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Abstract The relationship between structure and stability in
ecological networks and the effect of spatial dynamics on
natural communities have both been major foci of ecological
research for decades. Network research has traditionally fo-
cused on a single interaction type at a time (e.g. food webs,
mutualistic networks). Networks comprising different types of
interactions have recently started to be empirically character-
ized. Patterns observed in these networks and their implica-
tions for stability demand for further theoretical investiga-
tions. Here, we employed a spatially explicit model to disen-
tangle the effects of mutualism/antagonism ratios in food web
dynamics and stability. We found that increasing levels of
plant-animal mutualistic interactions generally resulted in
more stable communities. More importantly, increasing the

proportion of mutualistic vs. antagonistic interactions at the
base of the food web affects different aspects of ecological
stability in different directions, although never negatively.
Stability is either not influenced by increasing mutualism—
for the cases of population stability and species’ spatial distri-
butions—or is positively influenced by it—for spatial aggre-
gation of species. Additionally, we observe that the relative
increase of mutualistic relationships decreases the strength of
biotic interactions in general within the ecological network.
Our work highlights the importance of considering several
dimensions of stability simultaneously to understand the dy-
namics of communities comprising multiple interaction types.

Keywords Cellular automata . Foodweb .

Individual-basedmodel .Meta-community dynamics .

Mutualistic interactions . Network structure .

Population dynamics . Predator-prey

Introduction

Biodiversity and species interactions are key regulators of eco-
system stability and functioning (May 1972; Levins 1974;
Pimm 1984; McCann 2000; Reiss et al. 2009; Loreau and de
Mazancourt 2013). Research on the relationship between the
architecture of species interaction networks and community
stability has shown that, whereas high connectance and
nestedness promote stability and increases species richness in
communities made up exclusively of mutualistic interactions
(but see (Allesina and Tang 2012; James et al. 2013;
Staniczenko et al. 2013)), the stability of trophic networks is
higher in modular and weakly connected architectures
(Thebault and Fontaine 2010). Additionally, the strength of
ecological interactions has also been shown to play a crucial
role in community structure (Paine 1980; Neutel et al. 2002).
Although these studies have improved our knowledge on
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complexity-stability relationships, they have often focused on a
single interaction type at a time and overlooked the fact that
natural communities comprise different interaction types that
operate simultaneously in space and time (Fontaine et al.
2011; Kéfi et al. 2012). Empirical work has started to address
methodologies to incorporate different interaction types into a
broader ecological network context, in which the creation of a
‘network of networks’ and its implications for different aspects
of community organisation are considered (Melián et al. 2009;
Olff et al. 2009; Fontaine et al. 2011; Kéfi et al. 2012).

These empirical studies have opened up a big theoretical
challenge in complexity-stability research: exploring how inter-
action networks with different architectures and interaction
types combine to shape stable networks of networks. A theoret-
ical framework that incorporates these features will facilitate the
understanding of the mechanisms behind the observed empiri-
cal patterns and of howmultiple interaction types taken together
affect ecosystem stability and functioning (Thebault and
Fontaine 2010; Kéfi et al. 2012). Recent attempts to do so have
shown that interaction type may affect community stability and
its relationship with network architecture (Allesina and Tang
2012) and that the proportion of trophic vs. mutualistic interac-
tions may influence the stability of natural communities (Mougi
and Kondoh 2012). Mougi and Kondoh 2012 showed that,
whereas the presence of a few mutualistic interactions
destabilises predator-prey communities, a moderate mixture of
antagonistic andmutualistic interactions could have a stabilising
effect in ‘hybrid’ communities. More recently, the stabilising
role of nestedness and modularity has been challenged when
several interaction types are considered within the same net-
work, arguably by the increasing importance of indirect effects
in these networks of networks (Sauve et al. 2014).

Many of the organisational patterns of ecological communi-
ties that we observe in nature, including species-connectivity
scaling laws in food webs, species-abundance distributions,
complex fluctuations in population dynamics, and species-
area relationships (Solé et al. 2002), can only be understood
by acknowledging that populations move and interact in a spa-
tial context (Durrett and Levin 1994; Tilman and Kareiva 1997;
Solé et al. 2002). Further, the use of spatially explicit models
has been fundamental to understand questions related to natural
phenomena that are not detected in non-spatial or spatially im-
plicit models, such as percolation thresholds (Neuhauser 1998;
Solé and Bascompte 2006). Essentially, theoretical models that
consider space explicitly include the range of dynamics found
in spatially implicit models but with important constraints to
movement and species interactions. This affects the spatial dis-
tribution and the mobility of species in the community, which
in turn modulates the dynamics of interacting species through
effects on the probability of encounter between individual pred-
ators and prey (Olesen and Jordano 2002; Burkle and Alarcon
2011), which ultimately determines the realisation of potential
interactions. In other words, spatial processes such as species

distribution patterns, range dynamics and local dispersal abili-
ties can affect community stability via the shaping of the net-
work of interactions between species in the community.
Constraints imposed by space are thus not only fundamental
to understand patterns of diversity but also spatial processes
alone can result in network architectures that resemble those
observed in real networks (Morales and Vázquez 2008).
However, despite important advances with single interaction
types (Holt 2002; McCann et al. 2005; Fortuna et al. 2008),
we still lack understanding on complexity-stability relation-
ships in a spatially explicit context with different interaction
types considered simultaneously.

