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Abstract

Describing, understanding and predicting the spatial distribution of genetic diversity

is a central issue in biological sciences. In river landscapes, it is generally predicted

that neutral genetic diversity should increase downstream, but there have been few

attempts to test and validate this assumption across taxonomic groups. Moreover, it is

still unclear what are the evolutionary processes that may generate this apparent spa-

tial pattern of diversity. Here, we quantitatively synthesized published results from

diverse taxa living in river ecosystems, and we performed a meta-analysis to show that

a downstream increase in intraspecific genetic diversity (DIGD) actually constitutes a

general spatial pattern of biodiversity that is repeatable across taxa. We further demon-

strated that DIGD was stronger for strictly waterborne dispersing than for overland

dispersing species. However, for a restricted data set focusing on fishes, there was no

evidence that DIGD was related to particular species traits. We then searched for gen-

eral processes underlying DIGD by simulating genetic data in dendritic-like river sys-

tems. Simulations revealed that the three processes we considered (downstream-biased

dispersal, increase in habitat availability downstream and upstream-directed coloniza-

tion) might generate DIGD. Using random forest models, we identified from simula-

tions a set of highly informative summary statistics allowing discriminating among the

processes causing DIGD. Finally, combining these discriminant statistics and approxi-

mate Bayesian computations on a set of twelve empirical case studies, we hypothe-

sized that DIGD were most likely due to the interaction of two of these three

processes and that contrary to expectation, they were not solely caused by down-

stream-biased dispersal.
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Introduction

Spatial patterns of biological diversity are defined as

repeatable gradients of biodiversity along geographic

descriptors (e.g. latitude, longitude or altitude; Levin

1992; Lawton 1996; Hillebrand 2004). Describing and

understanding spatial patterns of biodiversity is a cen-

tral and critical topic of ecological, evolutionary and

conservation sciences (Gotelli et al. 2009; Chave 2013).

The coupling of empirical and theoretical works has

been incredibly helpful in improving our understanding

of spatial patterns for numerous facets of biodiversity
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(Chave 2013). However, despite its ecological and evo-

lutionary importance (Hughes et al. 2008; Caballero &

Garc�ıa-Dorado 2013), intraspecific genetic diversity

remains an aspect of biodiversity for which many spa-

tial patterns remain to be revealed and understood.

Several general patterns have been described at the

intraspecific genetic level such as patterns of isolation

by distance (Wright 1943; Sexton et al. 2014), the

decrease in genetic diversity along routes of coloniza-

tion (Taberlet et al. 1998), reduced genetic diversity at

range boundaries (Kirkpatrick & Barton 1997; Eckert

et al. 2008; Liggins et al. 2015) and more recently pat-

terns of isolation by adaptation (Nosil 2009; Sexton et al.

2014). Beyond these widely acknowledged patterns, the

increasing availability of genetic data sets has generated

evidences for some additional patterns in specific

ecosystems. For instance, in river ecosystems several

studies reported a downstream increase in genetic diversity

(hereafter DIGD) (e.g. H€anfling & Weetman 2006;

Kikuchi et al. 2009; Alp et al. 2012; Torterotot et al.

2014), which may constitute an additional pattern of

intraspecific genetic diversity. Unravelling whether or

not DIGD constitutes a spatial pattern or a casual obser-

vation is of major importance for conservation pur-

poses, as this may imply that the spatial structure of

genetic diversity might be predictable, and hence that

freshwater-protected areas may theoretically benefit

several species at a time. However, albeit there have

been some attempts to synthesize observations across

taxonomic groups regarding the spatial organization of

intraspecific genetic diversity in river systems (Hughes

2007; Finn et al. 2011; Hughes et al. 2013), studies aim-

ing at thoroughly explore whether or not DIGD consti-

tutes a general spatial pattern of genetic diversity in

rivers remain scarce (but see Honnay et al. 2010 for a

meta-analysis on riparian plants).

