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� Local densities from spatial ecology
capture cooperative interaction
potentials.

� Price's equation identifies spatial
and non-spatial selection mechan-
isms.

� Local densities form structure coeffi-
cient, contextual covariance, and
relatedness.

� Local densities connect game, multi-
level selection, and inclusive fitness
theories.
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a b s t r a c t

Cooperation plays a crucial role in many aspects of biology. We use the spatial ecological metrics of local
densities to measure and model cooperative interactions. While local densities can be found as technical
details in current theories, we aim to establish them as central to an approach that describes spatial
effects in the evolution of cooperation. A resulting local interaction model neatly partitions various
spatial and non-spatial selection mechanisms. Furthermore, local densities are shown to be fundamental
for important metrics of game theory, multilevel selection theory and inclusive fitness theory. The
corresponding metrics include structure coefficients, spatial variance, contextual covariance, relatedness,
and inbreeding coefficient or F-statistics. Local densities serve as the basis of an emergent spatial theory
that draws from and brings unity to multiple theories of cooperation.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Cooperation is thought to play a crucial role in biological
phenomena, including the rise of bacterial biofilms, eukaryotic
cells, multicellular organisms, and societies (Maynard Smith and

Szathmáry, 1999; Okasha, 2006). In the theories on the evolution
of cooperation, as in many other complex subjects, there does not
exist a universal theory that best explains all observed behaviours.
Some non-spatial explanations include reciprocity (Trivers, 1971)
and discrimination (Strassmann et al., 2011). Several theories
invoke a role for space. Although space is certainly not the only
important factor in the evolution of cooperation (Fletcher and
Doebeli, 2009; Lehmann and Keller, 2006; Lehmann and Rousset,
2010; West et al., 2007), it is one of the most important (Débarre
et al., 2014; Lion and van Baalen, 2008; Rousset and Ronce, 2004;
Van Baalen and Rand, 1998).

Space is represented in different ways and described by a
variety of metrics. These include structure coefficient (Tarnita
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et al., 2009), spatial variance (Wilson, 1977), contextual covariance
(Heisler and Damuth, 1987), relatedness (Hamilton, 1964), and
inbreeding coefficient or F statistics (Lehmann and Rousset, 2010),
among others. But these metrics are not all purely spatial. It is thus
important to identify a common language with which to measure
and discuss spatial effects on cooperation, in order to discern
when space really plays a role.

A recurrent discovery is that the evolutionary dynamics of coop-
eration in space can be modelled using pair densities (Débarre et al.,
2014), or alternatively using the probabilities of identity between
individuals (Rousset, 2002). These are then used to derive one of the
five metrics we cite above. The discussions surrounding these
terminologies remain encumbered by the highly technical mathe-
matics and assumptions needed tomechanistically derive them, which
include spatial moment approximation (Levin and Pacala, 1997), pair
approximation (Matsuda et al., 1992), and quasi-equilibrium approx-
imation (Débarre et al., 2014). If we are willing to take pair densities or
probabilities of identity as quantities that can be measured and not
necessarily mechanistically derived, then we may be able to open up
the discussion of space and cooperation to empirical application. For
this purpose, we will turn to the related and empirically applied
metrics – local densities – which originate in neighbourhood models
of plant interaction in spatial ecology (Pacala and Silander, 1985;
Sapijanskas et al., 2013).

The purpose of this article is to present a coherent and
comprehensive theoretical support for using a set of local densities
as the central metrics in deciphering the spatial components of
eco-evolutionary cooperation dynamics. First, we define local
densities (Section 2.1) in precise terms, such that they can be
empirically applied and incorporated into a dynamic model
(Section 2.2). We then show that such a local interaction model
can neatly distinguish the spatial and non-spatial selection
mechanisms for cooperation (Section 2.3). By mathematically
relating local densities to the current major paradigms, we can
analyse when kin selection (Hamilton, 1964), group or multi-level
selection (Wilson, 1977), and reciprocity (Trivers, 1971) refer to
spatial, non-spatial, or partly spatial phenomena (Section 3).

There is an excellent theoretical synthesis on the various ways
in which current major paradigms model space, and it is the
immediate predecessor of our paper (Lion and van Baalen, 2008).
Nevertheless, the previous synthesis used a more restrictive
definition of local densities, which are used as pair densities in
graphs with a predefined number of nodes. Our main task is thus
to identify and establish a spatial metric that can be generally
applied in both evolutionary and ecological contexts, in contin-
uous or discrete space and graphs. Some additional novelties in
our synthesis include: relating ecologically and game-theoretically
motivated spatial models to the traditional concept of selection
through Price's equation (Price, 1970); incorporating recent spatial

evolutionary game developments (Tarnita et al., 2009); and relat-
ing spatial metrics to multilevel selection analyses (Okasha, 2006).
Along the way, more familiar derivations are included to facilitate
the transitions from one novel idea to the next, and to be inclusive,
such that theoretical experts, empirical researchers, and any
interested biologist can appreciate the generality and limitations
of our model.

Our work does not adhere to a particular method of computing
evolutionary fitness (see Tarnita and Taylor, 2014), or elucidate
how spatial patterns arise (see Hamilton, 1964; Levin and Pacala,
1997; Matsuda et al., 1992). The local interaction model is not a
complete synthesis; rather, it introduces a more general concept of
local densities and strengthens the foundations of an ongoing
spatial synthesis to include both traditional selection concepts and
new dynamic theories.

2. Local interaction model

We begin with the concept of local density, which measures
and models spatial interactions between individuals. Then we
construct the general dynamic equations for the evolution of
cooperation by adding terms for intrinsic growth rates and payoff
functions. We conclude the section with an analysis of spatial and
non-spatial selection mechanisms.

2.1. Local densities

We first introduce local densities as metrics that describes
encounters, or interaction potentials in space, then we incorporate
changes in local densities. These metrics were developed in the
neighbourhood models of plant interactions (Bolker and Pacala,
1999; Levin and Pacala, 1997; Pacala and Silander, 1985), and are
directly related to the pair densities (Matsuda et al., 1992) often
used in cooperation theories (Débarre et al., 2014). We will
carefully generalize these metrics for interacting individuals
beyond plants.

Let us define a morph as a discrete trait or character that is
heritable through survival or reproduction. We will call carriers of
these discrete characters individuals. This definition of an indivi-
dual is most applicable to haploid organisms, but can also be
applied to individual genes, and to higher organisms if we adopt
the phenotypic gambit (where the character inheritance of non-
haploid organisms is assumed to approximate haploid inheritance
– see Grafen (1984)). For each focal individual u across the entire
population, we can measure the local density xuj of morph j. Such
local density is the number of morph j individuals weighted as a
function of their distance from the focal individual. The local
density of morph j around each individual u at location yu in space

Fig. 1. A localized interaction kernel 1 versus a diffuse local interaction kernel 2. The smooth Gaussian mesh plots represent continuous-space kernels, while the bar plots
represent discretized space approximation kernels, where spatial locations are defined at a lower resolution. yu is the position of the focal individual (in dimensions d1 and
d2), yv is any position that may be occupied by other individuals, and ϕuj is the kernel weighting for the Euclidean distance yv�yu from the focal individual.
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is then:

xuj ¼
Xall j indiv

v
φuj yv�yu
� � ð1Þ

The key to local density is the interaction kernel, i.e. the
weighting function ϕuj. The interaction kernel is a probability
density function, specifying the probability that a focal individual
u interacts with a morph j partner v a distance yv�yu apart. As a
probability density function, ϕuj is positive and integrates to one
over all possible distances. The shape of the interaction kernel
implicitly models the intermediary spatial processes that affect
fitness (fitness is defined later in Eq. (3)). Such processes may
include the transmission of public goods (e.g. metabolites), infor-
mation (e.g. warning calls), toxins, or at the simplest, physical
boundaries or territories of individuals in contact-based interac-
tions. Two symmetric interaction kernels, applicable in both
continuous and discrete space, are illustrated in Fig. 1. We simplify
the modelling problem by assuming that all individuals u of
morph i experience their biotic environment through the same
interaction kernel, ϕij.

The expected value of xuj over all individual u belonging to
morph i, Xij¼E[xuj], is the average local density of morph j around
morph i. Xij can also be interpreted as morph i's encounter
potential of morph j at a given time. We postulate that average
local densities are the biotic neighbourhood variables affecting
fitness. As the interaction kernel ϕij becomes less localized
(approaching a uniform function in space), the local density Xij

approaches the global density Xj, because then every neighbour is
counted equally regardless of distance. The global density Xj is, by
definition, the total number of individuals belonging to a morph
per unit area globally, devoid of spatial information.

The average local density Xij can deviate from the global density
Xj, capturing the effect of clustering or segregation. The clustering
between individuals of the same morph and the segregation from
other morphs are spatial mechanisms that can favour cooperation,
as we will see later.

Local densities are, in the spatial moment literature, functions
of the second moment of the population distribution (Bolker and
Pacala, 1997). The first moment is the global density. Thus, local
density encapsulates the variance of the population distribution,
and is analogous to local stochasticity in the structured population
genetics literature (Rousset, 2004). We identify local densities,
applicable in both continuous and discrete space, as the most
general version of closely related concepts, such as pair densities
or the environs (Matsuda et al., 1992), and probabilities of identity
(Rousset, 2002). Pair densities qi/j are defined on graphs or lattices
where each node can contain at most one individual, and express
the probabilities that a randomly chosen neighbouring node of a
morph i individual is of morph j. Thus, qi/j is simply Xij when local

densities are normalized by a predefined density ceiling (which is
1 in scenarios where pair densities apply). Probabilities of identity
Qx can be written as qi/i, but are measured at a spatial scale
denoted by x (such as within-deme and between-demes) and
concern only the probabilities that two individuals are of the same
morph i. Thus, local densities are more general: they allow us to
use interaction kernels that may be diffused beyond immediate
neighbours, and they capture morph-specific clustering relation-
ships. In Section 3, we will revisit how these correspondences help
us translate existing theories into the local interaction model.