In this work, we contribute to fill this gap by investigating
the stability of ‘networks of networks’ that combine antago-
nistic and mutualistic consumer-resource interactions within a
spatially explicit context using an individual-based, bioener-
getic model. We ask whether different aspects of ecological
stability are influenced by the proportion of mutualistic and
antagonistic interactions (hereafterMAI ratio) within the over-
all species interaction network. Our aim is to explore the rela-
tionship between hybrid network architecture and community
stability not only in terms of population dynamics and net-
work structure but also introducing a novel analysis of spatial
stability. The assessment of community stability from a spatial
perspective allows for the quantification of the effect of com-
munity organisation on species distributions and range dy-
namics. Specifically, we address the following questions: (1)
Do increasing levels of mutualism result in more stable com-
munities? And, if so, (2) How do MAI ratios influence com-
munity stability in a spatial context?

Material and methods

We developed an individual-based, spatially explicit, bioener-
getic model of species interaction networks. Network archi-
tecture was obtained using the niche model (Williams and
Martinez 2000). The dynamics of the system are governed
by local rules of interactions between individuals in a simu-
lated, spatially explicit environment. Models of this type, al-
though simple in terms of the nature of individual’s interac-
tions, successfully reproduce relevant ecological patterns
(Durrett and Levin 1994; Solé et al. 2002; Morales and
Vázquez 2008). Individuals’ state is determined by several
bioenergetic constraints. For the analysis of model outcomes,
we employ network metrics that are traditionally used for the
characterisation of food webs and mutualistic interaction net-
works. We also calculate different metrics of community sta-
bility to create a comprehensive picture of stability based on
several dimensions (sensu (Donohue et al. 2013)). The model
allows us to test the relationship between different mutualistic
vs. antagonistic interactions (MAI) ratios and several network
and stability properties. We ran 275 replicates of experiments
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consisting of model communities generated using different
MAI ratios and letting them evolve through time.

Generation of species interactions networks

Food web architecture was obtained using the niche model
(Williams and Martinez 2000). This model requires two input
parameters: (1) the number of species (S) and (2) connectance,
defined as the fraction of realised links (C=L/S2) within the
network. The niche model describes trophic niche occupancy
between consumers and resources along a resource axis and
successfully generates network structures that approximate well
the central tendencies and the variability of a number of food
web properties (Williams and Martinez 2000; Dunne et al.
2002; Stouffer et al. 2005). Because it arranges consumers
and resources along a resource axis, the niche model can be
applied to other types of consumer-resource interactions (aside
from antagonistic predator-prey).We thus used the niche model
to define mutualistic interactions simply by substituting some
herbivore links by mutualistic ones while keeping connectance
and species richness constant. The model for network construc-
tion selected, however, should not affect our results, as long as
realistic food web architectures are produced.

We created food webs comprising 60 species and with
connectance values of 0.08 (values well within the range of
those found for real food webs (Dunne et al. 2002)) for MAI
ratios ranging from 0 to 1.0 with steps of 0.1: [0, 0.1, 0.2, 0.3…
1], making up a total of 11 different MAI ratios, from commu-
nities with no mutualistic interactions to communities with only
mutualistic links and no herbivores (see Appendix S1 in
Supporting Information for more details on network construc-
tion). We classified species into six categories (i.e. trophic
groups) according to their position within the overall food
web: (1) non-mutualistic plants, (2) mutualistic plants, (3) ani-
mal mutualists or mutualistic consumers, (4) herbivores, (5)
primary predators and (6) top or apex predators (Fig. 1).

Individual-based spatially explicit dynamics

Individual-based models (IBMs) have been used to tackle dif-
ferent problems in ecology, although not very frequently to
simulate complex ecosystems comprising large numbers of spe-
cies (Grimm and Railsback 2005). We implemented an IBM
that simulates dynamics typical of two-dimensional cellular au-
tomata (CA) (Ulam 1952; Durrett and Levin 1994) but based on
ecological rules of interaction. This CA represents our simulated
community in space. Space in the CA is represented as a 2D
lattice. Cells in the lattice can be occupied by amaximum of two
individuals at any given time, provided that one of them belongs
to a plant and the other one to an animal species. Cells in the
lattice can thus be in one of four states: (i) empty, (ii) harbouring
a plant individual or (iii) an animal individual, and (iv)
harbouring a plant and an animal individuals. Torus boundary

conditions were used for the 2D lattice in order to reduce pos-
sible edge effects due to the loss of individuals. Individuals
change their internal state (or not) during each iteration of model
simulations not only according to their interactions but also as a
function of a number of bioenergetic constraints (Table S1).
CA-type rules represent demographic processes, foraging ac-
tions, and inter/intraspecies interactions of individuals in our
IBM. These rules, by which individuals (and hence the CA)
change their state through time, are detailed in Appendix S1.

In summary, the macroscopic dynamics of the CA emerge
from the local interactions occurring between individuals occu-
pying cells in a 2D lattice (Fig. 2). These dynamics will deter-
mine not only the spatial distribution of species (states of the
CA) but also the temporal dynamics of their populations.
Persistence/extinction dynamics are determined by individual
energetics, which in turn affect demographic processes at the
individual level (see Table S1 for description of bioenergetic
parameters). This individual-based, bioenergetic model is more
realistic than previous models of complex food web dynamics
(e.g. (Pimm 1979;McCann et al. 2005; Brose et al. 2006)) in the
following aspects: (i) individuals within species have different
extinction rates, which are not dependant on stochastic events,
thus eliminating the need to define fixed extinction probabilities
for all species in the community (e.g. (Solé and Montoya 2006;
Fortuna et al. 2013)); (ii) more complex demographic processes
such as reproductive ability and immigration based on available
space are taken into account; and (iii) bioenergetic constraints
such as energy gathering efficiency and energy loss at the indi-
vidual level are driving population dynamics.