River ecosystems offer unique opportunity to make

such generalization across taxa because population

genetic studies have accumulated for a wide variety of

organisms living in rivers or along their banks (Pauls

et al. 2014), and simple hypotheses can be generated

regarding the processes generating a spatial organiza-

tion of genetic diversity in those systems. River ecosys-

tems are specific cases of dendritic ecological networks,

characterized by their tree-like geometric branching pat-

tern (Benda et al. 2004; Campbell Grant et al. 2007), and

strongly structured by elevation, making water flow

unidirectional. These two characteristics (i.e. branching

geometry and unidirectional water flow) strongly con-

strain movements of individuals and hence dispersal.

Dispersal in turn facilitates gene flow (Ronce 2007) and

colonization, which might generate spatial patterns of

intraspecific genetic diversity in riverscapes (Altermatt

2013). Some theoretical studies have investigated the

genetic consequences of network geometry (Labonne

et al. 2008), dendritic connectivity per se (Paz-Vinas &

Blanchet 2015) and particular dispersal modalities in

simulated river systems (Chaput-Bardy et al. 2009; Mor-

rissey & de Kerckhove 2009). Nevertheless, there have

been no or few attempts, to broadly explore the pro-

cesses generating DIGD in river ecosystems.

In theory, DIGD may be the result of three main pro-

cesses affecting neutral genetic diversity at the deme

level, by moving the balance between the forces

increasing diversity (mutation and immigration), and

those that reduce it (emigration and genetic drift). The

first process is downstream-biased gene flow, which may

result from asymmetric dispersal costs due to unidirec-

tional water flow (Morrissey & de Kerckhove 2009;

Paz-Vinas et al. 2013). In consequence, upstream demes

would entail higher loss of alleles by emigration and

genetic drift, while immigration would compensate for

drift in downstream demes (Ritland 1989; see also

M€uller 1954 for a closely related hypothesis called ‘the

drift paradox hypothesis’). This hypothesis is generally

the first (and often the only one) to be invoked to

explain empirical DIGD. Second, DIGD may be the ulti-

mate result of variation in habitat availability, which typi-

cally increases from sources to river mouth because of

the downstream increase in river width and hence

habitat availability, at least for weakly specialized spe-

cies (Muneepeerakul et al. 2007; Raeymaekers et al.

2008; Carrara et al. 2014). This hypothesis is based on

the observation that higher genetic diversity can be

reached in populations with higher effective sizes (Ne):

under the assumption that Ne covaries with the abun-

dance of individuals (which in turn is positively corre-

lated with habitat availability), the amount of available

habitat may positively correlate with genetic diversity

(Nei 1987; Frankham 1996). Consequently, species may

be more genetically diverse in downstream sections

than in upstream sections (i.e. conform to a DIGD).

Finally, although less acknowledged, DIGD can be a

particular case of declining genetic diversity along colo-

nization routes (Cyr & Angers 2012). Assuming that the

remnant (or founding) populations are located down-

stream, the progressive upstream-directed colonization

would create a succession of founding events, typically

accompanied by a loss of genetic variation. This can be

expected, for instance, after a glacial event for which

the glacial refugees were situated in the downstream

section of a river basin, during an introduction or a bio-

logical invasion (Hewitt 1996), or during an upstream

range shift due to the breakdown of natural and/or

anthropogenic barriers (e.g. during a range shift due to

climate change; Conti et al. 2015). Ultimately, this may

generate the observed DIGD. To our knowledge, no

study has simultaneously tested which of these three
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processes – or which combination of processes – is

more likely to generate DIGD.

The first general objective of this study was to pro-

vide a quantitative and exhaustive synthesis of previ-

ously published studies describing spatial gradients of

genetic diversity in river networks, so as to test for the

generality of a spatial pattern in intraspecific diversity

(namely DIGD) across taxonomic groups. To that aim,

we used neutral allelic richness calculated using

microsatellite markers as a surrogate of intraspecific

genetic diversity, and we used meta-analytical tools to

test the generality of DIGD across a variety of taxa

including plants, arthropods, mollusks and vertebrates.

