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Abstract

Aim: Ecosystem stability and its link with biodiversity have mainly been studied at the local scale.

Here we present a simple theoretical model to address the joint dependence of diversity and

stability on spatial scale, from local to continental.

Methods: The notion of stability we use is based on the temporal variability of an ecosystem-level

property, such as primary productivity. In this way, our model integrates the well-known species–

area relationship (SAR) with a recent proposal to quantify the spatial scaling of stability, called the

invariability–area relationship (IAR).

Results: We show that the link between the two relationships strongly depends on whether the

temporal fluctuations of the ecosystem property of interest are more correlated within than

between species. If fluctuations are correlated within species but not between them, then the IAR

is strongly constrained by the SAR. If instead individual fluctuations are only correlated by spatial

proximity, then the IAR is unrelated to the SAR. We apply these two correlation assumptions to

explore the effects of species loss and habitat destruction on stability, and find a rich variety of

multi-scale spatial dependencies, with marked differences between the two assumptions.

Main conclusions: The dependence of ecosystem stability on biodiversity across spatial scales is

governed by the spatial decay of correlations within and between species. Our work provides a

point of reference for mechanistic models and data analyses. More generally, it illustrates the

relevance of macroecology for ecosystem functioning and stability.
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1 | INTRODUCTION

Decades of ecological research have explored how features of ecosys-

tems affect their stability (Ives & Carpenter, 2007; May, 1973;

McCann, 2000; Pimm, 1984). Because of the worldwide loss of biodi-

versity, most studies on ecosystem stability have focused on the role

played by biodiversity, resulting in an extensive debate on the diver-

sity–stability relationship. Although this debate is not yet settled, there

is now strong empirical evidence and theoretical support that biodiver-

sity tends to increase the stability of ecosystem processes (Campbell,

Murphy, & Romanuk, 2011; Gross et al., 2014; Jiang & Pu, 2009;

Lehman & Tilman, 2000; Loreau & de Mazancourt, 2013; Tilman,

Reich, & Knops, 2006).

To date, the majority of studies addressing the effects of biodiver-

sity on ecosystem stability have dealt with small spatial scales, such as

microcosms (Petchey, Casey, Jiang, McPhearson, & Price, 2002; Steiner,

Long, Krumins, & Morin, 2005) and grassland experiments (Bai, Han,

Wu, Chen, & Li, 2004; Tilman et al., 2006). Yet sustaining ecosystem

structure, functioning and services requires a broader understanding of

stability across a wide range of scales. Therefore, there is a current need

to better understand how biodiversity regulates ecosystem stability at

larger spatial scales that are more relevant to ecosystem management

(Chalcraft, 2013; Isbell et al., 2017; Peterson, Allen, & Holling, 1998).

The spatial scaling of biodiversity is one of the most studied

ecological patterns (Rosenzweig, 1995). In particular, the species–area

relationship (SAR) describes how species richness S changes with area A.
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When increasing the observation area, additional species can be

observed; hence, the SAR is an increasing function. Typically, for a lim-

ited range of intermediate spatial scales, empirical SARs are well approxi-

mated by a power-law function, S5cAz where c and z are empirical

constants. When very small and very large scales are also included, SARs

often exhibit three distinct phases on a log-log plot: concave at local

scales, approximately linear at regional scales and convex at continental

scales (Hubbell, 2001; Rosenzweig, 1995; Storch, Keil, & Jetz, 2012; see

also Figure 1). Various simple models have been proposed to explain this

triphasic shape (Allen & White, 2003; Chave, Muller-Landau, & Levin,

2002; Palmer, 2007; Rosenzweig, 1995; Rosindell & Cornell, 2007).

In contrast, the spatial scaling of ecosystem stability has hardly been

studied. One problem is that ecological stability is a multi-faceted con-

cept, for which numerous measures have been proposed (Grimm & Wis-

sel, 1997; Pimm, 1984). For many of them it is unclear how they can be

scaled up to larger spatial scales. An exception is stability measures based

on temporal variability. Indeed, temporal variability, defined as the coeffi-

cient of variation of total biomass, productivity, or another ecosystem

property of interest, can be readily quantified for areas of different size

(Wang & Loreau, 2014). Using invariability, the inverse of variability, as a

measure of stability, Wang et al. (2017) proposed the invariability–area

relationship (IAR) to describe the spatial scaling of ecosystem stability.

They showed that, similarly to SARs, empirical IARs have a triphasic shape

on a log-log plot, suggesting a connection between SARs and IARs.