During model simulations, spatial communities evolve
through time following constraints imposed by bioenergetic
parameters (see Table S1), spatial constraints (similar to all
individuals) and the interactions between species determined
by network architecture. After 5000 time steps, which include
an initial period of transient dynamics, the communities are

Fig. 1 Schematic representation of the species interaction networks
generated. Nodes correspond to taxonomic species and arrows to
trophic links from resources to consumers. The six different categories
(i.e. functional groups) of species, according to their position, that result
from the process of network generation are shown (see text)
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analysed in terms of diversity (species richness and abun-
dances), network properties and stability.

Diversity and food web properties

Several statistical properties of the network of species interac-
tions were measured after transient dynamics. In particular, we
measured the number of species (S), number of links (L),
connectance (C=L/S2), the standard deviation of generality
(GenSD) and vulnerability (VulSD)—the last two quantify diet
breadth variability and predation pressure variability across
species, respectively (Williams and Martinez 2000).
Additionally, we obtained quantitative indices that consider
the strength of species interactions including: H′2—a measure
of mutualistic specialisation—(Blüthgen et al. 2006), which
was calculated for the mutualistic part of the web, since it is
only meaningful for bipartite interaction networks; and quan-
titative measures of generality (Gq) and vulnerability (Vq)
(Bersier et al. 2002). Table 1 presents the full set of metrics
calculated over the networks and their mathematical defini-
tions, including those mentioned above.

In addition to properties related to network architecture, we
also measured community diversity using the Shannon diver-
sity and evenness indexes (Begon et al. 2006). These indexes
were calculated both at the community level and within each
trophic group (Fig. 1).

Community stability

Theoretical studies on the relationship between network archi-
tecture and stability of hybrid communities often define stabil-
ity as the proportion of stable communities following May’s
stability criterion (e.g. (Allesina and Tang 2012; Mougi and
Kondoh 2012)). May concluded that a complex ecosystem
would be stable if, and only if, it complied with the following
condition: <i> (SC)1/2<1 (May 1972), where <i> is the mean
strength of the interactions between species in the communi-
ty—the strength of the interaction between species i and j is the
effect of species i on the population growth rate of j. S and C
correspond to the number of species in the community and its
connectance, respectively. Although, due to the nature of our
modelling approach, our communities are not amenable to this
type of analysis, May’s criterion is useful in our case because
we have communities with constant S and C values. A good
indicator of community stability in our communities is thus the
average interaction strength among their constituent species:
the lower the <i>, the more stable our communities will be
because of less fluctuating dynamics. This attribute has also
been identified as distinctive feature of more stable natural
communities (McCann 2000; Neutel et al. 2002).

We estimated the interaction strength between a predator j
and its prey i as:

αi j ¼ bi j
N i � N j

where bi j is the total biomass flowing from prey species i to
predator species j—quantified here as the total number of
individuals (or fractions of it, in the case of plants) from spe-
cies i eaten by individuals of species j. Ni and Nj are the total
number of individuals of species i and j at the time of the
calculation of the index, respectively. This way of calculating
interaction strengths quantifies the per-capita effect of a pred-
ator species over its prey, and it is thus analogous to Paine’s
index and Lotka-Volterra interaction coefficients (Neutel et al.
2002; Berlow et al. 2004). This allows us to employ these
values to assess and understand community stability based
on the strengths of ecological interactions.

We additionally looked at three other measures of commu-
nity stability. First, temporal variability, which quantifies pop-
ulation variability as the average of the coefficient of variation
(CV) of species population abundances through time (Pimm
1984). Second, spatial variability, which corresponds to the
CVof the location of the centroid of each species range through
time (see Appendix S1). And third, aggregation stability, mea-
sured as the degree of clustering (i.e. spatial correlation) of
individuals within each species in space (i.e. Moran’s I and
Geary’s C indexes described in Appendix S1). This metric is
linked to reproductive stability because the likelihood of finding
a reproductive partner in the neighbourhood is higher in more

Fig. 2 Example of a 2D grid (17×17 cells) showing a fraction of the
landscape where digital organisms in the individual-based model coexist
and interact. Trajectories of two sample individuals until they encounter
each other are represented by black and dark grey squares. Light grey
squares represent the neighbourhood of each of the two individuals at the
beginning of their respective current paths. At the end of both paths, each
individual finds itself inside the other’s neighbourhood. Depending on
other individuals present on a given individual’s neighbouring cells
(shown as light grey cells for the starting position of each of the two
individuals in the figure) or whether these are available, the ‘state’ in
this complex cellular automaton will change following certain rules and
constraints (see text and Supporting Information)
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spatially aggregated distributions. Collectively, more stable
communities will be characterised by lower temporal and spa-
tial variability, higher reproductive stability and lower average
interaction strengths. This framework allowed for the explora-
tion of the relationships between network properties and the
stability metrics in our communities by looking at how tempo-
ral and spatial stability changed as MAI ratio increased.

Experimental simulations

We generated networks with 11 different MAI ratios in order to
study the effects of different combinations of antagonistic and
mutualistic interactions on community stability. The individual-
basedmodel described above was employed to perform a series
of simulations of the dynamics of the system through time and
space. Simulations were set up by placing a given community,

made up of artificial individuals belonging to each of the spe-
cies in the interaction network defined by the niche model, on a
landscape that consists of a 200×200 square lattice with iden-
tical cells. Each cell can be occupied at any given time by at
most two individuals, yielding a maximum of 80,000 individ-
uals. At the beginning of the simulations, only 40% of the
landscape was occupied and populated with the same number
of individuals of each species randomly across the lattice.
Communities were allowed to evolve for 5000 iterations.
Diversity and network properties were constantly monitored.