Over many generations, the spatial distribution of individuals
changes due to birth, death, natal dispersal and migratory move-
ment. In Fig. 2, we illustrate how such spatial dynamics affect local
densities in a hypothetical system of cooperators and defectors
(see Appendix A). Birth, limited natal dispersal, and chemotactic
movement (tendency to come together) increase spatial clustering,
whereas death and random movement lead to thinning. We can
relate average local densities to global densities through the
clustering coefficient Cij (defined at t to emphasize possible time
dependence):

XijðtÞ ¼ CijðtÞXjðtÞ ð2Þ

Xij should be positively correlated to Xj – if there are more
individuals of morph j, they will probably be encountered more
often by any morph i even without spatial structure. By taking out
this default correlation, clustering coefficients (i.e. normalized
local densities) reveal clustering levels beyond mean-field expec-
tations. When the clustering coefficient Cij is greater than one,
morph j tends to cluster around morph i individuals more than
would be expected if individuals were distributed uniformly. Note
that XijXi¼XjiXj, because the average number of ij pairs from either
the i or j perspective is the same. By substitution, CijXjXj¼CjiXiXj,
thus Cij¼Cji. Clustering coefficients are convenient ratios with
which to interpret within-morph and between-morph clustering
patterns. Even though local densities and clustering coefficients
can change over the course of evolution (Fig. 2), for most of our
discussion we will use them as values from the population's
equilibrium where evolutionary success is often calculated.

2.2. General dynamic equation and payoff function

In the general dynamic equations that describe how a coopera-
tive population evolves, the response variable of interest is the per
capita growth rate, i.e., the per capita rate of change in the global
density of each morph, which we define as fitness. But we
emphasize the dynamics of fitness, because the biotic environ-
ment – the local densities – changes through the course of
evolution. We thus relate per capita growth rates of S number of

Fig. 2. An example of cooperator (subscript c) and defector (subscript d) spatial distributions, illustrated as local peaks in light and dark at two time points. Between time
T¼5000 and T¼45,000, global population densities (Xc and Xd), average local densities (Xcc, Xcd, Xdc, Xdd), and clustering coefficients (Ccc, Ccd, Cdc, Cdd) change. The individual-
based simulation is based on the production and consumption of an underlying diffusible public good on a 75�75 spatial grid. Both individuals and public good move in
density-dependent fashions, leading to cluster formations (see Appendix A). Local densities and clustering coefficients were computed using kernel 2 in Fig. 1.
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morphs to average local densities in the following form:

dXi

Xidt
ðtÞ ¼ riþ f i Xi1ðtÞ;Xi2ðtÞ; … ;XiSðtÞð Þ ð3Þ

Eq. (3) is the local interaction model, which states that the per
capita growth rate depends on a constant ri, the intrinsic growth
rate, and a function fi containing local densities. ri is called the
intrinsic growth rate because it does not depend on densities. fi
can be called the payoff function (Hofbauer and Sigmund, 2003),
which can be non-linear. Such a density-based model by itself
does not assume a finite population size, but does account for the
discreteness of individuals (Durrett and Levin, 1994; Levin and
Pacala, 1997), a character that is important in realistic spatial
models. The model concentrates on the effect of selection, in
contrast to finite-population models where mutation and drift are
important (Tarnita and Taylor, 2014). To explicitly incorporate drift,
one can work with a stochastic version of Eq. (3). The main
advantage of Eq. (3) is that it allows for a simple mathematical
treatment of spatial demographic dynamics without necessarily
assuming a model-imposed (rather than emergent) population
ceiling or a movement/dispersal pattern restricted by simulation
update rules. The parameters can therefore be easily estimated
either from time series or independently. As a differential equa-
tion, Eq. (3) also represents a concise mathematical form that can
approximate the dynamics of other model systems, and will
facilitate the identification of common terms across different
theories.

From global densities, we get the frequency, or relative propor-
tion, of each morph, pi¼Xi/X, where X is the total population
density. Further, in a 2-morph population, if morph 1 is assigned
a character value of 1, and morph 2 a character value of 0, then p1
(written as p when it is clear) is just the average morph character z
of the population. Traditionally, z is understood as the evolutionary
state. dz/dt (or equivalently dp/dt) is the change in morph character,
i.e., the evolutionary change.

There are several features of the payoff function that are crucial
to cooperation. If the payoff function fi is an increasing function of
Xij, then morph j provides a net benefit to morph i. fi can be
nonlinear, as there can be regimes where cooperation dominates,
and others where competition dominates. This idea has been
developed in population ecology as the Allee effect (Allee, 1931;
Courchamp et al., 1999). Nonlinearity allows us to account for the
fact that individuals simultaneously possess multiple cooperative
and competitive traits or characters that are amplified at different
environmental states. Further, if f1a f2, then morphs 1 and 2 are
said to have asymmetric payoff functions. That is, different morphs
may be affected differently by the same biotic environment.

In summary, our model incorporates three components for the
evolution of cooperation: intrinsic growth rates (ri), payoff func-
tions (fi), and local densities (xij). Next, through a simpler analytical
model, we analyse what these components mean in the Darwinian
language of selection.

2.3. Selection for cooperation

The three components introduced above can be funneled into
general classes of selection mechanisms. We need to transform the
equations for morph density change (Eq. (3)) into ones for morph
character change. Price's (1970, 1972) equation is one way of
performing such a transformation, which has the advantage of
being central to multilevel selection analysis, as we will see. Here
we use a continuous-time version, which is just an application of
the chain rule from calculus (Day and Taylor, 2003; Walker, 2012),
to analyse the change in the average individual character of a

population dz(t)/dt at a given time t. The equation is

dzðtÞ
dt

¼ cov wu; zuð Þ ð4Þ

where wu is the fitness of an individual u, and zu is the character
value of that individual. On average, wu is just the per capita
growth rate of the individual's morph given the set of average local
densities experienced at time t (Eq. (3)).

In the following analytical example, we consider two morphs
that have different intrinsic growth rates. In addition, morph
1 provides help, from which the two morphs benefit differently.
This evolutionary scenario may be expected of a cooperative trait
(possessed by morph 1) – the production of a costly local public
good. Here we ignore the effect of competition and payoff function
non-linearity. The fitness of morph i can then be simplified to the
following equation:

dXi

Xidt
ðtÞ ¼ riþai1Xi1ðtÞ ð5Þ

A positive ai1 indicates helping by morph 1. But Eq. (5)
expresses the fitness of a morph and not of an individual. To
obtain wu, let us define the fitness of an individual u in term of
character value zu; let zu¼1 be the character value of an individual
of morph 1, and zu¼0 be the character value of an individual of
morph 2. We can then write an individual u's intrinsic growth rate
as ru(z)¼r2þ(r1–r2)zu, and payoff function as au1(z)¼a21þ(a11–
a21)zu. From here, we can write down the fitness of an individual u,
which depends on its morph and on its local density xu1 at time t:

wu ¼ r2þðr1�r2Þzuþða21þða11�a21ÞzuÞxu1 ð6Þ

Note that for zu¼1, Eq. (6) gives the fitness of morph 1
(r1þa11x11); and for zu¼0, Eq. (6) gives the fitness of morph 2
(r2þa21x21). By substituting Eq. (6) into the covariance Eq. (4), we
obtain the change in the population's average character:

dzðtÞ
dt

¼ cov r2þ r1�r2ð Þzuþ a21þ a11�a21ð Þzuð Þxu1; zuð Þ

¼ r1�r2ð Þvar zuð Þ
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{½1�

þa21cov xu1; zuð Þ
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{½2�

þ a11�a21ð Þcov zuxu1; zuð Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{½3�

ð7Þ

This equation identifies 3 distinct selective forces at a given
time, each of which consists of a selection coefficient and a
variance or covariance term—a potential for selection. Term [1]
points to the non-spatial selection due to the intrinsic growth
difference between morphs 1 and 2, which is amplified by the
character variance in the population. Term [2] accounts for the
selection for cooperation due to purely spatial effects. That is, the
basic amount of benefit that both morphs obtain from encounters
with morph 1 (a21) contributes to the disproportionate increase in
morph 1, if morph 1 individuals tend to cluster (high xu1 for u
belonging to morph 1) and segregate from morph 2 (low xu1 for u
belonging to morph 2). Term [3] accounts for the non-spatial
selection for cooperation due to payoff function asymmetry. Since
cov(zxu1,z)40 by the definition of covariance, the selection term
[3] is positive as long as morph 1 benefits more from interaction
with the helper (morph 1) than morph 2 does.

We have thus demonstrated that the evolution of cooperation
acts through selection on one or more of the following mechan-
isms: intrinsic growth, space, and payoff function asymmetry.
More mechanisms subject to selection can be easily identified by
analysing a more complex payoff function. For instance, if we
consider effects that result from interactions between morphs,
then the between-morph local density x12 would become part of
the spatial selection potentials. In connecting local densities to
the language of selection, Eq. (7) constitutes a novel technical
contribution.

E.W. Tekwa et al. / Journal of Theoretical Biology 380 (2015) 414–425 417



3. Relations to other evolutionary theories

We will now establish the formal correspondence between
local densities and metrics in evolutionary game theory, multilevel
selection theory, and inclusive fitness theory.

3.1. Evolutionary game theory

Game theory has been employed to understand cooperation,
first in human society (Von Neumann, 1928), and later in the
evolution of other organisms (Maynard Smith and Price, 1973). We
will develop the basic game formalism and focus on the classical
Prisoner's Dilemma as an example. Then, we will discuss two
mechanisms that game theory has proposed to explain the
evolution of cooperation, i.e. non-spatial reciprocity and spatial
reciprocity, and interpret them in terms of payoff function and
local densities.