Variability-based stability, which is commonly used in empirical

studies (Donohue et al., 2016; Jiang & Pu, 2009), is strongly deter-

mined by the asynchrony of the temporal fluctuations of the ecosystem

property (Wang & Loreau, 2014). For example, consider the temporal

fluctuations of productivity in two forest plots. Unless the fluctuations

are perfectly synchronous between plots, the total invariability, that is,

the invariability of the sum of the plot productivities, is larger than the

invariability of the individual plots. The more asynchronous, or equiva-

lently the more decorrelated1, the productivity fluctuations between

plots, the larger the difference between total invariability and individual

plot invariabilities, that is, the larger the stability gain when scaling up

from one to two plots. This example shows that the IAR is an increas-

ing function by construction. The rate of increase of the IAR, that is, its

slope, at a particular spatial scale is governed by the asynchrony

between parts of the ecosystem at that scale.

Hence, the spatial scaling of invariability can be understood in

terms of temporal correlation at different spatial scales. In this paper

we consider two very different assumptions about these correlations.

First, we assume that species differences are the main source of spatial

asynchrony. Because different parts of the ecosystem are populated by

different species, this leads to decorrelation between the parts, and

hence increased total invariability. This assumption is related to statisti-

cal explanations of the local diversity–stability relationship, such as the

portfolio effect and the insurance hypothesis (May, 1974; Thibaut &

Connolly, 2013; Tilman, Lehman, & Bristow, 1998; Yachi & Loreau,

1999). Second, we assume that spatial distance is at the origin of asyn-

chrony. This can occur when the correlations of the environmental dis-

turbances determine the correlations of the ecosystem fluctuations

directly, that is, without being mediated by species differences. This

mechanism is related to the Moran effect2 in population ecology

(Hudson & Cattadori, 1999; Liebhold, Koenig, & Bjørnstad, 2004).

Clearly, under the second assumption we expect a weaker relationship

between diversity and stability than under the first one.
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FIGURE 1 Ourmodel predicts a triphasic species–area relationship
(SAR). A log-log plot of number of species S(A) against observation areaA
has three distinct phases. Top panel: Exact solution ofmodel (thick green
line) and piecewise linear approximation (thin green line). The shaded region
indicates the set of possible SARs for a fixed configuration of individuals.
For points on the upper boundary, each individual belongs to a different
species (see also Storch, 2016); for points on the lower boundary, all individ-
uals belong to the same species. Bottom panel (a): In the first phase almost
all individuals (represented by dots) in the observation area belong to differ-
ent species (represented by colours). Bottom panel (b): In the second phase
the observed species havemany individuals in the observation area. Some

species range boundaries (represented by lines) are visible in the observa-
tion area. For clarity, only 20% of the species are shown. Bottom panel (c):
In the third phase, the species ranges of the observed species (represented
by circles) are for themost part included in the observed area. For clarity,
only 10% of the species are shown. Parameter values: kI510,
kS50:005; Q5104

1We use the terms ‘synchrony’ and ‘correlation’ interchangeably. If the tem-

poral productivity fluctuations are synchronous or correlated between two

plots, their correlation coefficient is close to 1. If the fluctuations are asyn-

chronous or decorrelated, the correlation coefficient is close to 0.

2Suppose that the temporal fluctuations of the environment are correlated

between spatial locations, and that in each of these locations the environ-

mental fluctuations are correlated with the abundance fluctuations of the

local population. The Moran effect then refers to the resulting correlation

of the population fluctuations between locations. Note that in the current

paper this effect is not restricted to populations of the same species, but is

also used for populations of different species.
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We start by introducing a minimal model that incorporates the

SAR and the IAR, and use it to clarify their relationship. The model pre-

dicts triphasic curves for both the SAR and the IAR, in qualitative

agreement with empirical data. Then, we implement the two correla-

tion assumptions. Under the first assumption, which we call decorrela-

tion by species turnover (DST), the IAR essentially coincides with the

SAR. Under the second assumption, called decorrelation by distance

(DD), the IAR is generally unrelated to the SAR. Nevertheless, there is a

range of parameter values for which the IAR-DD closely resembles the

IAR-DST. Next, we subject the two model variants to different scenar-

ios of species loss and habitat destruction, and show that the response

of stability across spatial scales differs markedly between the two

correlation assumptions. We conclude by discussing the implications of

these findings, and argue that our simple model could serve as a

framework for more mechanistic models.

2 | METHODS

2.1 | Modelling approach

We construct a minimal model that simultaneously predicts the SAR

and the IAR. To predict the SAR, we specify the geographical ranges of

the species. Indeed, if species ranges are given, one can readily

determine how many species are present in any specific area. While

mechanistic models determine these ranges based on more detailed

ecological variables, such as habitat preferences, dispersal properties

and interaction strengths (e.g. Matias et al., 2014; Rybicki & Hanski,

2013), here we consider species ranges as a model input. To predict

the IAR, we specify how the entities making up the ecosystem

fluctuate through time. As detailed below, the intensities and spatial

correlations of these fluctuations suffice to determine invariability in

any specific area. Again, mechanistic models could explain these

fluctuation characteristics in terms of ecological processes, such as

species interactions, dispersal and responses to environmental

disturbances. In our model, however, the statistical properties of these

fluctuations are an assumption, not a prediction.