We performed 25 replicates for each of the 11 MAI ratios,
each of them representing different sets of initial conditions not
only in terms of the initial configuration of the simulated land-
scape but also regarding the network of interactions. For each
of these 25 replicates, the initial distributions of individuals
across the landscape varied by placing individuals randomly

Table 1 Metrics applied over the
interaction networks to obtain
information about their structural
and quantitative properties

Property Formula

C: connectance, fraction of realised links
out of the possible ones

L/S2

GenSD is the standard deviation of the
normalised number of prey Gi across
species

Gi ¼ 1
L=S∑

S
j¼1aji, where aji is 1 if there exists a trophic link

between prey j and predator i, and 0 otherwise

VulSD is the standard deviation of the normalised
number of predators Vi across species

V i ¼ 1
L=S∑

S
j¼1ai j, where aij is 1 if there exists a trophic link

between prey i and predator j, and 0 otherwise

Compartmentalisation is the degree to
which species share common neighbours
across the web (Pimm and Lawton 1980)

C ¼ 1
S S−1ð Þ∑

S
i ∑

S
j¼1
j≠i
ci j, where cij is the number of species

with which both i and j interact divided by the number
of species with which either i or j interact

Nestedness: the extent to which the diets
of specialist species are proper subsets
of more generalist ones

Calculated using the nestedness metric based on overlap and
decreasing fill (NODF) proposed by Almeida-Neto et al.
(Almeida-Neto et al. 2008). This metric was only
calculated for the mutualistic sub-web

H′2: two-dimensional standardised
Shannon entropy, as proposed by
(Blüthgen et al. 2006)

H′2=(H2max−H2)/(H2max−H2min), where H2max and H2min

are maximum and minimum H2 for the particular network
over which the index is being calculated [see (Blüthgen
et al. 2006) for details]. H2=−∑i=1

r ∑j=1
c (pij⋅lnpij),

where r and c are resources and consumers in the
mutualistic web respectively. pij is the proportion of the
total number of interactions in the network that occur
between resource species i and consumer species j. This
metric was calculated over our networks using the
bipartite package in R (Dormann et al. 2009), and only
for the mutualistic sub-web

Gq: weighted (quantitative) generality,
as proposed by Bersier et al. 2002

Gq ¼ ∑S
k¼1

b⋅k
b::nN ;k , where b⋅k is the total amount of biomass

going into species k, and b.. is the total amount of biomass
flowing through the entire food web. nN,k is the number of
prey that predator k has. Here, the biomass flowing from
one species to another was calculated as the number of
individuals of a given prey species eaten by individuals of
predator species k (Bersier et al. 2002)

Vq: weighted (quantitative) vulnerability,
as proposed by Bersier et al. 2002

Vq ¼ ∑S
k¼1

bk:⋅
b::nP;k , where bk is the total biomass emanating

from species k. b.. is the total biomass flowing through
the entire food web. nP,k is the number of predator species
that feed upon prey species k. Here, the biomass flowing
from one species to another was calculated as the number
of individuals of prey species k eaten by a given predator
species (Bersier et al. 2002)
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across the landscape for each replicate as detailed above. The
network of interactions for each of these replicates was gener-
ated independently by running different instances of the niche
model with the same S and C values and choosing the mutual-
istic links following the heuristic described in Appendix S1.We
kept S andC constant across our simulations because our aim is
to evaluate the effect of varying MAI ratios on community
stability rather than the effects of changes in species richness
or connectivity. This process effectively produced different in-
teraction networks for each run with the same number of spe-
cies and connectivity. Each of the 25 communities simulated
for each MAI ratio was thus independent, and the architecture
of the ecological network was different from replicate to repli-
cate. This yielded a total of 25×11=275 replicates.

Linear models (LM) were used to analyse the relationship
between MAI ratios and the properties of the communities and
their interaction networks as well as their effect on stability. The
IBM used here was developed using Python v2.7 (www.python.
org), while statistical analyses were performed in R 2.15.2 (R
Core Development Team 2012). Sensitivity analyses were
carried out to assess the robustness of our results to differences
in species richness, landscape lattice size and number of
generated communities. See Appendix S1 for a description of
these analyses. The model presented here incorporates a total of
17 free parameters (see Table S1), over which sensitivity
analyses have also been performed. We have modified
individually every parameter of the model (i.e. those
described in Table S1). In doing so, we have changed
the original value reported in Table S1 by ±10 % and
used GLMs to test whether significant changes on the
relationship between MAI ratios and network properties/
stability metrics analysed exist. Results are summarised in
Tables S2 and S3. In general, no significant differences were
observed for any of the parameters modified, suggesting our
results are not very sensitive, and hence robust, at least for a
given section of the parameter space, whose full exploration is
not feasible to tackle given the complexity of the model used.

Results

Community structure

After a period of transient dynamics, the resulting simulated
communities and their associated interactions networks
displayed patterns similar to those found in empirical
multitrophic assemblages. Population dynamics showed oscil-
lations typical of predator-prey and mutualistic interactions in
multispecies systems, with all species in the community
persisting through time. The rank-abundance and degree dis-
tributions of the simulated communities followed lognormal
(Fig. S2) and exponential (Fig. 3, p value <0.001 for all fits to
exponential models) patterns, respectively, typical of natural

Fig. 3 Cumulative degree distributions from 10 sample communities
with different MAI ratios. Lines represent a fit of each dataset to an
exponential distribution (p values for all fits <0.001)
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communities (Montoya et al. 2006). Therefore, we can con-
clude that the model successfully generates communities
displaying empirically observed patterns.