In a round of game, an individual (actor) interacts with another
individual (partner) according to the partner's global morph
frequency, gaining or losing fitness according to a payoff matrix
with constant interaction coefficients. For a 2-player game, the
payoff matrix A is

partner
1 2

A¼ actor
1
2

a11 a12
a21 a22

" # ð8Þ

One simple condition commonly used for the selection of
morph 1 over morph 2 is the strict Nash condition (Nowak,
2006a): a114a21. Even though other payoff terms contribute to
determine precise evolutionary trajectories, we will begin with the
strict Nash condition, which also implies the evolutionary stable
condition (Maynard Smith and Price, 1973).

The Prisoner's Dilemma is the case where morph 1 is the
cooperator, morph 2 is the defector, and a214a114a224a12. The
game prevents the strict Nash condition for morph 1. This is the
toughest game for cooperation because cooperators are exploited
by defectors, even though the best outcome for the population is
for all to cooperate.

We can derive the non-spatial game equation as a special case
of the local interaction model. The three traditional game assump-
tions, interpreted through our model, are: (1) the payoff functions
are linear functions of relative morph densities (or frequencies),
(2) the total population size does not matter (no demographic
feedback), and (3) intrinsic growth rates are identical between
morphs. It can be readily shown that the payoffs aij in game theory
are the coefficients of linear payoff functions in the local interac-
tion model (Appendix B). It follows that the Prisoner's Dilemma
must involve payoff function asymmetries (a21aa11, a22aa12). For
other important types of cooperative games such as the Snowdrift
Game and pseudo-reciprocity (Clutton-Brock, 2009), the under-
lying payoff orders are different but still retain the basic feature
that they can be expressed as payoff function asymmetries. While
these games are perhaps theoretically less curious because no
augmenting terms are needed for cooperation to evolve, they are
more common in nature (Connor, 2010).

Non-spatial reciprocity can solve the Prisoner's Dilemma.
Trivers (1971) postulated that if individuals change their beha-
viour, or reciprocate, depending on the history of their interactions
in repeated games, they can change the game payoffs such that
cooperators are favoured. For example, the famous tit-for-tat
strategy of cooperators (morph 1) versus defectors (morph 2) in
a non-spatial iterated Prisoner's Dilemma game (Axelrod and
Hamilton, 1981) is one that modifies payoffs (Taylor and Nowak,

2007) as

A¼
a11
1�ρ a12þ ρa22

1�ρ

a21þ ρa22
1�ρ

a2
1�ρ

2
4

3
5 ð9Þ

ρ is the probability that an individual continues interacting
with a particular partner, and aij are the payoffs if there were no
repetition of the game. There exists a ρ such that the cooperative
strategy in a Prisoner's Dilemma is a strict Nash equilibrium
(would be selected for), i.e. a11/(1–ρ)4a21þρa22/(1–ρ). For the
same reason that game can incorporate nonspatial reciprocity –

and the implied association through discrimination – by modify-
ing payoffs, the local interaction model does the same through
payoff functions. This leaves local densities to capture purely
spatial effects.

The second solution to the Prisoner's Dilemma incorporates
space into game theory (Nowak and May, 1992), resulting in
spatial reciprocity (Nowak, 2006b). The intuition is the same as
what we gained from our model: clustering between cooperators
can allow cooperation to evolve. Today, many spatial games are
built from simulations on a lattice or graph, with a total population
size that either does (Lion and van Baalen, 2008) or does not
change (Tarnita et al., 2009). We will first introduce a novel
formulation of spatial game that adheres more closely to the
tradition of game and reciprocity theories. Then we will highlight
the connections between existing spatial game formulations and
local densities.

We begin with a bilinear version of the local interaction model,
the spatial Lotka–Volterra model (Matsuda et al., 1992), which is
(Appendix B)

dXi

Xi dt
¼ riþ

X2
j ¼ 1

aijXij ð10Þ

By assuming no intrinsic growth difference we can arrive at a
spatial game formulation that is analogous to the non-spatial
game (see Appendix B). In term of clustering coefficients, the
modified 2-player payoff matrix becomes:

A¼
C11ðtÞa11 C12ðtÞa12
C21ðtÞa21 C22ðtÞa22

" #
ð11Þ

Cij is the time-dependent clustering coefficient between morph
i and morph j as introduced before (and C12¼C21). When the
coefficient is larger than one, there is clustering, which amplifies
the interaction between the morphs i and j. By analogy to non-
spatial reciprocity, if the clustering coefficients are constants, there
exists augmenting terms, C11 and C12, such that the cooperative
strategy in a Prisoner's Dilemma is analogous to a strict Nash
equilibrium (would be selected for), i.e., C11a114C21a21. In general,
however, clustering coefficients may be time-dependent, in which
case the selection condition may differ.

A more prevalent type of cooperation in nature, by-product
mutualism (Connor, 2010), is often implicitly associated with a
spatial component – morph 2 intentionally approaches morph 1 to
increase the benefit received (a21) while also providing help (i.e. a
positive a12). By-product mutualism is in fact a type of spatial
game, where C21 in particular is raised above 1. Again, it is
instructive to view the spatial effect as augmenting the underlying
payoffs (i.e. the term C21a21).

In current game models that incorporate space explicitly and
assume constant and finite population size, nodes are always
occupied by an individual of one morph or another (Ohtsuki
et al., 2006; Taylor et al., 2007). The appropriate selection condi-
tion for such a game in the limits of low mutation rate and weak
selection is when the fixation probability of morph 1 is greater
than that of morph 2 (Tarnita et al., 2009). The effect of the graph
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can be summarized through a single structure coefficient σ (Allen
et al., 2013; Débarre et al., 2014; Tarnita et al., 2009). This
coefficient enters the selection condition as

σa11þa124a21þσa22 ð12Þ

While the structure coefficient above is not purely spatial
because it incorporates the effect of competition from the game
update rules on graphs, we can look for something corresponding
to σ in our model. An analogous condition for our density-based
model is found by looking at whether the change in cooperator
frequency around p¼1/2 is positive. From the local interaction
model (Eq. (11)), we easily rediscover Eq. (12). We find that for a
saturated habitat, σ¼Xii/Xij (see Appendix C) or, equivalently,
σ¼Cii/Cij (where ia j). This result parallels the finding of evolu-
tionary set theory (Nathanson et al., 2009), which allows for
overlapping interaction kernels between individuals and a form
of dynamic graph but which, nevertheless, assumes a constant
population size. In evolutionary set theory as in the local interac-
tion model, σ is purely spatial. This novel analogy between spatial
game and the local interaction model indicates that, given fully
specified payoff functions in a saturated habitat, clustering within
morph and segregation from the other morph will generally
favour within-morph cooperation.

In spatial games with non-constant population size, the effect
of space cannot be captured by a single coefficient (e.g. Lion,
2009). In Appendix D, we demonstrate how the dynamic formula-
tion in such a spatial game model of cooperation (Van Baalen and
Rand, 1998) corresponds to our model. It is interesting that locally
at each game step, the spatial game involves linear payoffs.
However, the rules of the game, including the possibility of empty
space, result effectively in nonlinear (quadratic) payoff functions.

We have used the local interaction model to derive results that
parallel those in existing evolutionary games. Both non-spatial and
spatial reciprocity can be viewed from a game perspective as
similarly augmenting payoffs to favour cooperation. These directly
correspond to changes in payoff function asymmetry and changes
in local densities.

3.2. Multilevel selection theory

Various models of the evolution of cooperation have been built
from the group or multilevel selection perspective. The key
postulate is the existence of higher levels of organization in which
interactions among individuals occur. We will interpret the con-
cepts of group selection and the contextual analysis – a multilevel
selection analysis – using our model.

We refer to group selection as a special case of multilevel
selection where only two biotic levels exist: individuals and non-
overlapping groups. The most widely cited modern group selec-
tion model is the structured deme model (Wilson, 1977;
Szathmáry and Maynard Smith, 1997; Loreau, 2010), where inter-
action occurs within localized “trait groups” (or simply groups) but
reproduction and natal dispersal are within the larger deme. The
structured deme model captures the conflict between the relative
fitness of individuals within groups and the relative fitness of
groups. Its status as a special case under our model is explored in
Appendix E. In essence, group selection postulates that a set of
group characters (denoted Zu) affects the individual u belonging to
that group. We show that Zu is the local density xu1 within groups
of 2 morphs, where the interaction kernel defines a uniform
interaction probability within individual u's group. Wilson's
(1977) popular model assumed that payoff functions are sym-
metric. The group selection metric of spatial variance that
describes cooperator clustering can be translated into average
local densities (see Appendix E).

A more general method for partitioning selection into lower-
and higher-level selections (or into within- and between-group
selections) is the contextual analysis, a method borrowed from
sociology (Heisler and Damuth, 1987) and is related to Price's
(1970) equation. Contextual analysis breaks down the causes of
evolution into individual-level selection (the selection coefficient
associated with the variance in individual characters) and higher-
level selection (the selection coefficient associated with the (con-
textual) covariance between the individual character and a higher-
level character) (Appendix F). Most simply and perhaps most
satisfyingly, a higher-level character can be considered anything
that cannot be predicted by the variance in individual character
alone (Okasha, 2006).

We can analyse a two-morph version of the local interaction
model using the contextual analysis. For clarity, we only consider
payoff functions that are linear but asymmetric between two
morphs. Further, only a11 and a21 are non-zero (only morph
1 affects others’ fitness). Thus, fitness is just as we defined in
Eq. (5). The change in the average individual character is written
in Eq. (7).