While this model setup is rather general, for ease of presentation

we discuss it in the context of a more specific system. We propose to

look at the species diversity of plants and the variability of their pro-

ductivity. The productivity of individual plants varies from year to year,

and these individual-level fluctuations add up to generate variability of

the primary productivity at the ecosystem level. The latter, together

with the spatial distribution of individuals and species, determine the

TABLE 1 List of model variables and parameters

Symbol Meaning

Variables

A Size of observation area

N(A) Number of individuals in observation area A

S(A) Number of species in observation area A

P(A) Total productivity of individuals in observation area A

I(A) Invariability of productivity P(A), that is, the reciprocal of the squared coefficient of variation of P(A)

Parameters

kI Density of individuals within species range, that is, for a given species the density of individuals belonging to this species in
the range of this species; units of area21

kS Density of species range centres; units of area21

Q Size of species range

kIQ Average number of individuals per species

kSQ For a given point of the landscape the average number of species ranges containing this point

kIkSQ Total density of individuals, that is, the density of individuals all species confounded; units of area21

mp Mean productivity of an individual

r2
p

Variance of productivity of an individual

qintraðdÞ Correlation coefficient of the productivity fluctuations of two individuals belonging to the same species, that is, intraspecific
correlation

qinterðdÞ Correlation coefficient of the productivity fluctuations of two individuals belonging to different species, that is, interspecific
correlation

q0 Correlation coefficient of the productivity fluctuations of two nearby individuals; specific to IAR-DD

D0 Correlation area, that is, for a given individual the area in which other individuals have productivity fluctuations correlated
with this individual; specific to IAR-DD

IAR-DD5 invariability–area relationship with decorrelation by distance.
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IAR. We now describe the model. Variables and parameters are sum-

marized in Table 1. Mathematical details are presented in Supporting

Information Appendices S1–S3.

2.1.1 | Spatial distribution

We consider a very large, spatially homogeneous landscape. First, we

distribute species ranges over the landscape using a simple random

process (a Poisson point process, see Supporting Information Appendix

S1). This random process is spatially homogeneous, that is, in any point

of the landscape the number of species is the same on average. Species

ranges do not change over time, and are assumed to be circular, with

the same area for all species. Next, we distribute the individuals of the

various species over their range, using a similar spatially homogeneous

random process (see Supporting Information Appendix S1). The posi-

tions of the plants do not change over time. The combination of the

two random processes is characterized by three parameters: Q, the

species range size; kS, the spatial density of species ranges (more pre-

cisely, there are on average kSA species range centres in an area A of

the landscape); and kI, the spatial density of individuals of a particular

species within its range (in particular, each species has kIQ individuals

on average).

2.1.2 | Temporal fluctuations

Plant productivity fluctuates through time. We assume that temporal

mean and variance of these fluctuations are the same for all individuals.

That is, denoting the productivity of individual i by pi, meantðpiÞ 5 mp

and vartðpiÞ5r2
p are the same for all individuals, and hence inde-

pendent of species identity. To specify the spatial correlation structure

of these fluctuations, we distinguish between intra- and interspecific

correlations, which we denote by rho_intra and rho_inter, respectively.

The correlation coefficient of productivities pi and pj of two individuals

i and j is

corrtðpi; pjÞ5 covtðpi; pjÞ
r2
p

5
qintraðdijÞ if i and j belong to the same species

qinterðdijÞ if i and j belong to different species;

( (1)

where dij is the distance between the two individuals.

2.2 | Species-area relationship (SAR)

The SAR relates the number of observed species S(A) and the observa-

tion area A. For simplicity, we only consider circular observation areas.

The number of species S(A) can be easily computed for the homogene-

ous spatial structure of our model (see Supporting Information Appen-

dix S2). The derivation proceeds in two steps. First, we determine the

set of species for which the range overlaps with the observation area.

Second, for each of these species, we compute the probability that at

least one individual is present in the region of overlap, which is a neces-

sary condition to observe the species. The result of this computation

can be expressed as a one-dimensional integral (see Supporting Infor-

mation Appendix S2), which can be evaluated using numerical integra-

tion. The Supporting Information includes R code to compute the SAR.

As we will show in the Results section, the SAR predicted by our

model often consists of three phases. In Supporting Information

Appendix S2 we derive a simple linear approximation for each phase,

leading to a piecewise linear approximation for the entire SAR. We use

the latter approximation, which is fully analytical, to systematically

describe the parameter dependences of the SAR (see Table 2).

2.3 | Invariability-area relationship (IAR)

Denoting the total primary productivity in observation area A by P(A),

we are interested in the variability of P(A), which we quantify as the

squared coefficient of variation,

CV2
t ðPðAÞÞ5

vartðPðAÞÞ
mean2t ðPðAÞÞ

: (2)

Low variability can be seen as an indicator of a stable ecosystem.