Diversity metrics changed as expected by an increase in
MAI ratios. Although the level of mutualism did not affect total
species richness, communities with larger MAI ratios hosted a
larger number of individuals (F(1273)=98.69, p<0.001) (Fig. 4).
In spite of a decline in the abundance of non-mutualistic pri-
mary producers and herbivores with increasing MAI ratios (as
expected due to a larger fraction of mutualistic species), the
increase in mutualistic plants and animals overcompensated
for this loss, causing an overall increase in abundance. This
overcompensation was due to mutualistic plants becoming
more abundant than non-mutualistic ones since mutualistic
consumers do not consume as much resources from them and
are, additionally, beneficial for their reproduction. Increased
MAI ratios caused a significant decline in Shannon diversity
index (Fig. 4, F(1273)=71.47, p<0.001). This result is in line
with our previous observation reporting an increased overall
abundance of individuals following a systematic increase in
mutualistic plant and animal abundances. The proportion of
mutualistic species in the community had a profound effect
on diversity and evenness, making model communities more
biased towards the dominance of mutualistic species.

Most network properties were not significantly affected by
the degree ofmutualism vs. antagonism.However, some of them

did show a monotonic relationship with MAI ratio. Quantitative
generality (Gq) was significantly lower in communities with
higherMAI ratio (F(1273)=59.49, p<0.001, Fig. 5), whereas spe-
cialisation (H′2) within the mutualistic sub-web decreased
(F(1248)=25.91, p<0.001, Fig. 5). These results combined indi-
cate that a larger fraction of mutualistic interactions resulted in
more generalised mutualistic interactions within a more
specialised overall network. It is important to note that we are
referring here to quantitative metrics. This means that, with in-
creasing MAI ratios, binary network architecture remained con-
stant—not significant differences in modularity, nestedness or
connectance across MAI ratios—but interactions at the overall
network level became weaker in general, with only a few strong
interactions. On the mutualistic sub-web, interactions became
more homogeneous in terms of strength due to a weakening of
the interactions in general, which made it less specialised (lower
H′2) by increasing the relative importance of weak links.

Community stability

Based on the interaction strengths criterion for community
stability (see BMethods^), we found that MAI ratios enhanced
dynamic stability in our model communities. We observed a
significant reduction in <i>—the average interaction
strength—as MAI ratio increased, evidenced by a shift in the
distribution of interactions strengths towards lower values
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Fig. 4 Total abundance of individuals in the community and Shannon
diversity index at the level of the total community vs. MAI ratio. Total
numbers of individuals are represented in tens of thousands. Points show
index values for each replicate. Line and shadow on each plot represent
the fit of a linear model to the data and the standard error of the mean,
respectively. p value <0.001 for linear model fits to each data set
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Fig. 5 Quantitative generality (Gq) and specialisation degree (H′2) values
as a function of MAI ratio. Points show index values for each replicate.
Line and shadow on each plot represent the fit of a linear model to the data
and the standard error of the mean, respectively. p value <0.001 for linear
model fits to each data set
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with MAI ratio (Fig. 6, p<0.001 for all pairwise comparisons
between distributions). This result suggests that mutualistic
interactions make communities more stable by lowering the
average strength of ecological relationships between species.

MAI ratios did not affect temporal stability (i.e. population
variability through time), spatial stability (as measured by the
change in the centroid of the species’ spatial range) or the area
and density of species populations. In contrast, higher MAI
ratios resulted in significantly higher and lower Moran’s I and
Geary’s C indexes, respectively (correlation tests using linear
models yielded F(1273)=29.06, p<0.01 for Moran’s I and
F(1273)=24.35, p<0.01 for Geary’s C against MAI ratios),
revealing more spatially aggregated populations with increas-
ingMAI ratios (Fig. S3). Increases in spatial aggregation were
different across trophic levels both at global (Moran’s I) and
local (Geary’s C) scales. For example, whereas predators and
plants got significantly more aggregated as MAI ratio in-
creased, the aggregation of mutualistic animals and herbivores
was either not affected or only weakly affected by changing
MAI ratios, respectively (Fig. 7 and S4). We argue that more
spatially aggregated populations can be associated with higher
reproductive potential stability, as the likelihood of finding a
reproductive partner in the neighbourhood is higher. From this
perspective, communities in general, and plant and predator
species in particular, were thus more stable in terms of species
reproductive potential as the MAI ratio increased (Fig. 7, S3
and S4).

Discussion

The consideration of different interaction types simultaneous-
ly within the same ecological network has consistent and pre-
dictable effects on community organisation and stability
across a gradient of antagonistic vs. mutualistic interactions.
We have shown that increasing levels of mutualisms result in

more stable communities. More importantly, increasing the
proportion of mutualistic vs. antagonistic interactions (i.e.
MAI ratios) influences different dimensions of ecological sta-
bility in different ways, although never negatively. Stability
was either not influenced by increasing mutualism—in the
cases of population stability and species’ spatial distribu-
tions—or was positively influenced by them—spatial aggre-
gation, distribution of interaction strengths. The question aris-
ing is: why were some components of stability affected by
MAI ratios and others were not?

Stability of our model communities in terms of the variabil-
ity in the population dynamics of their constituent species was
not affected by the MAI ratio. This could be a consequence of
the stabilising effect of space on complex communities, as has
been previously demonstrated (e.g. (Solé and Bascompte
2006)), regardless of the type of interaction considered.
Several mechanisms that could yield these stability patterns
due to spatial arrangements within communities, such as
metapopulation dynamics and refugee effects, are in place in
our model. Metapopulation dynamics, via the exchange of
individuals among local populations, could be an important
factor determining the fate of species, preventing them from
going extinct (Hanski 1998). Metapopulation structure in our
model communities emerges as a property of the system from
organisation of individuals at the local scale. Also, the refugee
effect created by highly aggregated populations (see Fig. 7),
which prevents predators from attacking individuals at the
core of these populations, could drive stability at the popula-
tion level. Collectively, these factors could have profound im-
pacts on the ability of predators to capture prey as mutualisms
increase. It is possible however that the opposite pattern could
arise, whereas a more aggregated prey distribution would al-
low predator individuals to find the ‘next’ prey to attack more
readily. This would result in higher attack rates. The emer-
gence of this pattern would make communities displaying it
less able to persist through time since the predator would force
their prey into an extinction vortex. This suggests that a good
balance between prey aggregation and attack rate must be
found to enhance persistence. The key to this balance could
lie on the strength of ecological interactions.