This database was also used to explore potential species

traits explaining why the strength of DIGD may vary

among species. We first test the hypothesis that con-

trasting spatial patterns of genetic diversity should be

observed for organisms displaying two contrasting dis-

persal modes: exclusively waterborne dispersal (e.g.

fish) vs. overland dispersal (e.g. riparian plants,

amphibians and arthropods). We expected that water-

borne dispersers should display a DIGD stronger than

overland dispersers (Alp et al. 2012). Second, we restrict

the data set to fish species (the most abundant group in

the meta-analysis) to test whether or not life history,

ecological or morphometric species traits can explain

variation in the strength of DIGD. Finally, on a sec-

ondary perspective, we used this database to test

another spatial pattern of intraspecific genetic diversity

that has been hypothesized in river networks; that is,

that upstream demes are more genetically differentiated

than downstream demes (Finn et al. 2011; Paz-Vinas &

Blanchet 2015). This is an important pattern to explore

for conservation purposes because – if verified – it

would mean that upstream demes are genetically

unique and might largely contribute to the whole net-

work-scale genetic diversity (Finn et al. 2011).

Our second general objective was to go beyond the

description of spatial patterns by identifying processes

that may generate DIGD. To that aim, we used pattern-

oriented simulations (Hoban 2014; Pauls et al. 2014) to

theoretically explore which process of downstream-bi-

ased gene flow, variation in habitat availability or

upstream-directed colonization (or which combination of

these three processes) is more likely to generate DIGD.

We hypothesize that the most likely process to generate

DIGD is downstream-biased gene flow – alone and/or in

combination with the two other processes – as it is the

process that is generally invoked to explain empirical

DIGD (H€anfling & Weetman 2006; Kikuchi et al. 2009;

Paz-Vinas et al. 2013). We further used the output of

these simulations and random forest classification mod-

els (Breiman 2001) to highlight the most informative sum-

mary statistics that best capture the genetic signature of

these processes, and that may help identifying the most

likely process generating DIGD when it is actually

observed in natural populations. Finally, we came back

to empirical observations by applying approximate Baye-

sian computations (ABC) on the most discriminant statis-

tics to hypothesize which (or which combination) of the

three processes considered in this study was likely to

have generated DIGD observed in a subset of contrasted

empirical data sets.

Materials and methods

Patterns of genetic diversity

We described spatial patterns of genetic diversity as the

Pearson’s correlation coefficient between the distance of

each sampled deme from the river mouth (or the dis-

tance of each deme from the first downstream conflu-

ence shared by all demes when the study did not cover

the whole river basin) and the mean allelic richness

(hereafter CORAR) for both empirical and simulated

data sets (see below). Mean allelic richness is the mean

number of alleles per sampling deme, averaged over

loci and corrected for the number of individuals geno-

typed in a deme. DIGD translates into negative CORAR.

Although we mainly focused on DIGD, we secondarily

described (both for simulations and for a subset of case

studies selected in the meta-analysis) spatial patterns of

genetic differentiation as the Pearson’s correlation coef-

ficient between the distance of each sampled deme from

the river mouth and within-deme FST values (i.e. a

measure of the genetic uniqueness of a deme at the

meta-population level, calculated as the average of the

pairwise FST values observed between a deme and all

other demes; Coleman et al. 2013). We will hereafter

refer to this statistic as CORFST .

Meta-analysis of empirical data

We conducted a literature survey of scientific papers

published during the period 2004–2013 that report

genetic diversity data for freshwater organisms sampled

in river networks. The search was done using the ISI Web

of Knowledge� platform (last accessed the 18th of July

2013) and combining the following keywords: ‘river’, ‘ge-

netic diversity’ and ‘microsatellites’. We restricted our

search to papers that (i) used microsatellite markers (to

fit our simulations and reduce the variation due to the

use of other marker types) and (ii) directly reported

CORAR or (if this was not the case) reported values of

allelic richness for each sampled deme as well as a map

representing sampling locations. The maps were used in

these cases to calculate topological distances of each

deme from the river mouth (or from the most down-
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stream confluence shared by all demes when maps did

not cover the whole river basin) using Inkscape v.0.48.2,

hence allowing the calculation of CORAR. We retained

studies for which the sampling was done only in a single

stream, or over a dendritic network. This led to 79 case

studies from six major taxonomic groups (plants, mol-

lusks, arthropods, amphibians, agnates and fish, see

Table S1, Supporting information).