Therefore, to obtain a proper stability measure, we take the reciprocal

of variability, which is called invariability3 (Haegeman et al., 2016;

Wang et al., 2017),

IðAÞ5 1

CV2
t ðPðAÞÞ

5
mean2t ðPðAÞÞ
vartðPðAÞÞ : (3)

The IAR relates the invariability I(A) and the observation area A. In

Supporting Information Appendix S3 we explain how this invariability

can be computed for our model. For the mean in the numerator of I(A),

we have

TABLE 2 Predictions of the piecewise linear approximation. The
species-area relationship (SAR) and the two invariability–area rela-
tionships [IAR with decorrelation by species turnover (IAR-DST) and
IAR with decorrelation by distance (IAR-DD)] are approximated by
three line segments. The first one (‘First phase’ column) is linear in
the area A, the second one (‘Second phase’ column) is constant, and
the third one (‘Third phase’ column) is again linear in the area A.
The downward inflection point is approximated as the intersection
of the first and second line segment; the corresponding area is
given in the ‘Downward’ column. The upward inflection point is
approximated as the intersection of the second and third line seg-
ment; the corresponding area is given in the ‘Upward’ column. Note
that both IAR-DST and IAR-DD are proportional to the productivity
invariability of a single plant, I15m2

p=r
2
p .

First
phase Downward

Second
phase Upward

Third
phase

SAR kIkSQ3A 1=kI kSQ Q kS3A

IAR-DST I1kIkSQ3A 1=kI I1kSQ Q I1kS3A

IAR-DD I1kIkSQ3A 1=q0kIkSQ I1=q0 2D0 I1=2q0D03A

3Alternatively, one could define variability as CVtðPðAÞÞ and invariability as

1=CVtðPðAÞÞ, that is, without the squares. This change would not affect the

stability patterns presented in the paper. Indeed, because invariability is

represented on a logarithmic scale, the patterns obtained with our invaria-

bility measure (with square) are equal to those obtained with the alternative

invariability measure (without square) up to a factor of two. We prefer to

work with the squared coefficient of variation because this yields a slightly

tighter link between the SAR and the IAR (see also footnote 6).
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meantðPðAÞÞ5mpNðAÞ; (4)

where N(A) is the number of individuals in A, which is proportional to

the area A (see Supporting Information Appendix S3). For the variance

in the denominator of I(A), we have

vartðPðAÞÞ5
X
i

vartðpiÞ1
X
i;j

covtðpi;pjÞ

5r2
p NðAÞ1r2

p

X
same species

i;j

qintraðdijÞ1r2
p

X
different species

i;j

qinterðdijÞ

(5)

where the sums are over individuals i and j in the observation area A. In

Supporting Information Appendix S3 we explain how the double sums

in the last expression can be evaluated using Monte Carlo integration.

The Supporting Information includes R code to compute the IAR.

2.3.1 | Decorrelation by species turnover (IAR-DST)

While the previous analysis holds for arbitrary functions qintraðdÞ and

qinterðdÞ, in this paper we present results for two simple choices of

these functions.

In the first case, we assume that individuals of the same species

have perfectly correlated productivity fluctuations, and that individuals

belonging to different species have independent fluctuations. This corre-

sponds to setting qintraðdÞ51 and qinterðdÞ50:

This admittedly extreme assumption could result from strong dis-

persal, so that entire species respond in unison to the environmental

disturbances. In addition, plant species are assumed to have specific

responses to the disturbances, so that productivity fluctuations are

uncorrelated between species. Alternatively, the decorrelation between

species can be generated by species interactions. For example, a com-

bination of positive and negative species interactions, tending to

increase and decrease species correlations, respectively, might cancel

out species correlations on average.4 In any case, under this assump-

tion the fluctuation correlations across space are governed by species

differences. We call this decorrelation by species turnover (DST), and

denote the corresponding IAR by IAR-DST.

2.3.2 | Decorrelation by distance (IAR-DD)

In the second case, we assume that the productivity correlations

between any two individuals, whether they belong to the same species

or not, only depend on the distance between the individuals (Wang

et al., 2017). This implies that intra- and interspecific correlations are

identical, qintraðdÞ5qinterðdÞ. Temporal correlations decay with distance,

and one of the simplest functions describing this distance dependence

is the exponential one (Bjørnstad & Falck, 2001; Liebhold et al., 2004),

qintraðdÞ5qinterðdÞ5q0 exp 2
d
d0

� �
; (6)

where q0 is the correlation between two nearby individuals and d0 is

the characteristic correlation length. For distances d well below d0 the

correlation is equal to q0 and it vanishes for distances d well above d0.