We can partition the right-hand side of Eq. (7) into levels of
selection according to the variance and contextual covariance
terms. In term [1] of Eq. (7), r1�r2, or intrinsic growth difference,
is an individual-level selection coefficient because it is associated
with the variance in individual character. This variance can be
predicted by observing the individual character alone.

On the other hand, the covariance term [2] in Eq. (7) cannot be
predicted by the individual character alone. Term [2] states that
even if two morphs respond identically to the same biotic
environment, one morph can experience positive selection if it
tends to experience a higher local density. The portion of the
payoff function that the two morphs share (a21) constitutes the
corresponding higher-level selection coefficient. Term [2] encap-
sulates the traditional group selection mechanism as introduced at
the beginning of this section.

Term [3] in Eq. (7), the payoff function asymmetry, is more
complex. Its covariance can be partitioned as shown in Appendix F:

X�1varðzuÞþð1�zÞcovðxu1; zuÞ ð13Þ
X�1 is the average local density of morph 1 around any

individual. By substituting Eq. (13) into Eq. (7) and grouping terms
by variance and covariance, we obtain the following equation for
evolutionary change:

ð14Þ
Eq. (14) says that payoff function asymmetry affects both levels

of selection (see boxed terms).
Since the individual-level selection term (Eq. (14)) contains the

average local density X�1, it cannot be predicted by the individual
characters alone. On the other hand, X�1 is independent of the
individual character at a given time. We may call (a11–a21)X�1 an
interaction between individual and higher-level selections, since
in a dynamic sense higher-level characters do affect X�1. It is not
entirely surprising that there is not a one-to-one mapping
between mechanisms and levels of selection, as there are many
possible selection mechanisms, while our use of contextual ana-
lysis only identifies two levels. This multilevel selection partition-
ing of spatial and non-spatial effects is a novel contribution.

To summarize, group selection theory emphasizes the impor-
tance of spatial group formation in the evolution of cooperation.
Multilevel selection more generally identifies intrinsic growth
differences as individual-level selection, and the difference in
morphs’ experienced average local densities as higher-level selec-
tion (in particular as traditional group selection). On the other
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hand, payoff function asymmetry straddles two levels of selection,
suggesting that biotic levels are not cleanly segregated under the
local interaction perspective.

3.3. Inclusive fitness theory

Inclusive fitness theory, including kin selection mechanisms
(Hamilton, 1964), is individual-centred. It includes fitness effects
on others as part of the actor's fitness, weighted by relatedness
(hence the term inclusive fitness). This individual-centred formu-
lation necessitates identifying cost to self (direct fitness effect) and
benefit to others (indirect fitness effect). We will show how these
features, as well as Wright's F statistics (Wright, 1949), relate to
the local interaction model, thereby reinforcing known but often
convoluted links between inclusive fitness theory, spatial popula-
tion genetics, and spatial ecology in a novel way.

Inclusive fitness can be derived from standard population
genetics (Appendix G). For a two-morph population in which
individuals affect interacting partners equally within an interac-
tion scale, we arrive at the following equation describing changes
in morph 1 frequency:

dp
dt

¼ p 1�pð Þ r1þR1X1�b1-��r2�R2X2�b2-�ð Þ ð15Þ

b1-� is the benefit given by a morph 1 individual to a partner
on each encounter without discrimination. The total benefit given
by an individual of morph i to its neighbours is then X1�b1-�. The
difference between the intrinsic growth rates, r1–r2, emerges as
the intrinsic cost to morph 1. This difference is also known as a
direct fitness effect. There are two relatedness terms, R1 and R2,
which are dimensionless ratios of global frequency and local
densities (Appendix G):

R1 ¼
X11=X1��p

1�p
; R2 ¼

X21=X2��p
�p

ð16Þ

Relatedness can be interpreted as describing interaction neigh-
bourhoods. If there are more morph 1 individuals in a morph
1 neighbourhood (X11/X1�) than globally (p), R1 is positive. An
associated positive benefit b1-� would then contribute positively
to morph 1's relative inclusive fitness. If there are fewer morph
1 individuals in a morph 2 neighbourhood (X21/X2�) than globally
(p), R2 is positive. But any associated positive benefit b2-� counts
against morph 1's relative inclusive fitness, because then the
fitness of morph 2 is raised more than that of morph 1. Such
relatedness metrics capture the spatial kin selection mechanism.
From our derivation (Appendix G), we find that the benefit given
by j is the same as the payoff (or linear payoff function) that any
individual gets when encountering morph j: bj-�¼a�j. For a 2-
morph population, the equality implies the following constraints:
a11¼a21, a22¼a12, i.e., payoff function symmetry.

Relatedness has been linked to Wright's F statistics, which are
based on probabilities of identity. Probabilities of identity are also
known as pair densities when they are not conditional on the
individuals’ morphs (Débarre et al., 2014). In Wright's island
model, (Lehmann and Rousset, 2010; Rousset and Billiard, 2000),
the probability of fixation of cooperation is determined by FST in
place of relatedness. This substitution hinges on the assumption of
weak selection, such that we only have to consider the change in
frequency near p¼1/2. With the additional restriction that within-
morph clustering is unconditional (C11¼C22), we show in
Appendix H that FST is identical to R1. This equality links the
theory of evolution of cooperation based on local densities to the
classic subdivided population literature and coalescence theory
(Rousset and Billiard, 2000).

In inclusive fitness theory, payoff function asymmetry surfaces
in the forms of kin and kind discriminations (Strassmann et al.,

2011) and the green beard effect (Gardner and West, 2010). These
are non-spatial mechanisms whereby benefits are given discrimi-
nately towards an individual's own morph. We call these collec-
tively helping by discrimination. Through discriminated helping,
the fitness of each morph is affected differently given the same
type of encounter, thus it is a scenario of payoff function asym-
metry. Rather than expressing helping by discrimination in term of
payoff function (or cost and benefit), inclusive fitness theory
expresses discrimination through high relatedness (Gardner and
West, 2010). In other words, in the case of payoff function
asymmetry, relatedness is a compound of spatial and non-spatial
mechanisms.

To see how we may modify inclusive fitness to decipher spatial
and non-spatial mechanisms, we will consider both plastic cost
and discriminated benefit (Appendix G). A plastic cost (cij) is one
that is only incurred by an actor of morph i when morph j is
encountered. A discriminated benefit from a morph i individual
(bi-j) is one that is only received by a partner of morph j. In
Appendix G, we show that by specifying the target morph that
receives a certain benefit, Eq. (15) becomes:

dp
dt

¼ pð1�pÞ r1þ b1-1�c11ð ÞX11ð
þ b2-1�c12ð ÞX12�r2� b1-2�c21ð ÞX21þ b2-2�c22ð ÞX22Þ ð17Þ
It can be shown (Appendix G) that Eq. (17) is equivalent to the

spatial Lotka–Volterra Eq. (10) – a case of the local interaction
model, through the following identity:

bj-i�cij ¼ aij ð18Þ
This equality completes the correspondence between the pay-

off function terms of inclusive fitness theory, the local interaction
model (Eq. (5)), evolutionary game (Eq. (8)), and multilevel
selection (Eq. (14)).

4. Discussion

We began our investigation by proposing local densities Xij (Eq.
(1)) as the central metrics describing the spatial structure of
cooperative populations, incorporating within-morph (subscripted
ii) and between-morph (subscripted ij) clustering and segrega-
tions. Using the appropriate interaction kernel, local densities
capture interaction potentials. Clustering coefficients Cij (Eq. (2)),
which are ratios of local densities over global densities, prove to be
useful numbers to consider: when they are above one, they
indicate clustering. Using the local interaction model based on
local densities in conjunction with Price's equation, we identified
three selection mechanisms in a novel way (Eq. (7)). These include
selections due to intrinsic growth rate difference, to spatial effects,
and to payoff function asymmetry – or how different morphs are
differently affected by interactions.

Using analyses based on local densities, we uncovered some
new connections between evolutionary game theory, multilevel
selection theory, and inclusive fitness theory. In evolutionary game
theory, assuming habitat saturation, the recently developed struc-
ture coefficient σ (Tarnita et al., 2009) (Eq. (12)) can be written as a
composite of local densities or clustering coefficients: σ¼Xii/
Xij¼Cii/Cij. In multilevel selection theory, higher level selection
corresponds to the selection potential as represented by cov(xu1,
zu), or the covariance between the local density of the helper
morph as experienced by individual u and the morph z of that
individual (Eq. (14)). In inclusive fitness theory, assuming no kin
discrimination and a sole helper morph 1, relatedness is a function
of local densities: R1¼(X11/X1�)/(1�p) (Eq. (16)). Finally, the
fitness effect coefficients found in the different theories can be
summarized as payoff function by the relationship bj-i�cij¼aij
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(Eq. (18)). Such an expression can also capture non-spatial kin
discrimination, as discrimination is a form of payoff function
asymmetry (where different morphs i gain differential payoffs
from the same interacting partner j).

Local densities can be viewed as a technical means (in the forms of
pair densities or probabilities of identity) to obtaining existing
composite metrics such as structure coefficient, higher level selection
potential and relatedness. However, they can also be viewed as major
variables of interest, on par with population density and morph
frequency, all of which are interlocked in eco-evolutionary feedbacks.
Local densities are ecologically intuitive metrics describing different
kinds of clustering, and they clearly partition spatial versus non-spatial
effects in the evolution of cooperation. They are measurable quantities
in continuous or discrete space and graphs, can incorporate nuanced
modelling of interaction kernels or scales, and allow for fully emergent
demographic dynamics without pre-defined limits. Through local
densities, we have further strengthened the increasingly apparent
links between spatial ecology and evolutionary theories (Lion and van
Baalen, 2008). We hope to have highlighted the value of the common
vocabularies that biologists use to formalize cooperation.

