sys-
tem, so that it cannot be monitored.
On the other hand, Gilarranz et al. looked at how

decimating a population locally leads to a propagation
of the disturbance across the system. In this case, the
assumption is that, due to spatial movement of individu-
als, the other parts of the system still suffer from the dis-
turbance. As can be seen in the different recovery panels
in Fig. 1, this behavior only occurs in MR, where the
front is of a size that is comparable to the system. These
two examples illustrate that knowledge of the recovery
regimes can be paramount to estimate the applicability
of ecological indicators (here front size and network
modularity, respectively).

Fragmentation scenarios

A more complex spatial setting is that of habitat frag-
mentation, which is a leading factor of biodiversity loss
(Saunders et al. 1991, Hanski and Ovaskainen 2000,
Bennie et al. 2013). As both the number of habitat
patches and the number of potential dispersal routes
shrink due to fragmentation, the effects these changes
have on various ecosystem properties, such as
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biodiversity and stability, are of high interest. Within
our framework, we expect that such changes in spatial
structure will change both the effective dispersal in the
ecosystem, and its effective size. We can thus relate dif-
ferent scenarios of fragmentation to trajectories in a
parameter space similar to that previously shown in
Fig. 4a. In this case, the dispersal coefficient is related to
the average link number per site a, and the system size to
the average shortest path between two sites b (see
Appendix S3 for details). As shown in Fig. 5a, by start-
ing with a random spatial network, and removing sites
from the system, different behaviors emerge. If sites are
taken out from the periphery, then both a and b shrink
(Fig. 5a, dashed line), leading to a tight-knit system and
therefore to MR (Fig. 5b). On the other hand, if the sites
are taken out randomly, then b tends to grow (Fig. 5a,
solid line), leading to IR (Fig. 5c). Thus, a change in
spatial structure can lead to a complete switch in the sys-
tem’s dynamical behavior.

Predator–prey synchronization

A different aspect of stability in a spatial setting, is
that of synchrony and how it is affected by dispersal
(Ripa 2000, Gouhier et al. 2010, Abbott 2011).
Extinction due to synchrony of populations is of par-
ticular concern when the local dynamics do not have a

stable equilibrium, as often seen in predator–prey
interactions.
This issue has been addressed recently by Fox et al.

(2017) in an experimental setting, in which protist preda-
tor–prey metapopulations exhibit cyclic dynamics, which
can, when dispersal is strong enough, lead to predator
extinction (black line in Fig. 6a). Fox et al. found that
inducing repeated localized extinctions of the predator can
prevent its global extinction (blue line in Fig. 6a). This
behavior occurs because these disturbances do not allow
the system to become spatially synchronized, and thus vul-
nerable to global extinction. Such synchronization occurs
faster with increasing dispersal, and when dispersal is
strong enough for the system to be in MR, synchroniza-
tion occurs almost instantaneously. Therefore, imposing
localized disturbances in MR is harmful, as the distur-
bance frequency necessary to avoid synchronization would
be so high as to directly lead to a global extinction. On the
other hand, far from MR, synchronization is unlikely due
to demographic stochasticity, so that imposing localized
disturbances can, again, only be harmful. This leads to a
hump-shape relationship between survival probability and
dispersal, as demonstrated by the blue line in Fig. 6a.
We therefore expect that localized disturbances will

enhance survival probability in a specific setting, one
where synchronization is weak enough so that localized
extinctions can prevent it, and that rescue dynamics are

FIG. 5. Fragmentation scenarios leading to a change in recovery regimes. (a) Parameter space of mean degree a (average num-
ber of links per site, as a proxy for dispersal coefficient d) vs. mean shortest path b (proxy for system size L). Overlaid are two frag-
mentation scenarios, one of randomly taking out sites (solid line) and one of taking out periphery sites (dashed line). Background
colors are based on a prediction of transition lines between recovery regimes. (b, c) Contribution of the three recovery regimes to
the overall recovery in a network, along the two fragmentation scenarios. Horizontal axis shows (in a logarithmic scale) the percent-
age of sites removed either (b) randomly or (c) from the periphery. Magenta circles in panel a show the removal of
f0%; 50%; 75%; 90%g of sites, with corresponding vertical lines in panels b and c. The initial network has 2,000 sites, with approxi-
mately 40 links per site on average, and r ¼ 1; d ¼ 2; c ¼ 3;q ¼ 0:7;r ¼ 0:5. See Appendix S3 for details.
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strong enough to allow the system to recover from the
disturbances themselves. Hence we predict that
disturbances will increase survival probability around
the RR-MR transition, as can indeed be seen in Fig. 6
(see Appendix S3 for details). We are thus able to pin-
point the parameters for which this unintuitive phe-
nomenon will occur. Moreover, this example highlights
the fact that exotic behavior can be expected when a sys-
tem is crossing the boundaries between recovery regimes.