This assumption might be suitable for plant species whose productivity

fluctuations reflect the variation of a dominant environmental variable,

for example precipitation. Distance d0 would then correspond to the

correlation length of the environmental disturbances. We call this

assumption decorrelation by distance (DD), and denote the corre-

sponding IAR by IAR-DD.

As we will show, both the IAR-DD and the IAR-DST often have a

triphasic shape. As for the SAR, these relationships can be approxi-

mated by a simple piecewise linear function (see Supporting Informa-

tion Appendix S3). We use this analytical approximation to study how

the IAR depends on the model parameters (see Table 2).

3 | RESULTS

3.1 | Species-area relationship (SAR)

Our model predicts a triphasic relationship between the number of

species S(A) and the observation area A (on a log-log plot, Figure 1).

The slope switches from one at very small spatial scales (point a in

Figure 1), to a small value at intermediate scales (point b), and eventu-

ally to one again at large spatial scales (point c).

This shape can be characterized analytically using a piecewise linear

approximation (Figure 1 and Table 2). The transition between the first

and second phase, which we call the downward inflection point, occurs

at area 1=kI. Recall that kI is the spatial density of individuals of a species

within its range, so that 1=kI is the average area occupied by one individ-

ual in the species range. The transition between the second and third

phase, which we call the upward inflection point, occurs at area Q, which

is the typical size of a species range. The number of species at intermedi-

ate scales (second phase), at which the piecewise linear approximation

has zero slope, is equal to kSQ, where kS is the spatial density of species

range centres. The product kSQ can be interpreted as the average num-

ber of species ranges present at an arbitrary point of the landscape.

Note that while the zero-slope assumption is sufficient for our purpose,

the piecewise linear approximation could be improved to get non-zero

estimates5 for the exponent z of the power-law fit SðAÞ / Az.

The three phases of the SAR can be explained in terms of universal

geometric effects (Allen & White, 2003; Storch, 2016). First, note that

any individual is surrounded by an area of size 1=kI on average in

which no conspecific individual is present. Hence, if the observation

area A is well below 1=kI , there is only a small probability of observing

4The effect of species interactions on species correlations is intricate. For

example, the direct effect of a competitive interaction between two species

is to induce a negative correlation between their fluctuations (the first spe-

cies thrives when the second one is rare, and vice versa). But indirect inter-

actions mediated by other species also contribute to the correlation of the

two species. These indirect contributions are multiple and can compensate

for the correlation induced by the direct interaction.

5One possibility would be to fit a triphasic piecewise linear function to the

predicted SAR, constraining the slope in the first and third phases to 1. This

would yield a non-zero slope z for the second phase. However, this

approach would probably not be analytically tractable. Also, in contrast to

the predictions of Table 2, the fitted value for the slope z would be sensi-

tive to specific model assumptions, such as the assumption of species-

independent range sizes (see also Discussion).
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two individuals of the same species. When increasing the observation

area A (but still A � 1=kI), a newly observed individual belongs most

probably to a species not previously observed (panel a of Figure 1). As

a consequence, the number of observed species S(A) increases linearly

with the number of observed individuals, which is proportional to the

observation area A. This explains why the SAR has a slope of 1 at small

spatial scales (but see Williamson, 2003).

Second, when the observation area A becomes comparable to

1=kI , newly observed individuals often belong to already observed spe-

cies, and the SAR exhibits a downward inflection. When further

increasing the observation area (A � 1=kI), most of the species whose

range overlaps with the observation area are effectively observed (that

is, there is already a conspecific individual present in the region of over-

lap; see panel b of Figure 1). As long as the observation area A remains

smaller than species range size Q, there are seldom new species to be

observed. This explains why the SAR plateaus at intermediate scales.

Third, when the observation area A becomes comparable to the

species range size Q, new species ranges are appearing in the observa-

tion area, and the SAR exhibits an upward inflection. When further

increasing the area (A � Q), most observed species have their range

centres included in the observation area (panel c of Figure 1). Hence,

the number of observed species S(A) is approximately equal to the

number of range centres in the observation area. This number, given

by kSA, is linear in A. This explains why the SAR has a slope of 1 at

large spatial scales.

3.2 | Invariability-area relationship (IAR)

Our model also predicts a triphasic relationship between ecosystem

invariability I(A) and observation area A (on a log-log plot, Figure 2),

both in the case of decorrelation by species turnover (IAR-DST) and in

the case of decorrelation by distance (IAR-DD). The slope changes

from 1 at very small spatial scales, to a small value at intermediate

scales and again to 1 at large spatial scales.

The three phases can be explicitly linked to the model parameters

using a piecewise linear approximation (Figure 2 and Table 2). This link

allows us to gain insight into the underlying mechanisms of the IAR. In

the IAR-DST, the downward and upward inflection points coincide

with those of the SAR. Moreover, for each of the three phases, invaria-

bility is equal to the number of species multiplied by the invariability of

a single plant. The latter invariability is equal to m2
p=r

2
p , where mp is the

mean and r2
p is the variance of the productivity of a single individual.