Our results showed that increasing MAI ratios results in
model communities with a lower quantitative generality
(Gq). Because quantitative generality measures the generality
of consumers, this indicates that predators, even when keeping
all of their prey species as MAI increases, are becoming more
specialised (i.e. they are more likely to interact with some of
their prey species than with others). Since our model does not
enforce any kind of prey preference or selection, this is exclu-
sively a consequence of an increased abundance of those ‘pre-
ferred’ prey species. A higher proportion of mutualistic inter-
actions promotes the dominance of certain prey species that
are becoming relatively more abundant. As a result and in
parallel to this pattern, some of the interactions of generalist
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Fig. 6 Frequency distributions of interaction strengths in the overall
ecological network across different values of MAI ratio
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species are becoming weaker (those with less abundant prey).
This could in turn cause a shift in the distribution of the
strengths of interactions towards lower values, a distinctive
feature of more stable communities (McCann 2000; Neutel
et al. 2002). Interestingly, the distribution of interaction
strengths at the community level was largely affected by
MAI ratios, withweaker interactions becomingmore common
in communities with higher MAI ratios. Therefore, a higher
fraction of mutualistic species promotes community stability
by shifting the distribution of interaction strengths towards
lower values.

The likely mechanism behind the observed changes in in-
teraction strength patterning is a differential spatial aggrega-
tion of species per trophic level. Both global (Moran’s I) and
local (Geary’s C) aggregation metrics were positively influ-
enced byMAI ratios at the whole community level, with some
trophic groups displaying a stronger relationship than others.
The populations of basal species (plants) were more aggregat-
ed at higher MAI ratios. This higher spatial aggregation of
primary producers is likely due to the fact that mutualistic
consumers take up fewer resources from their interaction part-
ners. Populations of mutualistic plants can thus remain more

aggregated due to decreased mortality and hence increased
local reproduction. Additionally, given that there are less her-
bivore species as MAI ratio increases, non-mutualistic plants
remain more clustered. Regardless of the mechanisms behind
the aggregation of basal species (e.g. decreased mortality, in-
creased local reproduction, herbivory release), the effects of
this aggregation percolates up through the food chains, possi-
bly by inducing herbivores (and mutualistic animals) to re-
main near aggregated food sources, and hence predator spe-
cies become more clustered as MAI ratio increases. In sum-
mary, spatial aggregation offers a potential explanation to why
interactions in the community are becoming weaker in gener-
al, as suggested by the decrease in Gq. Consumers will be
more likely to interact with the same prey species if they are
aggregated around them, in detriment of their other potential
interactions as defined in the niche model.

Our results seem to contradict those of Mougi and Kondoh
2012, who found that higher levels of mutualisms have a
destabilising effect on the communities with a mixture of an-
tagonistic and mutualistic interactions. Even though space has
an important influence on the stability of ecological commu-
nities (whether natural or artificial), we should not overlook

●

●

●●●●●

●

●

●●

●

●●●

●

●●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●● ●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

0.0

0.1

0.2

0.3

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

Mutualistic plants ***

●

●

●
●
●
●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

0.0

0.1

0.2

0.3

0.4

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

M
or

an
's

 I

Non• mutualistic plants ***

●

●

●●●●●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●● ●●●●

●

●

●

●

●

●●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●
●
●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●

●●

●

●
●

0.0

0.1

0.2

0.3

0.4

0.5

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

Mutualistic animals

●

●●
●

●

●

●●

●
●●●●●●●●

●
●

●
●

●
●●● ●

●

●
●
●
●●●
●
●●

●●
●

●
●

●●

●
●
●

●

●

●

●
●●

●

●

●●

●●

●

●

●●●

●

●
●
●●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●●

●●
●●

●
●
●●●

●

●●● ●

●

●
●
●

●

●

●●●
●●

●
●

●

●

●

●

●

●

●●
●
●

●

●

●

●
●●

●

●
●●●

●●

●●

●

●

●

●

●

●
●

●

●

●
● ●

●●●

●

●●

●

●

●

●

●
●●

●

●●

●●●●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●●

●

●●●●

●

●

●

●
●

●

●●

●

●●●●●

●

●

●●

●●

●

●

●

●

●●●●

●●

●

●●●●

●

●

●●●

●

●●●●●●●●●

●

●●

●

●0.0

0.1

0.2

0.3

0.4

0.5

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

M
or

an
's

 I

Herbivores **

●

●●●

●

●

●

●

●●●●●●●●●

●

●

●

●

●●●● ●●●●●●●●●●

●

●

●

●●

●

●●

●

●

●●●●● ●●

●

●
●

●

●

●

●●●●●●●●●●

●

●

●●●●● ●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●● ●●●●

●

●

●

●

●●●●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●●●● ●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●●●