The local interaction model is not a replacement of current
theories. Rather, it brings unity and focus to the spatial aspect of
existing evolutionary theories of cooperation. In favour of clarifying
spatial metrics used to construct evolutionary equations, important
aspects were left out. For example, there are different ways to
evaluate the ultimate evolutionary success of cooperators or a
cooperative trait, including evolutionary stability (Maynard Smith
and Price, 1973), fixation probability, and inclusive fitness effect
(Tarnita and Taylor, 2014). In our work, we have mostly discussed the
changes in cooperator frequency (p) or cooperative character (z),
except when we utilize fixation probability in comparing our model
with the structure coefficient (σ) and F statistics (FST). Since change in
frequency and character are only indicative of evolutionary directions
at a given state, before accounting for mutation, we maintain
generality but without specifying how to obtain long-term evolu-
tionary trajectories. As well, there are different ways to derive the
changes in spatial interaction patterns through identity by descent
and family structure (Hamilton, 1964), life history and demography
(Lehmann and Rousset, 2010), and update rules and graph topologies
(Débarre et al., 2014), among others –which we did not elaborate on.
The measure of evolutionary success and the mechanistic under-
standing on pattern formation are crucial, but in principle they can
be expressed through models based on local densities.

We have demonstrated that local densities are general and
common spatial metrics across major theories of the evolution of
cooperation. For both empirical and theoretical investigations,
local densities are technically precise and intuitive vocabularies
that can sharpen our understanding of the role of space in
maintaining cooperation.
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Appendix A. Simulation

To illustrate how local densities and clustering coefficients
develop, we simulate a complex public good game. Individuals

are either cooperators, who produce the public good at a cost, or
defectors, who can benefit from the public good but do not
produce it. We place individuals in a 75�75 spatial grid, with
each square being larger than a single individual. Multiple indivi-
duals can exist in a square. Thus, while space is discrete, it is not
restricted like lattice models where only one individual can occupy
a square or node, and instead resembles continuous space in that
local densities have no upper limit.

Each individual begins with a random health state, orientation,
and memory of previous local density within its own square. At
each simulation time step, an individual can divide, produce and
consume public good, or die, all probabilistically depending on its
health state. An individual moves in either its current orientation
or tumbles randomly onto an adjacent square with probabilities
that depend on its memory of the previous local density and on
the current local density, so as to emulate chemotaxis. The public
good diffuses into all four adjacent squares at rates that depend on
the individual density of those squares, and is lost to the environ-
ment through leaching, which is also mediated by the individual
density. Note that even though the public good and individuals can
only move to adjacent squares at each time step, they do so at
different rates. A list of parameter values is shown in Table A1. The
simulation time step is much shorter than that of an average
individual generation (�50 time steps), thus approximates con-
tinuous time dynamics.

Local densities and clustering coefficients are measured as
defined in the main text, using the interaction kernel 2 (Fig. 1).

Appendix B. Spatial game derivation

To obtain a simple spatial game formulation, we begin with a
spatial version of the Lotka–Volterra equation (Lotka, 1925;
Volterra, 1926).

dXi

Xidt
¼ riþ

X2
j ¼ 1

aijXij ðB:1Þ

This is clearly a case of the local interaction model with average
local densities on the right hand side associated with the linear
payoff function coefficient aij. This equation can be transformed
into a frequency-based equation by differentiating Xi/X with
respect to time:

dpi
dt

¼ d
dt

Xi

X

� �
¼ dXi=dt

X
�Xi dX=dt

X2 ðB:2Þ

Using Eq. (B.1) as the expression for change in density, Eq. (B.2)
becomes:

dpi
dt

¼ Xi

X
riþ

X2
j ¼ 1

aijXij

0
@

1
A� Xi

X2

X2
k ¼ 1

Xk rkþ
X2
l ¼ 1

aklXkl

 !
ðB:3Þ

By replacing density with frequency terms, we finally arrive at:

dpi
dt

¼ pi riþ
X2
j ¼ 1

XCijaijpj�
X2
k ¼ 1

pk rkþ
X2
l ¼ 1

XCklaklpl

 !0
@

1
A ðB:4Þ

The linear payoff function coefficient aij is multiplied by the
clustering coefficient Cij. To convert Eq. (B.4) into a non-spatial
formulation, one only needs to set Cij¼1. The result can be readily
recognized as the evolutionary game replicator equation (Taylor and
Jonker, 1978). This is a slightly different and more straightforward
translation between ecological (density-tracking) and evolutionary
(frequency-tracking) dynamics than what is already published
(Hofbauer, 1981). Since our game formulation is derived from a case
of the local interaction model, we conclude that payoffs aij in game
theory are the coefficients of linear payoff functions in the local
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interaction model. Furthermore, since the clustering coefficients are
only constant multipliers of the original payoff terms, the spatial game
will follow evolutionary dynamics that is equivalent to the non-spatial
game (specified by the replicator equation) with the payoff terms Cijaij.

Appendix C. Games on graphs

Games on saturated static graphs has been an area of intense
study recently. Major results from this body of work has been
summarized in Tarnita et al. (2009) through a graph structure
parameter called structure coefficient (σ). Structure coefficient is a
function of number of nodes (individuals), degree (number of links
between individuals), other topological attributes of how indivi-
duals are arranged, and update rules. The nodes themselves do not
move, but they influence the state of linked nodes.

The appropriate selection condition for such a game in the
limits of low mutation rate and weak selection is that the fixation
probability of morph 1 must be greater than that of morph 2
(Tarnita et al., 2009). The condition states that the morph 1 fre-
quency should be, on average, more than 1

2 . Equivalently, we can
ask whether the change in morph 1 frequency (Eq. (B.4)) is greater
than zero when the morph 1 frequency is 1

2 (or X1¼X2). We readily
obtain

a11X11þa12X124a21X21þa22X22 ðC:1Þ
When morph 1 frequency is 1

2 , we have X12¼X21 (since
X1X12¼X2X21 by conservation of total number of intramorph inter-
actions, and X1¼X2). So we can divide both sides of the above
equation by X12 to isolate a12 and a21. Further, in a saturated habitat,
every individual always has the same number of neighbours,
X11þX12¼X21þX22¼X, so X11¼X22. Eq. (C.1) then becomes:

σa11þa124a21þσa22 ðC:2Þ
where σ¼Xii/Xij for any ia j when X1¼X2. At the same time, since
X11¼X22 due to habitat saturation, we recover the implicit restric-
tion that C11¼C22 for such a game. Thus, σ¼Cii/Cij for any ia j when
X1¼X2. Eq. (C.2) is the same as the result of Tarnita et al. (2009). In
another word, structure coefficient is the ratio of intramorph over
intermorph average local densities, or equivalently, the ratio of
intramorph over intermorph clustering coefficients.

Appendix D. Complex spatial game

We demonstrate how lattice/graph models of spatial game, as
exemplified by Van Baalen and Rand (1998) spatial game model
of cooperation is a subset of the local interaction model. Pair
densities in lattice/graph models are the discrete analogues of

average local densities. In particular, the interaction kernel of a
lattice/graph model is determined by unweighted links between
nodes that can either be occupied by an individual or is empty (but
can also be influenced by update rules, as noted by Grafen and
Archetti (2008) and Tarnita et al. (2009)). We use the symbol Xij for
both pair density and average local density.

The changes in local densities can be tracked using pair
approximation (Matsuda et al., 1992), analogous to the moment
approximation in continuous space (Bolker and Pacala, 1997).
Knowing that morph 1 is the cooperator and morph 2 is the
defector (Eq. (D.1)) (adapted from Van Baalen and Rand, 1998)
expresses the change in frequency of morph i as a function of the
average local densities (or pair densities) Xi1, Xi0 (local density of
empty space around morph i) and the structural parameter Y
(number of possible spaces around each node). For every available
neighbouring empty site, β is a basic intrinsic growth rate that
manifests, bi-� is the fitness benefit that a morph i individual
gives to each present neighbour, and ci is the cost of being morph i.

dpi
dt

¼ pi riþ βþbi-�
Xi1

Y
�ci

� �
Xi0

� �
ðD:1Þ

This frequency-tracking equation can be converted to a
density-tracking equation (by writing pi¼Xi/X, and Xi0¼Y–Xi1–

Xi2) and then rearranged by local density terms to reveal the payoff
parameters:

dXi

Xi dt
¼ riþY β�cið Þ

þ b1-�� β�cið Þð ÞXi1� β�cið ÞXi2�
b1-�
Y

Xi1Xi2�
b1-�
Y

X2
i1 ðD:2Þ

We see that the intrinsic growth rate is actually not ri alone, as
the original model suggested, but ri þY(β–ci)—i.e. there is an
intrinsic cost to being morph 1. The payoff is also nonlinear
(quadratic), as there are terms associated with Xi1

2 and Xi1Xi2;
and asymmetric, as the term ci appears in the local density
dependent terms, making the payoff function morph-dependent.

Appendix E. Structured deme model

According to Wilson (1977), individuals interact with equal
probability within local trait groups to which their fitness mostly
responds, but their maximal movement range at some point in their
life cycle defines a deme. Assuming that the deme is saturated, the
composition of trait groups that are more fit (produce more
progenies) take up more of the deme over time. The fitness of a
group is determined by its composition, or proportion of cooperator
(say morph 1) versus defector (morph 2). Wilson (1977) showed

Table A1
Simulation parameters and values.