Hence, in the piecewise linear approximation, the entire IAR-DST coin-

cides with the SAR up to the constant m2
p=r

2
p . This result can be easily

understood. As all individuals of the same species fluctuate in perfect

synchrony, the invariability of the entire species, or of any part of that

species, is equal to m2
p=r

2
p . Invariability can only increase by including

other species. Because different species fluctuate independently, invar-

iability is additive in the number of species.6 This explains why the IAR-

DST is proportional to the SAR.

In contrast, the IAR-DD is not directly linked to the SAR. The

piecewise linear approximation indicates that the IAR-DD coincides

with the IAR-DST in the first phase. However, at larger spatial scales,

the IAR-DD strongly depends on two specific parameters: the correla-

tion coefficient q0 between nearby individuals, and the area over which

the correlations extend, D05pd20 with d0 the correlation length. In
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FIGURE 2 Our model predicts triphasic invariability–area relationships (IARs). We plot ecosystem invariability I(A) against observation area A under
two decorrelation assumptions. Left panel: Decorrelation by species turnover (IAR-DST; in red). Exact model solution in thick red line and piecewise
linear approximation in thin red line. Right panel: Decorrelation by distance (IAR-DD; in blue). Exact model solutions in thick blue line and piecewise
linear approximations in thin blue line. The species–area relationship (dashed black line) is identical in the two panels, and coincides with the thick green
line in Figure 1. The shaded region indicates the set of possible IARs for a fixed configuration of individuals. For points on the upper boundary, all
individuals have independent fluctuations; for points on the lower boundary, all individuals have perfectly correlated fluctuations. Parameter values:
kI510; kS50:005; Q5104,mp51,r2

p51; q050:1; D05105

6The temporal mean of total productivity meantðPðAÞÞ increases linearly

with the number of species. For independently fluctuating species, the var-

iance of total productivity is equal the sum of the variances of species pro-

ductivities. Hence, the temporal variance vartðPðAÞÞ increases linearly with

the number of species. As a result, invariability IðAÞ51=CV2
t ðPðAÞÞ also

increases linearly with the number of species. Note that invariability defined

as 1=CVtðPðAÞÞ would increase as the square root of the number of

species.
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particular, invariability of the second and third phases is inversely pro-

portional to q0 and to q0D0, respectively. The piecewise linear approxi-

mation suggests a limited dependence on the spatial distribution of

species and individuals in the ecosystem. Only the first phase depends

on parameters kS and Q, and only through the total density of

individuals (equal to kIkSQ, see Supporting Information Appendix S2).

A more detailed analysis shows that there is a weak dependence on

parameters kS and Q, due to the spatial clustering of individuals in spe-

cies ranges (see Supporting Information Appendix S3). This clustering

strengthens the average correlation of productivity fluctuations
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FIGURE 3 Simple scenarios of global change affect stability in various ways across spatial scales. We consider five scenarios: (a) Species
loss alone, (b) species loss associated with an increase in population density, (c) species loss associated with an increase in range size, (d)
habitat destruction alone and (e) habitat destruction associated with an increase in population density. Left column: illustration of simulated
landscape. Middle column: Decorrelation by species turnover (IAR-DST; in red). Right column: Decorrelation by distance (IAR-DD; in blue).
Reference IARs for the initial landscape (black line) are the same across scenarios. Parameter values of the reference IARs are the same as
in Figure 2, except q051=kSQ50:02 and D05Q=255103. Parameter changes are (a) kS ! kS=g, (b) kS ! kS=g and kI ! gkI , (c) kS ! kS=g
and Q ! gQ, (d) Q ! Q=g, and (e) Q ! Q=g and kI ! gkI , where the factor g is equal to g54 for the curve closest to the reference, and
equal to g516 for the curve furthest from the reference
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between individuals, thus increasing the synchrony of the ecosystem.

As a result, invariability is slightly smaller than predicted by the piece-

wise linear approximation. Overall, in the case of decorrelation by dis-

tance, the spatial distribution of species, which entirely determines the

SAR and the IAR-DST, has only a minor effect on the IAR-DD.

3.3 | Stability loss across spatial scales

As an application of our model, we explore how changes in the distri-

bution of individuals and species affect the spatial scaling of ecosystem

stability. We focus on two components of global change, species loss

and habitat destruction, and describe their effects at multiple spatial

scales. Obviously, we do not intend here to provide a realistic descrip-

tion of these complex phenomena and their consequences. Rather, we

explore the variety of ways in which ecosystem stability can be

affected from small to large scales.

We simulate different global change scenarios by varying species

density kS, individual density kI and species range size Q. We monitor

the effects of these variations through the invariability-area relationship,

assuming either decorrelation by species turnover (IAR-DST) or decorre-

lation by distance (IAR-DD). Recall that the SAR, which is independent

of the decorrelation assumption, is directly proportional to the IAR-DST.