Simulations

To determine the propensity of downstream-biased

gene flow, variation in habitat availability and

upstream-directed colonization to generate DIGD, we

simulated neutral genetic (microsatellite-like) data

under eight distinct dendritic models using a coales-

cent-based approach (Kingman 1982). All models had

the same spatial configuration but varied in specific

parameters (see below and Fig. 1; Table 1). Three mod-

els were ruled by one of the three processes indepen-

dently (hereafter ‘geneflow model’, ‘habitat availability

model’ and ‘colonization model’, respectively, for the

processes generated by downstream-biased gene flow,

variation in habitat availability or upstream-directed

colonization; Fig. 1). Additionally, we ran simulations

under five complementary models: (i) three models

ruled by two-way interactions between these processes

(i.e. geneflow/habitat, geneflow/colonization and habi-

tat/colonization models), (ii) one model ruled by a

three-way interaction between the three processes (i.e.

geneflow/habitat/colonization model) and (iii) a den-

dritic model where none of the processes mentioned

above were simulated (i.e. the null model). This last

model will reflect the solely effects of dendritic connec-

tivity per se on spatial patterns of genetic diversity (see

Paz-Vinas & Blanchet 2015).

Spatial configuration. All eight models were composed

of 33 demes arranged in a dendritic fashion: there

were eight upstream branches that ultimately feed a

downstream section arranged in a linear stepping-stone

chain composed of five demes (Fig. 1). The deme at

the bottom of the linear chain was considered as the

most downstream deme (i.e. ‘river mouth deme’),

whereas the upper demes were considered as the most

upstream demes (i.e. ‘headwater demes’). The range of

the explored parameter values for each model is

defined in Table 1. Hereafter, we thoroughly present

each single-process model (geneflow model, habitat

availability model and colonization model) and then

explain briefly how the null and the interacting models

were built.

Model for downstream-biased gene flow (geneflow model).

We assumed that all demes had the same effective pop-

ulation size (NDEMES), which was constant across gener-

ations (Fig. 1A; Table 1). We considered two different

dispersal rates: a downstream-directed dispersal rate

(DDOWNSTREAM) and an upstream-directed dispersal

rate, DUPSTREAM = DDOWNSTREAM/PASYM, where PASYM

is a parameter representing the level of asymmetry in

gene flow (Fig. 1A). A PASYM of 1 means that gene flow

is symmetric, whereas values >1 indicate downstream-

biased gene flow.

(A)

DDOWNSTREAM

DUPSTREAM

GENEFLOW MODEL (B) HABITAT AVAILABILITY MODEL

D
SYMMETRIC

Deme of size

Colonization 

(C) COLONIZATION MODEL
UPSTREAM UPSTREAM UPSTREAM

DOWNSTREAMDOWNSTREAMDOWNSTREAM

DSYMMETRIC

Colonization by

TEND+ 1T COLONIZATION

TEND

TEND+ 2T COLONIZATION
TEND+ 3T COLONIZATION
TEND+ 4T COLONIZATION
TEND+ 5T COLONIZATION

TEND+ 6T COLONIZATION

TEND+ 7T COLONIZATION

TEND+ 8T COLONIZATION

TEND+ 9T COLONIZATION

NDEMES

N
n+1 

= N
n
 x P 

SCAL 
NDEMES P        x N         

individuals
(forward-in-time)

FRAC DEMES

(backwards-in-time)

Fig. 1 Figure representing the three independent dendritic population models considered for simulating genetic data. (A) illustrates

the downstream-biased geneflow model (geneflow model), with demes of equal size NDEMES and downstream-directed dispersal

equal to or higher than upstream-directed migration (i.e. DDOWNSTREAM ≥ DUPSTREAM). (B) represents the model with variation in

habitat availability (habitat availability model), in which symmetric dispersal is assumed (DSYMMETRIC) and the size of the demes

increases along the upstream–downstream gradient by the recurrence relationship Nn+1 = Nn 9 PSCAL. (C) illustrates the model with

upstream-directed colonization (colonization model), in which the entire population is progressively colonized from downstream-to-

upstream by successive colonization steps of length TCOLONIZATION and PFRAC 9 NDEMES colonizing individuals per colonization step.