●

0.00

0.04

0.08

0.12

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
MAI ratio

Top predators ***

●●

●

●●

●

●●●●●

●

●●

●

●●●●●●●●●●

●

●

●

●●●

●

●●

●

●

●●●●●●●●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●

●

●

●

●●

●●

●

●●●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●

●

●●●●

●

●●

●

●

●

●●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

0.00

0.02

0.04

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
MAI ratio

M
or

an
's

 I

Primary predators ***

Fig. 7 Moran’s I spatial
aggregation index per trophic
level as a function of MAI ratio.
Points show index values for each
replicate. Line and shadow on
each plot represent the fit of a
linear model to the data and the
standard error of the mean,
respectively. ** and ***
correspond to p values <0.01 and
0.001 for linear models fit to each
data set, respectively
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the fact that the results by Mougi and Kondoh were obtained
from communities where mutualistic interactions were ar-
ranged randomly across the interaction network. In the present
study, we only allow mutualistic interactions between basal
(plant) and first-order consumer (herbivores) species, mimick-
ing plant-animal mutualisms. Besides, the ‘proportion of mu-
tualistic interactions’ in our study refers to the proportion in
relation to herbivore links rather to the whole set of interac-
tions in the community, as in Mougi and Kondoh’s. Thus,
MAI ratios of 1 (or 100%mutualism) in this study correspond
to low-to-intermediate values of mutualism in their study,
range in which they found the most stable communities.
These observations suggest that both studies might actually
be consistent with each other. Also recently, Sauve et al. 2014
found that in model communities, network properties that
were previously associated to community stability in ecolog-
ical networks with a single interaction type—nestedness for
mutualistic networks and modularity for food webs—are no
longer good predictors of stability in ‘hybrid’ communities.
These properties were not affected byMAI ratios in our model
communities. By extending community stability analysis to
spatial networks with a mixture of interaction types, our re-
sults further supports Sauve et al.’s findings by confirming
that modularity and nestedness (network properties that do
not change with MAI ratio) are not related to community
stability (which increases with MAI ratio). However, the
mechanisms are not clear. The increase in the importance of
indirect effects on hybrid communities, together with the as-
sociated unpredictability that indirect effects have on commu-
nity dynamics (Yodzis 1988; Montoya et al. 2009; Novak
et al. 2011), is likely to reduce the importance of network
topology for stability. In addition, the spatial distribution of
individuals across trophic levels by ultimately affecting inter-
action strengths is also diminishing the importance of these
two network properties for community dynamics.

Conclusion

Ecological stability has several components (Pimm 1984) and
considering different aspects of stability in community analy-
ses benefits the exploration of complexity-stability relation-
ships (Donohue et al. 2013). In this study, we have made three
major developments in the understanding of complexity-
stability relationships in complex food webs by (1) exploring
the effects of antagonistic and mutualistic interactions operat-
ing simultaneously and across a gradient, (2) including inter-
actions at the individual level and (3) considering space ex-
plicitly. We showed that the proportion of mutualistic vs. an-
tagonistic interactions largely affects spatial stability. This is a
key advance for understanding how spatial processes such as
dispersal, aggregation, or habitat loss and fragmentation affect
community stability. The ‘network of networks’ approach

adopted here and increasingly claimed for in network research
allows for a more comprehensive exploration of the relation-
ship between network architecture and community stability.

Acknowledgments This work was supported by the French Laboratory
of Excellence project ‘TULIP’ (ANR-10-LABX-41; ANR-11-IDEX-
002-02). ML was supported by Microsoft Research, through its PhD
Scholarship programme. DM was supported by the European Commis-
sion (MODELECORESTORATION - FP7 Marie Curie Intra-European
Fellowship for Career Development [301124]).

Author contributions All authors designed the research. ML per-
formed modelling work, ran the simulations and analysed output data.
DM also analysed output data. All authors discussed the results. ML
wrote the first draft of the manuscript, and all authors contributed sub-
stantially to revisions.

References

Allesina S, Tang S (2012) Stability criteria for complex ecosystems.
Nature 483:205–208

Almeida-Neto M, Guimarães P, Guimarães PR Jr, Loyola RD, Ulrich W
(2008) A consistent metric for nestedness analysis in ecological
systems: reconciling concept and measurement. Oikos 117:1227–
1239

Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to
ecosystems, 4th edn. John Wiley & Sons, Oxford

Berlow EL, Neutel AM, Cohen JE, De Ruiter PC, Ebenman B,
Emmerson MC et al (2004) Interaction strengths in food webs: is-
sues and opportunities. J Anim Ecol 73:585–598

Bersier L-F, Banašek-Richter C, CattinM (2002) Quantitative descriptors
of food-web matrices. Ecology 83:2394–2407

Blüthgen N, Menzel F & Blüthgen N (2006) Measuring specialization in
species interaction networks BMC Ecology, 6

Brose U, Williams RJ, Martinez ND (2006) Allometric scaling enhances
stability in complex food webs. Ecol Lett 9:1228–1236

Burkle LA, Alarcon R (2011) The future of plant-pollinator diversity:
understanding interaction networks across time, space, and global
change. Am J Bot 98:528–538

Donohue I, Petchey OL, Montoya JM, Jackson AL, McNally L, VianaM
et al (2013) On the dimensionality of ecological stability. Ecol Lett
16:421–429

Dormann CF, Fründ J, Blüthgen N, Gruber B (2009) Indices, graphs and
null models: analyzing bipartite ecological networks. Open Ecol J 2:
7–24

Dunne JA, Williams RJ, Martinez ND (2002) Food-web structure and
network theory: the role of connectance and size. PNAS 99:12913–
12916

Durrett R, Levin SA (1994) Stochastic spatial models: a user’s guide to
ecological applications. Philos Trans R Soc Lond B Biol Sci 343:
329–350

Fontaine C, Guimarães PR Jr, Kéfi S, Loeuille N, Memmott J, Van Der
Putten WH et al (2011) The ecological and evolutionary implica-
tions of merging different types of networks. Ecol Lett 14:1170–
1181

Fortuna MA, García C, Guimarães PR Jr, Bascompte J (2008) Spatial
mating networks in insect-pollinated plants. Ecol Lett 11:490–498

Fortuna MA, Zaman L, Wagner AP, Ofria C (2013) Evolving digital
ecological networks. PLoS Comput Biol 9:e1002928