Metacommunity biomass productivity

Our framework can be applied beyond the context of
stability, for example by looking at productivity of meta-
communities (Leibold et al. 2004). As shown in recent
work by Thompson et al. (2017), along the dispersal axis
and under periodically changing environmental condi-
tions, there are three different mechanisms responsible for
metacommunity biomass production: base growth, spe-
cies sorting, and mass effect. For weak dispersal, biomass
production is due to base growth, where communities are
effectively isolated and the species composition does not
follow changes in the environmental conditions. This
behavior is contrasted with species sorting that takes
place with higher dispersal, where species do not occur
throughout space at a given time, but rather follow opti-
mal conditions. Finally, for strong dispersal, species are
abundant due to mass effects, by which species biomass
from highly productive locations is dispersed across
space. These mechanisms are illustrated in Fig. 7a,

reproducing results of Thompson et al. using the same
species traits and environmental properties, but a simpler
spatial structure (see Appendix S3 for details). Although
these three mechanisms of biomass production are not
directly linked to stability, we propose that they are in fact
equivalent to our three recovery regimes.
Base growth corresponds to IR, in which local dynam-

ics (of competitive exclusion and recovery) are faster
than spatial spread, so that each species occurs in certain
regions and does not move from them. In contrast, spe-
cies sorting corresponds to RR, where front propagation
of populations is sufficiently fast to react to changing
conditions. Finally, mass effect corresponds to MR, in
which dispersal is significantly faster than local dynam-
ics, so that biomass produced in favored regions spreads
throughout the system.
To demonstrate this correspondence, we compare bio-

mass production mechanisms with predictions of transi-
tions between recovery regimes (as defined by Eq. 2). As
seen in Fig. 7b, the analytical transition lines (magenta)
between recovery regimes predict the switch between bio-
mass production mechanisms remarkably well. Note that
for the calculation of the IR-RR transition (Eq. 2), the
local timescale s0 is defined by the period of environmen-
tal change (see Appendix S3 for details). This example
highlights the fact that basic dynamical processes, such as
those captured by our approach, underly the behavior of
complex ecological systems. In our case, understanding
these processes sheds light beyond recovery properties,
predicting changes in ecosystem functioning.
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FIG. 6. Localized extinction disturbances increase stability due to prevention of synchronization. Following Fox et al. (2017),
we model populations of predator and prey in a spatial settings, which would go extinct without dispersal. (a) Survival probability
of predator population as a function of dispersal coefficient d. Results for no disturbances (repeated disturbances) are shown in
black (blue). (b) The change in survival probability (by the addition of repeated extinction disturbances) in a parameter space of dis-
persal coefficient d and system size L. Color gradient indicate the absolute effect of local extinctions on global survival probability
(from dark blue, maximal reduction of survival probability to bright yellow, maximal increase in survival probability). The RR-MR
transition line (magenta) predicts where disturbances increase survival. Black dashed line shows the location of the cut shown in
panel a, L = 1,000. See Appendix S3 for details.
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DISCUSSION