The colonization process stops when headwater populations are colonized at time TEND. Although not represented in this figure, the

null model and the two- and three-way interacting models (gene flow/habitat, gene flow/colonization, habitat/colonization and

gene flow/habitat/colonization) share the same spatial structure than the single-process models.
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Table 1 Prior parameter values considered for simulating genetic data under the eight dendritic models (gene flow, habitat availabil-

ity, colonization, gene flow/habitat, gene flow/colonization, habitat/colonization, gene flow/habitat/colonization and null)

Model Parameter Description Prior parameter values

Number of parameter

values tested

Gene flow NDEMES Size of the demes (diploid

individuals)

50; 1000 or 10 000 3

PASYM Asymmetry in dispersal rate 1 to 20 by 0.1 191

DDOWNSTREAM Downstream-directed

dispersal rate

0.01 to 0.3 by 0.01 30

Habitat availability NHEADWATER Size of the most upstream demes

(diploid individuals)

50 to 500 by 5 100

PSCAL Scaling parameter for calculating

downstream demes sizes

1.0 to 1.5 by 0.1 6

DSYMMETRIC Symmetric dispersal rate 0.01 to 0.3 by 0.01 30

Colonization NDEMES Size of the demes (diploid

individuals)

50; 1000 or 10 000 3

DSYMMETRIC Symmetric dispersal rate 0.01 to 0.3 by 0.01 30

TEND Time of the ending of the

stepwise colonization

(generations)

10 to 500 by 10 50

TCOLONIZATION Time elapsed between each

colonization step (generations)

5 to 100 by 5 20

PFRAC Fraction of individuals

colonizing a new deme

0.1 to 0.3 by 0.1 3

Gene flow/habitat NHEADWATER Size of the most upstream demes

(diploid individuals)

50 to 500 by 5 100

PASYM Asymmetry in dispersal rate 1 to 20 by 0.1 191

DDOWNSTREAM Downstream-directed

dispersal rate

0.01 to 0.3 by 0.01 30

PSCAL Scaling parameter for calculating

downstream demes sizes

1.0 to 1.5 by 0.1 6

Gene flow/

colonization

NDEMES Size of the demes (diploid

individuals)

50; 1000 or 10 000 3

PASYM Asymmetry in dispersal rate 1 to 20 by 0.1 191

DDOWNSTREAM Downstream-directed

dispersal rate

0.01 to 0.3 by 0.01 30

TEND Time of the ending of the

stepwise colonization

(generations)

10 to 500 by 10 50

TCOLONIZATION Time elapsed between each

colonization step (generations)

5 to 100 by 5 20

PFRAC Fraction of individuals

colonizing a new deme

0.1 to 0.3 by 0.1 3

Habitat/colonization NHEADWATER Size of the most upstream demes

(diploid individuals)

50 to 500 by 5 100

PSCAL Scaling parameter for calculating

downstream demes sizes

1.0 to 1.5 by 0.1 6

DSYMMETRIC Symmetric dispersal rate 0.01 to 0.3 by 0.01 30

TEND Time of the ending of the

stepwise colonization

(generations)

10 to 500 by 10 50

TCOLONIZATION Time elapsed between each

colonization step (generations)

5 to 100 by 5 20

PFRAC Fraction of individuals

colonizing a new deme

0.1 to 0.3 by 0.1 3

Gene flow/

habitat/

colonization

NHEADWATER Size of the most upstream demes

(diploid individuals)

50 to 500 by 5 100

PASYM Asymmetry in dispersal rate 1 to 20 by 0.1 191
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Model for variation in habitat availability model (habitat

availability model). We assumed a single symmetric dis-

persal rate, DSYMMETRIC (Fig. 1B; Table 1), and we con-

sidered that demes increased in effective population

size (Ne) along the upstream–downstream gradient.

This was modelled by (i) setting a parameter defining

the Ne of all headwater demes, NHEADWATER, and (ii) by

determining the size of the following demes by the

recurrence relationship Nn+1 = Nn 9 PSCAL. PSCAL rep-

resents a positive scaling parameter, and the starting

value for Nn was N0 = NHEADWATER. Populations in this

model were characterized by larger Ne in downstream

than in upstream demes (Fig. 1B).