Grimm V, Railsback SF (2005) Individual-based modeling and ecology
(Princeton Series in Theoretical and Computational Biology).
Princeton University Press, Princeton

Theor Ecol



Hanski I (1998) Metapopulation dynamics. Nature, 396
Holt RD (2002) Food webs in space: on the interplay of dynamic insta-

bility and spatial processes. Ecol Res 17:261–273
James A, Pitchford JW, Plank MJ (2013) Disentangling nestedness from

models of ecological complexity. Nature 487:227–230
Kéfi S, Berlow EL, Wieters EA, Navarrete SA, Petchey OL, Wood SA

et al (2012) More than a meal integrating non-feeding interactions
into food webs. Ecol Lett 15:291–300

Levins R (1974) Discussion paper: the qualitative analysis of partially
specified systems. Ann N YAcad Sci 231:123–138

Loreau M, deMazancourt C (2013) Biodiversity and ecosystem stability:
a synthesis of underlying mechanisms. Ecol Lett 16:106–115

May RM (1972) Will a large complex system be stable. Nature 238:413–
414

McCann KS (2000) The diversity—stability debate. Nature 405:228–233
McCann KS, Rasmussen JB, Umbanhowar J (2005) The dynamics of

spatially coupled food webs. Ecol Lett 8:513–523
Melián CJ, Bascompte J, Jordano P, Krivan V (2009) Diversity in a

complex ecological network with two interaction types. Oikos
118:122–130

Montoya JM, Pimm SL, Solé RV (2006) Ecological networks and their
fragility. Nature 442:259–264

Montoya JM,Woodward G, Emmerson MC, Solé RV (2009) Press pertur-
bations and indirect effects in real food webs. Ecology 90:2426–2433

Morales JM, Vázquez DP (2008) The effect of space in plant–animal
mutualistic networks: insights from a simulation study. Oikos 117:
1362–1370

Mougi A, KondohM (2012) Diversity of interaction types and ecological
community stability. Science 337:349–351

Neuhauser C (1998) Habitat destruction and competitive coexistence in
spatially explicit models with local interactions. J Theor Biol 193:
445–463

Neutel A-M, Heesterbeek JAP, De Ruiter PC (2002) Stability in real food
webs: weak links in long loops. Science 296:1120–1123

NovakM,Wootton JT, DoakDF, EmmersonM, Estes JA, TinkerMT (2011)
Predicting community responses to perturbations in the face of imper-
fect knowledge and network complexity. Ecology 92:836–846

Olesen JM, Jordano P (2002) Geographic patterns in plant-pollinator
mutualistic networks. Ecology 83:2416–24162424

Olff H, Alonso D, Berg MP, Eriksson BK, Loreau M, Piersma T et al
(2009) Parallel ecological networks in ecosystems. Philos Trans R
Soc Lond B Biol Sci 364:1755–1779

Paine RT (1980) Food webs: linkage, interaction strength and community
infrastructure. J Anim Ecol 49:666–685

Pimm SL (1979) Complexity and stability: another look at MacArthur’s
original hypothesis. Oikos 33:351–357

PimmSL (1984) The complexity and stability of ecosystems. Nature 307:
321–326

Pimm SL, Lawton JH (1980) Are food webs divided into compartments.
JAE 49:879–898

R Core Development Team (2012) R: a language and environment for
statistical computing. R Foundation for Statistical Computing,
Vienna

Reiss J, Bridle JR, Montoya JM,Woodward G (2009) Emerging horizons
in biodiversity and ecosystem functioning research. Trends Ecol
Evol 24:505–514

Sauve AMC, Fontaine C, Thébault E (2014) Structure-stability relation-
ships in networks combining mutualistic and antagonistic interac-
tions. Oikos 123:378–384

Solé RV, Bascompte J (2006) Self-organization in complex ecosystems.
Princeton University Press, New Jersey

Solé RV, Montoya JM (2006) Ecological network meltdown from habitat
loss and fragmentation. In: Pascual M, Dunne JA (eds) Ecological
networks: linking structure to dynamics in food webs. Oxford
University Press, Oxford, p 386

Solé RV, Alonso D, Mckane A (2002) Self-organized instability in com-
plex ecosystems. Philos Trans R Soc Lond B Biol Sci 357:667–681

Staniczenko PPA, Kopp JC, Allesina S (2013) The ghost of nestedness in
ecological networks. Nat Commun 4:1–6

Stouffer DB, Camacho J, Guimera R, Ng C, Nunes Amaral L (2005)
Quantitative patterns in the structure of model and empirical food
webs. Ecology 86:1301–1311

Thebault E, Fontaine C (2010) Stability of ecological communities and
the architecture of mutualistic and trophic networks. Science 329:
853–856

Tilman D, Kareiva P (eds) (1997) Spatial ecology: the role of space in
population dynamics and interspecific interactions. Princeton
University Press, New Jersey

Ulam SM (1952) Random processes and transformations. In:
International Congress of Mathematicians. Presented at the
International Congress of Mathematicians, Cambridge, MA, USA,
pp. 264–275

Williams RJ, Martinez ND (2000) Simple rules yield complex food webs.
Nature 404:180–183

Yodzis P (1988) The indeterminacy of ecological interactions as per-
ceived through perturbation experiments. Ecology 69:508–515

Theor Ecol

View publication statsView publication stats

https://www.researchgate.net/publication/273631465

	The effects of space and diversity of interaction types on the stability of complex ecological networks
	Abstract
	Introduction
	Material and methods
	Generation of species interactions networks
	Individual-based spatially explicit dynamics
	Diversity and food web properties
	Community stability
	Experimental simulations

	Results
	Community structure
	Community stability

	Discussion
	Conclusion
	References