By analyzing the response to a disturbance of a simple
yet spatially explicit model, we could make powerful pre-
dictions about the stability properties of various com-
plex spatial ecosystems, ranging from metacommunities
in a changing environment to populations in a frag-
mented landscape. We highlighted three regimes of
recovery, Isolated (IR), Rescue (RR), and Mixing (MR),
and showed how these regimes depend on both the prop-
erties of the system, and of the disturbance that is
imposed on it, thus mapping these regimes onto the
space of system and disturbance parameters. The recov-
ery processes involved in each of these regimes are quali-
tatively different. In MR, the system first homogenizes
before local processes drive the system back to equilib-
rium, whereas in RR the recovery is driven by the propa-
gation of biomass from undisturbed regions into the
disturbed ones. The relationship between time to recov-
ery and disturbance property (extent, intensity, and
strength) thus differs substantially between regimes.
More generally, any prediction about the effect of a
given parameter on the system’s stability will strongly
depend on the regime the system is in.
To determine the three recovery regimes, there are two

main constants to consider. The first constant is deter-
mined by three-dimensional parameters of the system
fd; r;Lg, which combine to form a nondimensional con-
stant L

ffiffiffiffiffiffiffi
r=d

p
that we call the effective system size. When

this constant is very small, then the system is well mixed,
and therefore in MR. When this is not the case, the limit-
ing non-spatial timescale s0 (scaled by r), needs to be

considered, as it determines the effective reach of rescue
dynamics. When this effective reach is much smaller than
the effective system size, then the system acts as multiple
isolated sites, and hence is in IR. Otherwise, if the local
timescales allow for a large effective reach (compared to
effective size), then the system is in RR, in which undis-
turbed domains of the system are the main instigator of
recovery and thus stability.
From a mapping of these regimes we could predict the

effects of fragmentation and global change on basic fea-
tures of ecosystem stability. What matters in this context is
not only where the system is on the map, but where it is
going. When global change moves the system closer to
collapse, local dynamics slow down, and therefore the sys-
tem is pushed towards MR. This is the premise of various
early warning signals of catastrophic transitions (e.g.,
recovery length of Dai et al. [2013]), made explicit within
our framework. These indicators essentially measure how
close the system is from MR (although being in this
regime does not imply a collapse). Our mapping is espe-
cially useful when considering the combined effect of frag-
mentation and global change, since fragmentation may
push the system towards IR, in contrast to the effect of
slowing down due to global change. This means that the
recovery regime may not change at all, so that early warn-
ing signals that measure the distance to MRwill not detect
the impending collapse. A much clearer picture is gained
from knowledge of the system’s trajectory on the map of
recovery regimes. Following from our definition of recov-
ery regimes, it follows that only in RR can there be an
interplay of spatial scales, between the characteristic scale
of the system and any scale that is imposed on it. This
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FIG. 7. Biomass productivity in a metacommunity due to three different mechanisms. Following Thompson et al. (2017), we
model an ecosystem of multiple species and a single resource in a spatial settings, with periodically changing conditions. (a) Biomass
productivity as a function of dispersal coefficient d, where the (red, green, blue) lines correspond to three different mechanisms:
base growth, species sorting, mass effect. (b) Parameter space of dispersal coefficient d and period of environmental change T,
showing the different mechanisms. Magenta lines show the prediction of the transition lines between the three recovery regimes,
which correspond well to the three mechanisms of biomass productivity. Black dashed line shows the location of the cut shown in
panel a, T = 3,200. See Appendix S3 for details.
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leads us to ask what phenomena are specific to this
regime, especially since it is relatively less explored than IR
and MR. In particular, the transition regions between RR
and the other two recovery regimes, which may take place
over a large range of parameter space, can be expected to
be especially interesting and display exotic behavior, since
here there is no clear timescale separation. Indeed, the sur-
prising results shown by Fox et al. (2017), where local
extinctions save the predator population from total extinc-
tion, well demonstrate this notion that the transition
regions can show particular and unintuitive behavior.
In the presentation of our results we focused on the

recovery of the system from a single disturbance. In this
restrictive context, the definition of a non-spatial time-
scale s0 is a result of the interaction between local
dynamics and disturbance intensity. More generally, the
relevant definition of s0 depends on the dynamical sce-
nario in question, as shown in the example of biomass
productivity (Fig. 7). In this case, the period over which
conditions change defines the relevant non-spatial time-
scale s0. Other definitions of s0 can be made, depending
on the perturbations the system undergoes, as is detailed
in Appendix S2. For instance, Yaari et al. (2012) investi-
gated the spatial scaling of metapopulation persistence
subject to demographic stochasticity, and universally
found three distinct regimes across a gradient of disper-
sal. If one wanted to compare recovery regimes to the
scaling regimes of Yaari et al., one would define s0 as
the local time to extinction, which must be compared to
the time needed for rescue dynamics to take place.
This work demonstrates that despite inherent com-