Parameter Value Parameter Value

Background mortality 0.0003 Quorum sensing: rate of exponential decrease in movement probability per
individual over quorum

0.2

Maximum health-dependent mortality rate 0.0035 Minimum health to produce public good 0.015
Metabolic cost 1e�6 Maximum public good production 0.005
Minimum health for division at capacity 0.7 Cost to produce maximum dose of public good 0.0005
Maximum division probability 0.075 Public good acquisition rate 0.0025
Carrying capacity within square 20 Rate of conversion from public good to health 5
Quorum: local density above which movement rate decreases
exponentially

9 Public good saturation level 1

Minimum health for moving 0.1 Maximum public good horizontal diffusion rate 0.1
Maximum movement probability 0.075 Amount of public good leaching 0.001
Movement cost 0.002 Rate of exponential decrease in public good diffusion due to individual density 0.1
Tumbling probability under positive individual density
gradient

0.25
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that if there is between-group variance in their composition, the
change in morph density is a function not of morph frequency in a
deme, but of “subjective morph frequency”. This is the global
frequency plus some function of the between-group variance σ2.
In trait groups where undirected helping is proportional to the
number of cooperators within group, the dynamic equations, which
we have converted from a change in frequency to a change in
density form, are (from Wilson, 1977):

dX1
X1 dt ¼ b1-� Nd p1þ σ2

p1

� �
�1

� �
�c1

dX2

X2 dt
¼ b1-�Nd p1�

σ2

p2

� �
ðE:1Þ

bi-� is the fitness benefit that a morph i individual gives to each
present neighbour, Nd is the group size, –c1 is the intrinsic growth of
morph 1, and pi is the global frequency of morph i. Within group, it
is assumed a priori there is no assortment, so without between-
group variance, we can see that morph 1 (cooperators) density will
grow slower than that of morph 2, even if there is a net increase for
both morphs due to cooperators helping. In another word, within-
group, cooperators are selected against, even though they enhance
the absolute fitness of everyone in the group.

If we take bi-� to be the linear payoff function to average local
densities in Eq. (E.1), as is custom in the local interaction model,
the average local densities are:

Xii ¼Nd piþσ2

pi

� �
�1

Xij ¼Nd pj�
σ2

pi

� �
ðE:2Þ

Xij is understood as the average number of morph j individuals
around a morph i individual, with the interaction kernel being
uniform within the range of a trait group and zero everywhere
else. From Eq. (E.2), we can solve for the spatial variance:

σ2 ¼ Xi Xiiþ1ð Þ�Xið Þ
N2

d

¼ Xi Xj�Xij
� �
N2

d

ðE:3Þ

As may be expected, the spatial variance is inversely propor-
tional to group size squared and proportional to the difference
within group between the actual number of ij pairs (XiXij) and
number of ij pairs expected in the non-spatial scenario (Xi Xj).

Appendix F. Contextual analysis

Contextual analysis (Heisler and Damuth, 1987) postulates that
individual fitness can be written as follows:

wu ¼ βzzuþβZZu ðF:1Þ
where βz is the selection coefficient for the individual character, βZ
is the selection coefficient for the higher level character, and Zu is
the higher level character that the individual experiences. Then, by
plugging Eq. (F.1) into Eq. (4), we obtain:

dz
dt

¼ βzvar zuð ÞþβZcov Zu; zuð Þ ðF:2Þ

where the first term in the right hand side is the individual level
selection, and the second term is the higher level selection. The
most familiar form of var(zu) is the genetic variance in a popula-
tion, for the case where the individual u refers to a gene. An
example of cov(Zu,zu) is the association between a particular gene
variation (allele) and the type of group that the allele finds itself in
(whether the group contains more of its own morph or of other
morphs).

More generally, we can use Eq. (7) as a basis to analyse levels of
selection for a more complicated payoff function Eq. (5). The first
two terms in Eq. (7) are straightforward to analyse—with the first

belonging to individual-level selection, and the second belonging
to higher-level selection. On the other hand, the third term (Eq.
(F.3)), referring to payoff function asymmetry, does not neatly fit
into one level of selection.

a11�a21ð Þcov zuxu1; zuð Þ ðF:3Þ
We can break down the covariance term as follows:

cov zuxu1; zuð Þ ¼ E z2uxu1
	 
�zE zuxu1½ �

¼ cov xu1; z2u
� �þE z2u

	 

X�1�z cov xu1; zuð Þþz X�1ð Þ

¼ X�1var zuð Þþcov xu1; z2u
� ��zcov xu1; zuð Þ ðF:4Þ

Note that X�1 is the average local density of morph 1 around
any individual. Since zu

2¼zu (zu is either 1 or 0 for each individual),
the above equation simplifies to:

X�1var zuð Þþ 1�zð Þcov xu1; zuð Þ ðF:5Þ
Thus, payoff function asymmetry (a11–a21) contributes to both

individual level selection (associated with var(zu)) and higher-level
selection (associated with cov(xu1,zu)).

Appendix G. Inclusive fitness derivation

A one-locus population genetics model that accounts for
interaction effects is constructed as follows. The fitness of an
individual u is the sum of its intrinsic growth rate, benefits
received from each of all other individuals v(bv-u) and all costs
exerted upon encounter with v (the plastic cost cuv):

wu ¼ ruþ
X
vau

bv-u�cuvð Þ ðG:1Þ

The changes in the number of morph i individuals (Ni) and of all
individuals (N) at a given time are:

dNi

dt
¼
XN
u ¼ 1

zuwu;
dN
dt

¼
XN
u ¼ 1

wu ðG:2Þ

zu is the character value of individual u (where we assign zu¼1 for
individuals u belonging to morph i). For instance, if we want to
track the change in morph 1 frequency, we can assign morph 1 the
character value of 1, and morph 2 the character value of 0. The
change in the morph i frequency pi is then:

dpi
dt

¼ d
dt

Ni

N

� �
¼ dNi=dt

N
�Ni dN=dt

N2 ðG:3Þ

Putting these all together, we obtain:

dpi
dt ¼ 1

N

XN
u ¼ 1

zu ruþ
X
vau

bv-u�cuvð Þ
 ! !

�pi
1
N

XN
u ¼ 1

ruþ
X
vau

bv-u�cuvð Þ
 !

¼ 1
N

XN
u ¼ 1

zu�pi
� �

ruþ
X
vau

bv-u�cuvð Þ
 !

ðG:4Þ

The population structure of this formulation can be understood
as being defined for all interacting partners exhaustively
(embedded in the summations); similarly, the payoff function to
that structure is tallied on an individual basis. In a population with
N individuals, there will be N intrinsic growth terms, and N(N–1)
cost and benefit terms.

To get to an inclusive fitness formulation, we switch the index
of the benefit term between pairs from bv-u (benefit from
neighbour v to focal individual u) to bu-v (benefit from focal
individual u to neighbour v).

dpi
dt

¼ 1
N

XN
u ¼ 1

zu�pi
� �

ru�
X
vau

cuv

 ! 
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þ
XN
u ¼ 1

zu�pi
� �X

vau

zv�pi
zu�pi

bu-v

� �!

¼ 1
N

XN
u ¼ 1

zu�pi
� �

ruþ
X
vau

zv�pi
zu�pi

bu-v�cuv

� � ! !
ðG:5Þ

The term (zv–pi)/(zu–pi) is a correlation coefficient called
relatedness, defined for every pair of individuals. The result is
similar to that of Grafen (2006).

We must reduce the number of terms for a tractable inclusive
fitness model that is comparable to the local interaction model. For
a 2-morph population, we associate cost, benefit, and relatedness
terms with morph, such that the indices now refer to the morph
instead of the individual. We now assume that all individuals of a
morph provide the same fitness effect (bi-�) to each interacting
neighbour without discrimination. As well, we assume no plastic
cost. Then, from Eq. (G.5) we get:

dp
dt

¼ 1
N

XN1

1�pð Þ r1þX1�R1b1-�ð Þ
 !

þ 1
N

XN2

0�pð Þ r2þX2�R2b2-�ð Þ
 !

¼ p 1�pð Þ r1þR1X1�b1-��r2�R2X2�b2-�ð Þ ðG:6Þ
where the relatedness terms are:

R1 ¼
X11=X1��p

1�p
; R2 ¼

X21=X2��p
�p

ðG:7Þ

The Σvau… summations from Eq. (G.5) are replaced in Eq. (G.6)
by Xi� (average total local density around morph i) because both
represent the average sum of effects on neighbours by one
individual. (1/N)ΣNi… is replaced by pi times the average of the
term in the summation.

Alternatively, we can retain the possibility of helping with
discrimination and plastic cost in Eq. (G.5). We obtain:

dp
dt

¼ p 1�pð Þ
r1þX11 R11b1-1�c11ð ÞþX12 R12b1-2�c12ð Þ
�r2�X21 R21b2-1�c21ð Þ�X22 R22b2-2�c22ð Þ

 !

ðG:8Þ
By modelling discriminated helping explicitly, we know exactly

the relatedness terms a priori:

R11 ¼ 1; Ri12 ¼
�p1
1�p1

; R21 ¼
1�p1
�p1

; R22 ¼ 1 ðG:9Þ

We can further simplify the expression of Eq. (G.8) by plugging
in Eq. (G.9). We also use the fact that pX12¼(1�p)X21 by con-
servation of total number of inter-morph interactions to obtain:

dp
dt

¼ p 1�pð Þ
r1þX11 b1-1�c11ð ÞþX12 b2-1�c12ð Þ
�r2�X21 b1-2�c21ð Þ�X22 b2-2�c22ð Þ

 !
ðG:10Þ

With some simple derivation steps, one can see this expression
is identical to the spatial Lotka–Volterra Eq. (B.1) and the spatial
game Eq. (B.4), both of which are cases of the local interaction
model. The following relationship connects the inclusive fitness
derivation with the other formulations:

bj-i�cij ¼ aij ðG:11Þ

Appendix H. F statistics

Relatedness has been linked to Wright's F statistics, which is
the ratio of gene correlation within groups with respect to genes
between groups, with group usually meaning a spatial area, as in a
deme (Rousset, 2004):

Fst ¼
Qw�Qb

1�Qb
ðH:1Þ

Qw is the probability of identity by morph within groups,
whereas Qb is the probability of identity by morph between
random groups. Probabilities of identity are also known as pair
densities when they are not conditional on the individuals'
morphs (Débarre et al., 2014). These probabilities can be written
in term of local densities as

Qw ¼ pE x11=x1�
	 
þ 1�pð ÞE x22=x2�

	 

Qb ¼ p2þ 1�pð Þ2 ðH:2Þ

In Wright's island model (Lehmann and Rousset, 2010; Rousset
and Billiard, 2000), the probability of fixation of cooperation is
determined by FST in place of relatedness. This hinges on the
assumption of weak selection, such that we only have to consider
the change in frequency near p¼1/2.