The first three scenarios deal with species loss. Scenario (a) simu-

lates species loss by decreasing species density kS (Figure 3a). As the

remaining species are not affected, this causes the total density of indi-

viduals (equal to kIkSQ) to decrease as well. The IAR-DST decreases at

all spatial scales, while the IAR-DD only decreases at the smallest scales

and is unaffected at larger scales. This can be explained by recalling

that the two IARs coincide in the first phase, and that the IAR-DD does

not depend on the distribution of individuals and species in the second

and third phases.

Scenario (b) simulates species loss by decreasing species density kS

and simultaneously increasing individual density kI while keeping the

total density of individuals (equal to kIkSQ) constant (Figure 3b). This

compensation could be due to competitive release, that is, the extinc-

tion of a species creates the opportunity for its competitors to increase

their density (Ives, 1995; Segre, DeMalach, Henkin, & Kadmon, 2016).

The IAR-DST decreases at all but the smallest scales, while the IAR-DD

is not affected at all. The same explanation holds as in the previous sce-

nario, with the addition that for both IARs the first phase is determined

by the total density of individuals, which is constant in this scenario.

Scenario (c) simulates species loss by decreasing species density kS

and simultaneously increasing species range size Q (Figure 3c). This

joint variation is such that the total density of individuals remains con-

stant. This could occur if the extinction of species allows competing

species to expand their range. In this scenario, the IAR-DST decreases

only at large scales, where species density kS governs invariability. The

IAR-DD does not change at any scale, as in the previous scenario.

The last two scenarios look at habitat destruction. Scenario (d) sim-

ulates habitat destruction by decreasing species range size Q (Figure

3d). As all other parameters are kept constant, the total number of indi-

viduals decreases. For the two decorrelation assumptions, invariability

decreases only at small scales. Indeed, for the IAR-DST, species range

size Q does not affect the third phase, which is determined by species

density kS. For the IAR-DD, species range size Q does not affect the

second and the third phases, which are determined by the correlation

parameters q0 and D0.

Scenario (e) simulates habitat destruction by decreasing species

range size Q and simultaneously increasing individual density kI (Figure

3e), so that the total density of individuals remains constant. In this

case habitat destruction reduces the space available per individual, but

does not reduce the number of individuals. In comparison with the pre-

vious scenario, the IARs are not affected at the smallest scales, because

the first phase is determined by the total density of individuals.

To sum up, despite its simplicity, our model predicts a rich variety

of stability responses. Depending on the scenario considered, stability

can be affected at a narrow or broad range of spatial scales, and pre-

dominantly at small, intermediate or large scales.

4 | DISCUSSION

We constructed a minimal model that is able to predict simultaneously

the SAR and the IAR. For both relationships, we obtained a triphasic

curve, in qualitative agreement with empirical data (Rosenzweig, 1995;

Storch et al., 2012; Wang et al., 2017). It is remarkable that a simple

model like ours is able to reproduce these patterns. Recall, however,

that our model is not mechanistic, in the sense that it is not built on

basic ecological processes. Instead, its starting point is simple assump-

tions about the spatial distribution of individuals and species and their

temporal fluctuations. We translated these assumptions into predic-

tions for the SAR and the IAR, but we did not connect them to underly-

ing mechanisms. As a consequence, our model does not allow us to

directly infer the ecological drivers of the SAR and the IAR (but see

below).

In our model randomness serves a pragmatic purpose, that is, it

allows us to circumvent the complexity inherent in spatially extended

ecosystems. But this does not mean that our model is incompatible

with models that explicitly describe this complexity. In particular, irre-

spectively of the model complexity, the SAR and the IAR are entirely

determined by the spatial configuration of the ecosystem and its fluctu-

ation patterns. That is, once this spatio-temporal structure is given, the

specific model details no longer matter for the SAR and IAR predic-

tions. The basic idea of our model is to directly generate random

instances of this structure, hence bypassing the underlying ecological

complexity. Also, note that this model randomness does not refute the

importance of deterministic processes (see also Coleman, Mares, Willig,

& Hsieh, 1982).

We used the model to investigate the links between the SAR and

the IAR. To demarcate the range of possible outcomes, we considered

two assumptions about the temporal correlations of the ecosystem

fluctuations. In the first case, called DST, we assumed that species dif-

ferences determine spatial asynchrony. We described a tight corre-

spondence between the IAR-DST and the SAR, such that any process

affecting the SAR has very similar effects on the IAR-DST. In the sec-

ond case, called DD, we assumed that spatial separation governs the
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decorrelation between ecosystem parts. We found that the IAR-DD is

largely independent of the SAR, such that processes affecting the SAR

often leave the IAR-DD unchanged. Nevertheless, despite this funda-

mental difference between the IAR-DST and the IAR-DD, there is a

range of parameter values for which the shapes of the IAR-DD and the

IAR-DST are similar. Indeed, the piecewise linear approximation indi-

cates that a close match7 is obtained for 2D0 � Q and kSQ q0 � 1 (see

Table 2). Hence, the same IAR can hide very different underlying

processes.