plexities in the dynamics of populations and ecosystems,
strong qualitative predictions can be made from the
analysis of a simple and generic model. Indeed, we stud-
ied the dynamics of a single species at equilibrium in a
uniform one-dimensional landscape, and considered its
response to a single disturbance. However, our example
of fragmentation scenarios shows that we can apply our
methodology to more complex spatial structure. More-
over, the predictions shown for the predator–prey and
the metacommunity systems clearly show that our
framework can be applied to multiple species systems.
These two examples also show that considering a system
disturbed from equilibrium did not limit our predictive
ability, as the predator–prey system was one where mul-
tiple disturbances occurred and the dynamics exhibited
large oscillations, while the metacommunity system had
no explicit disturbance at all, but rather a continuously
changing environment. Overall these examples suggest
that there are universal properties of ecosystem dynam-
ics in a spatial settings, that can be unraveled from
dimensional considerations.
Heterogeneities in space, time or species properties will

impact the recovery regimes, however, if they are
sufficiently strong. As noted in Appendix S5, both demo-
graphic and environmental noise (temporal hetero-
geneities) can have an effect on recovery regimes. In
particular, they tend to make the transition between IR

and RR more gradual, while having a minimal effect on
the RR-MR transition. Spatial heterogeneity can be
expected to have a similar effect, having a strong impact
on local dynamics when dispersal is weak, but less so
when dispersal is strong, due to the spatial-averaging
effect of dispersal (Loreau et al. 2003). The case of spe-
cies-rich communities (heterogeneity of the community) is
the most intriguing. In the most complex case of strong
collective nonlinearities (e.g., complex succession dynam-
ics, multiple equilibria, and so on) and heterogeneous dis-
persal abilities, more work is needed to say how to
correctly apply and generalize our framework. Nonethe-
less, in addition to the specific examples given in Exam-
ples, there are at least two general cases for which our
approach can be expected to directly apply. The first and
more straightforward case is when a dominant species
governs local dynamics (a simple case of strong hetero-
geneity). The second case, corresponding to moderate
heterogeneity, would be a community comprised of many
species with weak interactions and similar dispersal abili-
ties. In this case, local dynamics will be a collective out-
come of species interactions, but we may nonetheless
define and predict transitions between recovery regimes
with respect to a collective rate of local recovery.
Determining the relevant nondimensional constants

that govern the recovery regimes is not always straight-
forward, but it sets a clear direction toward a deeper
understanding of the spatial processes in a system of
interest. For instance, our analysis of the fragmentation
scenarios showed that the effective system size is essen-
tially the average shortest path between two sites, rather
than the total number of sites in the network. The issue
of estimating the relevant parameters should be particu-
larly interesting in the context of complex species inter-
actions, due to collective emergent behavior. For
instance, the characteristic timescale of a community,
such as its local recovery time, may be an emergent prop-
erty of the assembly process. Moreover, in the case of
strong heterogeneities between species (e.g., substantially
different dispersal abilities between trophic levels) it may
be that more nondimensional constants are needed to
faithfully describe the system’s dynamics. For instance, a
higher trophic level may spread much faster than its
resource (McCann et al. 2005), leading to a combination
of IR and MR.
Our study is essentially based on the presumption that

we can learn a great deal on an ecological system by per-
forming a simple calculation using our knowledge of its
dimensional properties. The examples we have presented
show that this claim has merit, and our methodology can
indeed provide new insights into dynamics of spatial sys-
tems. This study takes us one step further towards a quan-
titative understanding of the response to disturbances of
spatially extended ecological systems, drawing for the first
time a clear link between the opposite cases of a well-
mixed system and a set of isolated sites. Considering the
proliferation of theoretical and empirical studies, and the
growing sets of observational and experimental data, being
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able to qualitatively compare different systems is of vital
importance. Our study suggests a simple way of perform-
ing such a mapping, using limited information about a
given system. Such an approach is relevant for both theo-
retical models and empirical data, paving the way towards
a novel synthetic view on ecosystem dynamics in space.
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