Model for upstream-directed colonization (colonization

model). We considered that populations experienced a

stepwise colonization that started from the river mouth

deme and ended in the headwater demes at a time

TEND (Fig. 1C). The end of the colonization process can

be recent or ancient, depending on the value of TEND

(Table 1). The colonization speed was determined by

the parameter TCOLONIZATION, which defines the time

(in generations) separating two colonization steps

(Fig. 1C). As we used a backwards-in-time simulation

framework, the simulation process begins at a ‘current’

situation where all demes are colonized, and then traces

back the stepwise colonization starting at time TEND

(Fig. 1C). This procedure ensures that all demes have

been colonized during the simulation process. The

fraction of colonizing individuals at each step was

determined by the parameter PFRAC. All demes had the

same effective population size, NDEMES, and a unique

symmetric dispersal rate, DSYMMETRIC.

Two- and three-way interacting models (geneflow/habitat,

geneflow/colonization, habitat/colonization models and gene-

flow/habitat/colonization models). These models were

arranged in the same spatial fashion than geneflow,

habitat availability and colonization models, but dif-

fered from them in that they were characterized by

parameters relative to the two or three processes

implied in each of these models. The parameters used

in each interacting model are those described in

Table 1.

Null model. This model was arranged in the same spa-

tial fashion than the others and assumed the same

parameter values, but migration among demes was

symmetric (DUPSTREAM = DDOWNSTREAM), Ne among

demes were equal across generations, and no coloniza-

tion process was modelled for each simulation

(Table 1). This model hence reflects the solely effects of

dendritic connectivity on spatial patterns of genetic

diversity, which is predicted to generate bell-shaped

patterns of allelic richness along the upstream–down-

stream gradient (Paz-Vinas & Blanchet 2015).

Simulation procedure. The simulation procedure com-

prised four major steps: (i) sampling of a vector of

parameter values (φx) for a specific model from prior

parameter distributions (defined in Table 1); (ii) simula-

tion of a genetic data set Dx, given φx; (iii) calculation of

a vector of statistics sx that summarizes the simulated

data Dx (see the Summary statistics section below); and

(iv) repeat steps (i) to (iii) many times (i.e. 300 000 sim-

ulations per model in our case).

To implement the simulation procedure, we set a

computational pipeline based on the program ABCSAM-

PLER (Wegmann et al. 2010) that integrates several addi-

tional population genetics and statistical programs (see

Appendix S1, Supporting information for details). The

coalescent-based genetic data simulator SIMCOAL v2.1.2

Table 1 Continued

Model Parameter Description Prior parameter values

Number of parameter

values tested

DDOWNSTREAM Downstream-directed

dispersal rate

0.01 to 0.3 by 0.01 30

PSCAL Scaling parameter for calculating

downstream demes sizes

1.0 to 1.5 by 0.1 6

TEND Time of the ending of the

stepwise colonization

(generations)

10 to 500 by 10 50

TCOLONIZATION Time elapsed between each

colonization step (generations)

5 to 100 by 5 20

PFRAC Fraction of individuals

colonizing a new deme

0.1 to 0.3 by 0.1 3

Null model NDEMES Size of the demes (diploid

individuals)

50; 1000 or 10 000 3

DSYMMETRIC Symmetric dispersal rate 0.01 to 0.3 by 0.01 30
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(Laval & Excoffier 2004) was used to simulate

microsatellite data under the eight models described

above, given φx. We simulated fifteen independent

microsatellite loci per individual, assuming a stepwise

mutation model (SMM) and a mutation rate of 5 9 10�4

over loci. The calculation of summary statistics was

based on 25 diploid individuals sampled from each

deme, irrespective of the model considered. These con-

ditions correspond to typical sampling schemes in pop-

ulation genetics.