If we assume habitat saturation in all groups, then the local
density of any morph-pair cannot exceed X, and the clustering
coefficients C11¼C22¼C, leading to the following:

E x11=x1�
	 
¼ X11=X ¼ Cp

E x22=x2�
	 
¼ X22=X ¼ C 1�pð Þ ðH:3Þ

where necessarily Cp is less than or equal to 1. This implies that C
cannot be a constant in such a spatially constrained population. In
a population where individuals are sparsely distributed across
their habitat, it is possible that C stays near constant through all
states. Alternatively we can take C to be the within-morph
clustering during invasion or at co-existence equilibrium –

depending on whether we want to ask about the invasibility or
the stability of a phenotype.

Using Eqs. (H.1), (H.2) and (H.3), we obtain the relationship
between FST and C:

FST ¼
C�1ð ÞQb

1�Qb
¼ C�1ð Þ 1=2p

� ��1þp
� �

1�p
ðH:4Þ

Note that the relatedness term R1 can now be written as

R2 ¼
ðC�1Þ p
1�p

ðH:5Þ

We observe that FST and R1 only take on the same value when
p¼1

2 , which is expected when selection is weak. Precisely, this is
when Qb equals p.

References

Allee, W.C.C., 1931. Animal Aggregations: A Study in General Sociology. University
of Chicago Press, Chicago.

Allen, B., Nowak, M.A., Dieckmann, U., 2013. Adaptive dynamics with interaction
structure. Am. Nat. 181, E139–E163. http://dx.doi.org/10.1086/670192.

Axelrod, R., Hamilton, W.D.D., 1981. The evolution of cooperation. Science 211,
1390–1396.

Bolker, B.M., Pacala, S.W., 1997. Using moment equations to understand stochas-
tically driven spatial pattern formation in ecological systems. Theor. Popul. Biol.
52, 179–197.

Bolker, B.M., Pacala, S.W., 1999. Spatial moment equations for plant competition:
understanding spatial strategies and the advantages of short dispersal. Am. Nat.
153, 575–602. http://dx.doi.org/10.1086/303199.

Clutton-Brock, T., 2009. Cooperation between non-kin in animal societies. Nature
462, 51–58. http://dx.doi.org/10.1038/natureO8366.

Connor, R.C., 2010. Cooperation beyond the dyad: on simple models and a complex
society. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 2687–2697. http://dx.doi.
org/10.1098/rstb.2010.0150.

Courchamp, F., Clutton-Brock, T., Grenfell, B., 1999. Inverse density dependence and
the Allee effect. Trends Ecol. Evol. 14, 405–410.

Day, T., Taylor, P.D., 2003. Evolutionary dynamics and stability in discrete and
continuous games. Evol. Ecol. Res. 5, 605–613.

Débarre, F., Hauert, C., Doebeli, M., 2014. Social evolution in structured populations.
Nat. Commun. 5, 3409. http://dx.doi.org/10.1038/ncomms4409.

Durrett, R., Levin, S., 1994. The importance of being discrete (and spatial). Theor.
Popul. Biol. 46, 363–394.

Fletcher, J.A., Doebeli, M., 2009. A simple and general explanation for the evolution
of altruism. Proc. R. Soc. B Biol. Sci. 276, 13–19. http://dx.doi.org/10.1098/
rspb.2008.0829.

E.W. Tekwa et al. / Journal of Theoretical Biology 380 (2015) 414–425424

http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref1
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref1
http://dx.doi.org/10.1086/670192
http://dx.doi.org/10.1086/670192
http://dx.doi.org/10.1086/670192
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref3
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref3
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref4
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref4
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref4
http://dx.doi.org/10.1086/303199
http://dx.doi.org/10.1086/303199
http://dx.doi.org/10.1086/303199
http://dx.doi.org/10.1038/natureO8366
http://dx.doi.org/10.1038/natureO8366
http://dx.doi.org/10.1038/natureO8366
http://dx.doi.org/10.1098/rstb.2010.0150
http://dx.doi.org/10.1098/rstb.2010.0150
http://dx.doi.org/10.1098/rstb.2010.0150
http://dx.doi.org/10.1098/rstb.2010.0150
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref8
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref8
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref9
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref9
http://dx.doi.org/10.1038/ncomms4409
http://dx.doi.org/10.1038/ncomms4409
http://dx.doi.org/10.1038/ncomms4409
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref11
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref11
http://dx.doi.org/10.1098/rspb.2008.0829
http://dx.doi.org/10.1098/rspb.2008.0829
http://dx.doi.org/10.1098/rspb.2008.0829
http://dx.doi.org/10.1098/rspb.2008.0829


Gardner, A., West, S.A., 2010. GreenbeardsEvolution 64, 25–38. http://dx.doi.org/
10.1111/j.1558-5646.2009.00842.x.

Grafen, A., 1984. Natural selection, kin selection and group selection. In: Krebs, J.R.,
Davies, N.B. (Eds.), Behavioural Ecology: An Evolutionary Approach. Blackwell
Scientific Publications, Oxford, pp. 62–84.

Grafen, A., 2006. Optimization of inclusive fitness. J. Theor. Biol. 238, 541–563.
Grafen, A., Archetti, M., 2008. Natural selection of altruism in inelastic viscous

homogeneous populations. J. Theor. Biol.. 10.1016/j.jtbi.2008.01.021.
Hamilton, W.D.D., 1964. The genetical evolution of social behaviour. I. J. Theor. Biol.

7, 1–16.
Heisler, I.L., Damuth, J., 1987. A method for analyzing selection in hierarchically

structured populations. Am. Nat. 130, 582–602.
Hofbauer, J., 1981. On the occurrence of limit cycles in the Volterra–Lotka equation.

Nonlinear Anal. 5, 1003–1007. http://dx.doi.org/10.1016/0362-546X(81)90059-
6.

Hofbauer, J., Sigmund, K., 2003. Evolutionary game dynamics. Bull. Am. Math. Soc.
40, 479–520. http://dx.doi.org/10.1090/S0273-0979-03-00988-1.

Lehmann, L., Keller, L., 2006. The evolution of cooperation and altruism—a general
framework and a classification of models. J. Evol. Biol. 19, 1365–1376. http://dx.
doi.org/10.1111/j.1420-9101.2006.01119.x.

Lehmann, L., Rousset, F., 2010. How life history and demography promote or inhibit
the evolution of helping behaviours. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365,
2599–2617. http://dx.doi.org/10.1098/rstb.2010.0138.

Levin, S.A., Pacala, S.W., 1997. Theories of simplification and scaling of spatially
distributed processes. In: Tilman, D., Kareiva, P. (Eds.), Spatial Ecology: The Role
of Space in Population Dynamics and Interspecific Interactions. Princeton
University Press, Princeton, NJ, pp. 271–296.

Lion, S., 2009. Relatedness in spatially structured populations with empty sites: an
approach based on spatial moment equations. J. Theor. Biol. 260, 121–131. http:
//dx.doi.org/10.1016/j.jtbi.2009.05.035.

Lion, S., van Baalen, M., 2008. Self-structuring in spatial evolutionary ecology. Ecol.
Lett. 11, 277–295. http://dx.doi.org/10.1111/j.1461-0248.2007.01132.x.

Loreau, M., 2010. From Populations to Ecosystems. Princeton University Press,
Princeton, NJ.

Lotka, A.J.J., 1925. Elements of Physical Biology. Williams & Wilkins, Baltimore.
Matsuda, H., Ogita, N., Sasaki, A., Sato, K., 1992. Statistical mechanics of population.

Prog. Theor. Phys. 88, 1035–1049. http://dx.doi.org/10.1143/PTP.88.1035.
Maynard Smith, J., Price, G.R., 1973. The logic of animal conflict. Nature 246, 15–18.
Maynard Smith, J., Szathmáry, E., 1999. The Origins of Life. Oxford University Press,

Oxford.
Nathanson, C.G., Tarnita, C.E., Nowak, M.a, 2009. Calculating evolutionary dynamics

in structured populations. PLoS Comput. Biol. 5, e1000615. http://dx.doi.org/
10.1371/journal.pcbi.1000615.

Nowak, M.A., 2006a. Evolutionary Dynamics. Harvard University Press, Cambridge,
MA.

Nowak, M.A., 2006b. Five rules for the evolution of cooperation. Science 314,
1560–1563. http://dx.doi.org/10.1126/science.1133755.

Nowak, M.A.A., May, R.M.M., 1992. Evolutionary games and spatial chaos. Nature
359, 826–829.

Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M.a, 2006. A simple rule for the
evolution of cooperation on graphs and social networks. Nature 441, 502–505.
http://dx.doi.org/10.1038/nature04605.

Okasha, S., 2006. Evolution and the Levels of Selection. Clarendon Press, Oxford.
Pacala, S.W., Silander, J.A., 1985. Neighborhood models of plant population

dynamics. I. Single-species models of annuals. Am. Nat. 125, 385–411.
Price, G.R., 1970. Selection and covariance. Nature 227, 520–521.
Price, G.R., 1972. Extension of covariance selection mathematics. Ann. Hum. Genet.