We explored how simple scenarios of species loss and habitat

destruction affect the IAR under the two decorrelation assumptions.

We described a variety of stability responses, differing at small, inter-

mediate and large spatial scales (Figure 3). This emphasize the impor-

tance of investigating stability simultaneously at multiple scales. In

particular, stability results at the local scale should not be extrapolated

blindly, as this would represent a risk of underestimating (e.g. scenarios

(b) and (c) under assumption DST) or overestimating (e.g. scenario (d)

under assumptions DD and DST) large-scale stability. Note that the sta-

bility losses range over an order of magnitude (recall that invariability is

represented on a logarithmic scale). We also found sharp differences

between the response of the IAR-DD and that of the IAR-DST (e.g. in

scenario (b)), even though the two IAR variants coincide for the refer-

ence scenario (black line in Figure 3). This shows that the IAR by itself

does not suffice to predict the stability effects of species loss.

Our model points at the missing information: the correlation func-

tions qintraðdÞ and qinterðdÞ. The more they differ, the larger the role of

biodiversity in ecosystem stability, and the stronger the impact of spe-

cies loss on the IAR. We focused on two extreme cases, in which the

difference between qintraðdÞ and qinterðdÞ is either maximal (assumption

DST) or zero (assumption DD). In real ecosystems, the correlation func-

tions are somewhere intermediate between these extremes. It would

be interesting to empirically evaluate qintraðdÞ and qinterðdÞ. This should
be possible from species-level community data consisting of time series

at multiple spatial locations. This analysis would enable us to determine

to what extent species diversity contributes to asynchrony in the eco-

system, and hence to its invariability. The answer, which most probably

will depend on spatial scale, would be an indicator of the ecosystem’s

vulnerability to species loss, regardless of the detailed processes gov-

erning the ecosystem.

Apart from the specific choices for the correlation functions, our

model is built on several other simplifying assumptions. In particular,

we assumed a strong degree of spatial homogeneity and species sym-

metry. Because the theoretical SAR and IAR are defined as averages

over the landscape [e.g. the number of species S(A) is the average over

all circular areas of size A], we do not expect that relaxing these

assumptions will fundamentally modify our results. For example, if

range sizes are allowed to differ between species, it would suffice to

reinterpret parameter Q as the average range size (Allen & White,

2003). This need not hold for range size distributions with a long tail

(e.g. a power-law distribution), which might also affect the slope of the

SAR and the IAR at large spatial scales (see also the power-law decay

of correlations considered by Wang et al., 2017). Other model parame-

ters can be made spatially heterogeneous and species dependent with-

out qualitatively affecting the results.

For concreteness, we formulated the model in terms of plant pro-

ductivity. However, our approach can be applied to other ecosystem

properties and other taxonomic groups. For example, when considering

mobile rather than sessile organisms, the movement of individuals

introduces an additional contribution to ecosystem variability. A prelim-

inary analysis shows that the corresponding IARs are similar to those

studied in the paper. Also, the model interpretation given in the paper

can be adapted to other levels of organization. For example, we

assumed that individuals are the basic fluctuating entities, but in other

contexts it might be more relevant to consider populations and their

abundance fluctuations. Similarly, we assumed that species are the

main entities that control decorrelation (at least under the DST

assumption), but this role could also be played by functional groups, for

example. In each of these interpretations, the effect of diversity on sta-

bility across spatial scales depends on the relationship between appro-

priately redefined correlation functions qintraðdÞ and qinterðdÞ.
In summary, although not mechanistic, our modelling approach can

accommodate a wide range of spatially structured ecosystems. Clearly,

the next step is to connect this framework with ecological mechanisms.

This would allow us to explain the driving parameters of our model, in

particular qintraðdÞ and qinterðdÞ, in terms of ecological processes, such

as habitat selection, resistance to environmental disturbances and dis-

persal (for a similar approach in a metacommunty setting, see Wang &

Loreau, 2016). Moreover, we would be able to mechanistically con-

struct global change scenarios, rather than postulating them, as we

were forced to do in this paper. Indeed, species loss and habitat

destruction might affect various parameters of our model (e.g. mp, r2
p

and the correlation functions), and more detailed models are needed to

identify these multiple and interdependent effects (see Rybicki &

Hanski, 2013 and Matias et al., 2014 for analogous work on the SAR).

Importantly, even for these more complex models, invariability is even-

tually determined by the spatial correlations of the fluctuating entities.

Therefore, our approach can provide an integrative perspective on the

spatial scaling of ecosystem stability and its link with biodiversity.
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