Summary statistics. We used the software ARLSUMSTAT

(Excoffier & Lischer 2010) to calculate over loci and for

each deme the expected heterozygosity (HE) and the

Garza–Williamson’s statistic (GW; i.e. the mean ratio

between the number of alleles observed on microsatel-

lite loci and the range in allele size at this loci; Garza &

Williamson 2001). The GW statistic was calculated

because it informs on the demographic history of popu-

lations (Garza & Williamson 2001), and can thus be

potentially informative for discriminating models expe-

riencing upstream-directed colonization (a process that

implies a succession of founder events) from the rest of

the models. ARLSUMSTAT was also used to calculate statis-

tics at the landscape level, including global FST, FIS and

FIT values, as well as pairwise FST values between all

possible pairs of demes. We used the software ADZE

v1.0 (Szpiech et al. 2008) to estimate allelic richness

(AR) and mean private allelic richness (PA) at the deme

level. We then averaged pairwise FST values observed

between a site and all the other sites in the network to

obtain within-deme FST estimates. Within-deme FST
indicates how unique is a deme in terms of genetic dif-

ferentiation compared to the other demes in the net-

work (Coleman et al. 2013). Finally, we used the R

software v.2.13 to characterize spatial patterns of

genetic diversity for each Dx and for each model by cal-

culating CORAR (as described above). In addition, we

calculated other potential discriminant statistics that

were representative of the spatial distribution of differ-

ent genetic diversity and differentiation indices along

the upstream–downstream gradient of dendritic net-

works. Specifically, we computed Pearson’s correlation

coefficients between the distance of each deme to the

putative river mouth and HE, PA, within-deme FST and

GW (hereafter CORHE, CORPA, CORFST and CORGW,

respectively). We finally performed, for each Dx, multi-

ple regressions on distance matrices (Lichstein 2006) in

which the matrix of genetic differentiation calculated

for all demes (i.e. pairwise FST) was the dependent vari-

able, and the two independent variables were (i) a

matrix informing of the geographic distances between

all demes (in number of demes) and (ii) a binary matrix

informing of the level of flow connectivity between all

pairs of demes (two demes were considered flow-con-

nected when water can flow from the upstream deme

to the downstream deme; flow-unconnected demes are

two demes that share a common confluence down-

stream but do not share flow; see fig. 3 in Peterson et al.

2013). This analysis produced two standardized regres-

sion coefficients: one informing of the effect of geo-

graphic distances on genetic differentiation (i.e.

‘isolation by distance’, with slope CORIBD) and the

other informing of the effect of among-demes flow con-

nectivity on genetic differentiation (‘isolation by flow’,

with slope CORIBF). Multiple regressions on distance

matrices were performed with the R package ‘ecodist’

(Goslee & Urban 2007).

We generated 300 000 Dx per model, which covered

the entire parameter space defined in Table 1 for the

geneflow, habitat availability, colonization and null

models, and a substantial proportion of the parameter

space defined for the two- and three-way interacting

models (geneflow/habitat, geneflow/colonization, habi-

tat/colonization and geneflow/habitat/colonization

models). Simulations were performed on an ALTIX ICE

8200 EX (Silicon Graphics International, Fremont, CA,

USA) and on a BULLx DLC cluster (Bull SAS, Les

Clayes-sous-Bois, Yvelines, France) hosted by the CAL-

MIP group (UMS 3667, University Paul Sabatier, Tou-

louse, France).

Statistical analyses

Spatial patterns of genetic diversity in freshwater organ-

isms. Based on the meta-analysis, we first asked

whether or not there was an overall significant negative

CORAR over all case studies. After having transformed

each CORAR into standardized effect sizes (Fisher’s z;

Nakagawa & Cuthill 2007), we used a meta-regression

approach (based on Bayesian mixed-effects meta-analy-

sis, BMM; Hadfield 2010; Nakagawa & Santos 2012) to

estimate the mean effect size (MES) over all case stud-

ies, which was then back-transformed into a global cor-

relation coefficient for the entire meta-analysis

(hereafter meta-CORAR). We included ‘study identity’

as a random factor in the BMM, and we estimated

the MES (with its 95% confidence intervals, 95% CI) as

the intercept of the null model (i.e. no fixed effect). In

BMM, each standardized effect size was weighted by

the inverse of the asymptotic variance (vz) using the fol-

lowing formula: vz = (n�3), where n is the number of

sampled populations.