35, 485–490.
Rousset, F., 2002. Inbreeding and relatedness coefficients: what do they measure?

Heredity 88, 371–380. http://dx.doi.org/10.1038/sj/hdy/6800065.
Rousset, F., 2004. Genetic Structure and Selection in Subdivided Populations.

Princeton University Press, Princeton, NJ.
Rousset, F., Billiard, S., 2000. A theoretical basis for measures of kin selection in

subdivided populations : s nite populations and localized dispersal. J. Evol.
Biol. 13, 814–825. http://dx.doi.org/10.1046/j.1420-9101.2000.00219.x.

Rousset, F., Ronce, O., 2004. Inclusive fitness for traits affecting metapopulation
demography. Theor. Popul. Biol. 65, 127–141.

Sapijanskas, J., Potvin, C., Loreau, M., 2013. Beyond shading : litter production by
neighbors contributes to overyielding in tropical trees. Ecology 94, 941–952.

Strassmann, J.E., Gilbert, O.M., Queller, D.C., 2011. Kin discrimination and coopera-
tion in microbes. Annu. Rev. Microbiol. 65, 349–367. http://dx.doi.org/10.1146/
annurev.micro.112408.134109.

Szathmáry, E., Maynard Smith, J., 1997. From replicators to reproducers: the first
major transitions leading to life. J. Theor. Biol. 187, 555–571. http://dx.doi.org/
10.1006/jtbi.1996.0389.

Tarnita, C.E., Ohtsuki, H., Antal, T., Fu, F., Nowak, M.A., 2009. Strategy selection in
structured populations. J. Theor. Biol. 259, 570–581. http://dx.doi.org/10.1016/j.
jtbi.2009.03.035.

Tarnita, C.E., Taylor, P.D., 2014. Measures of relative fitness of social behaviors in
finite structured population models. Am. Nat. 184, 477–488. http://dx.doi.org/
10.1086/677924.

Taylor, C., Nowak, M.A., 2007. Transforming the dilemma. Evolution 61, 2281–2292.
http://dx.doi.org/10.1111/j.1558-5646.2007.00196.x.

Taylor, P.D., Day, T., Wild, G., 2007. Evolution of cooperation in a finite homo-
geneous graph. Nature 447, 469–472. http://dx.doi.org/10.1038/nature05784.

Taylor, P.D., Jonker, L.B., 1978. Evolutionarily stable strategies and game dynamics.
Math. Biosci. 40, 145–156.

Trivers, R.L., 1971. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57.
Van Baalen, M., Rand, D., 1998. The unit of selection in viscous populations and the

evolution of altruism. J. Theor. Biol. 193, 631–648.
Volterra, V., 1926. Fluctuations in the abundance of a species considered mathe-

matically. Nature 118, 558–560.
Von Neumann, J., 1928. Zur theorie der gesellschaftsspiele. Math. Ann. 100,

295–320.
Walker, S.C., 2012. Derivation of the continuous-time Price equation [WWW

Document]. URL 〈http://stevencarlislewalker.wordpress.com/2012/06/26/deriva
tion-of-the-continuous-time-price-equation/〉 (accessed 25.11.13).

West, S.A., Griffin, A.S., Gardner, A., 2007. Social semantics: altruism, cooperation,
mutualism, strong reciprocity and group selection. J. Evol. Biol. 20, 415–432.
http://dx.doi.org/10.1111/j.1420-9101.2006.01258.x.

Wilson, D.S., 1977. Structured demes and the evolution of group-advantageous
traits. Am. Nat. 111, 157–185.

Wright, S., 1949. The genetical structure of populations. Ann. Eugen. 15, 323–354.

E.W. Tekwa et al. / Journal of Theoretical Biology 380 (2015) 414–425 425

http://dx.doi.org/10.1111/j.1558-5646.2009.00842.x
http://dx.doi.org/10.1111/j.1558-5646.2009.00842.x
http://dx.doi.org/10.1111/j.1558-5646.2009.00842.x
http://dx.doi.org/10.1111/j.1558-5646.2009.00842.x
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref14
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref14
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref14
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref15
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref16
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref16
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref17
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref17
http://dx.doi.org/10.1016/0362-546X(81)90059-6
http://dx.doi.org/10.1016/0362-546X(81)90059-6
http://dx.doi.org/10.1016/0362-546X(81)90059-6
http://dx.doi.org/10.1016/0362-546X(81)90059-6
http://dx.doi.org/10.1090/S0273-0979-03-00988-1
http://dx.doi.org/10.1090/S0273-0979-03-00988-1
http://dx.doi.org/10.1090/S0273-0979-03-00988-1
http://dx.doi.org/10.1111/j.1420-9101.2006.01119.x
http://dx.doi.org/10.1111/j.1420-9101.2006.01119.x
http://dx.doi.org/10.1111/j.1420-9101.2006.01119.x
http://dx.doi.org/10.1111/j.1420-9101.2006.01119.x
http://dx.doi.org/10.1098/rstb.2010.0138
http://dx.doi.org/10.1098/rstb.2010.0138
http://dx.doi.org/10.1098/rstb.2010.0138
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref22
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref22
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref22
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref22
http://dx.doi.org/10.1016/j.jtbi.2009.05.035
http://dx.doi.org/10.1016/j.jtbi.2009.05.035
http://dx.doi.org/10.1016/j.jtbi.2009.05.035
http://dx.doi.org/10.1016/j.jtbi.2009.05.035
http://dx.doi.org/10.1111/j.1461-0248.2007.01132.x
http://dx.doi.org/10.1111/j.1461-0248.2007.01132.x
http://dx.doi.org/10.1111/j.1461-0248.2007.01132.x
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref25
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref25
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref26
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref26
http://dx.doi.org/10.1143/PTP.88.1035
http://dx.doi.org/10.1143/PTP.88.1035
http://dx.doi.org/10.1143/PTP.88.1035
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref28
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref29
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref29
http://dx.doi.org/10.1371/journal.pcbi.1000615
http://dx.doi.org/10.1371/journal.pcbi.1000615
http://dx.doi.org/10.1371/journal.pcbi.1000615
http://dx.doi.org/10.1371/journal.pcbi.1000615
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref31
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref31
http://dx.doi.org/10.1126/science.1133755
http://dx.doi.org/10.1126/science.1133755
http://dx.doi.org/10.1126/science.1133755
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref33
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref33
http://dx.doi.org/10.1038/nature04605
http://dx.doi.org/10.1038/nature04605
http://dx.doi.org/10.1038/nature04605
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref35
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref36
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref36
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref37
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref38
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref38
http://dx.doi.org/10.1038/sj/hdy/6800065
http://dx.doi.org/10.1038/sj/hdy/6800065
http://dx.doi.org/10.1038/sj/hdy/6800065
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref40
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref40
http://dx.doi.org/10.1046/j.1420-9101.2000.00219.x
http://dx.doi.org/10.1046/j.1420-9101.2000.00219.x
http://dx.doi.org/10.1046/j.1420-9101.2000.00219.x
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref42
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref42
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref43
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref43
http://dx.doi.org/10.1146/annurev.micro.112408.134109
http://dx.doi.org/10.1146/annurev.micro.112408.134109
http://dx.doi.org/10.1146/annurev.micro.112408.134109
http://dx.doi.org/10.1146/annurev.micro.112408.134109
http://dx.doi.org/10.1006/jtbi.1996.0389
http://dx.doi.org/10.1006/jtbi.1996.0389
http://dx.doi.org/10.1006/jtbi.1996.0389
http://dx.doi.org/10.1006/jtbi.1996.0389
http://dx.doi.org/10.1016/j.jtbi.2009.03.035
http://dx.doi.org/10.1016/j.jtbi.2009.03.035
http://dx.doi.org/10.1016/j.jtbi.2009.03.035
http://dx.doi.org/10.1016/j.jtbi.2009.03.035
http://dx.doi.org/10.1086/677924
http://dx.doi.org/10.1086/677924
http://dx.doi.org/10.1086/677924
http://dx.doi.org/10.1086/677924
http://dx.doi.org/10.1111/j.1558-5646.2007.00196.x
http://dx.doi.org/10.1111/j.1558-5646.2007.00196.x
http://dx.doi.org/10.1111/j.1558-5646.2007.00196.x
http://dx.doi.org/10.1038/nature05784
http://dx.doi.org/10.1038/nature05784
http://dx.doi.org/10.1038/nature05784
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref50
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref50
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref51
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref52
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref52
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref53
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref53
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref54
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref54
http://stevencarlislewalker.wordpress.com/2012/06/26/derivation-of-the-continuous-time-price-equation/
http://stevencarlislewalker.wordpress.com/2012/06/26/derivation-of-the-continuous-time-price-equation/
http://dx.doi.org/10.1111/j.1420-9101.2006.01258.x
http://dx.doi.org/10.1111/j.1420-9101.2006.01258.x
http://dx.doi.org/10.1111/j.1420-9101.2006.01258.x
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref56
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref56
http://refhub.elsevier.com/S0022-5193(15)00295-7/sbref57

	Local densities connect spatial ecology to game, multilevel selection and inclusive fitness theories of cooperation
	Introduction
	Local interaction model
	Local densities
	General dynamic equation and payoff function
	Selection for cooperation

	Relations to other evolutionary theories
	Evolutionary game theory
	Multilevel selection theory
	Inclusive fitness theory

	Discussion
	Acknowledgements
	Simulation
	Spatial game derivation
	Games on graphs
	Complex spatial game
	Structured deme model
	Contextual analysis
	Inclusive fitness derivation
	F statistics
	References