We then ran a first additional BMM in which the

‘taxonomic group’ was included as a categorical fixed

effect to test whether or not the MES varied signifi-

cantly among major taxonomic groups. In a second

additional BMM, we tested whether CORAR differs
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when dispersal is only possible through water channels

(i.e. fish, mollusks) from when overland dispersal is

also possible (through wind, air or terrestrial dispersal,

i.e. plants, one amphibian and some arthropods). The

‘dispersal mode’ was included as a categorical fixed

effect to test the working hypothesis that organisms

being able to use overland dispersal should display

CORAR closer to zero. The deviance information crite-

ria (DIC) of these two additional models were com-

pared to the DIC of the null model to evaluate the

support of models including the taxonomic identity or

the dispersal mode of each species. We considered that

models including the taxonomic identity or the disper-

sal mode of each species were best supported by the

data if their DIC was lower than four units compared

to the DIC of the null model (DDIC > 4). In a third

additional model, we restricted the data set to fish spe-

cies (which was the most represented taxonomic

group, Table S1, Supporting information) to test

whether or not CORAR can be predicted from simple

life history, ecological and/or morphometric traits. We

focused on traits that may influence CORAR because

directly or indirectly related to dispersal propensity

and/or levels of genetic diversity. For each fish spe-

cies, we gathered information on (i) migratory type

(whether the species is anadromous, potadromous,

catadromous or nonmigratory), (ii) habitat use

(whether the species is a benthic or a pelagic feeder),

(iii) the generation time (in years), (iv) the maximum

body length, (v) the shape factor (ratio of maximum

body length to maximum body height) and (vi) the

swimming factor (ratio of minimum caudal peduncle

height to the area of the caudal fin). Life history and

ecological data were gathered from FishBase (Froese &

Pauly 2015), whereas the two morphometric traits were

quantified from a database built on pictures available

on the web (S. Brosse & S. Vill�eger, unpublished data

set). We built a full BMM including these six traits as

fixed effects and the ‘species identity’ as a random fac-

tor. Then, we built all possible models resulting from

the combination of these six variables (i.e. 64 models)

and calculated the DIC for each of them. From this set

of models, we considered and selected the model(s)

with DDIC < 4 as the most parsimonious model(s) to

explain the data.

Finally, to test the hypothesis that genetic differentia-

tion should be greater in upstream than in downstream

demes (Finn et al. 2011), we used a subset of the full

data set that met the following criteria: (i) observed

CORAR is equal to or lower than meta-CORAR (so as to

select empirical studies that are likely to match the sim-

ulated conditions for further model-based inferences;

see Processes inferred from empirical data sets subsection),

(ii) the sampling was carried out over an entire den-

dritic network rather than on a single river stretch, and

(iii) authors calculated pairwise FST so that within-deme

FST was calculable (see above). This led to a set of 12

studies (see Table 2) from which we calculated CORFST

for each study. Using the same meta-regression

approach than the one described above for CORAR, we

estimated the MES meta-CORFST (with its 95% confi-

dence intervals, 95% CI) over all 12 case studies as the

intercept of the null model. The BMM analyses were

performed with the R package ‘MCMCglmm’ (Hadfield

2010).

The propensity of downstream-biased gene flow, variation in

habitat availability and upstream-directed colonization to

generate DIGD. We used nonparametric probability den-

sity functions to visually inspect the frequency of

Table 2 Values of CORIBF, global FST, CORAR, CORIBD and CORFST calculated for a subset of populations extracted from the full

meta-analysis that met the following criteria: (i) observed CORAR is equal to or lower than meta-CORAR, (ii) the sampling was car-

ried out over an entire dendritic network instead of on a single river, and (iii) within-deme FST was reported or calculable from pair-

wise FST matrices

Species name and Reference Taxonomic group CORIBF FST CORAR CORIBD CORFST

Gammarus fossarum (Alp et al. 2012) Arthropods 0.26 0.237 �0.85 0.47 �0.281

Semotilus atromaculatus (Boizard et al. 2009) Fishes 0.51 0.25 �0.62 0.39 �0.614

Poecilia reticulata (Crispo et al. 2005) Fishes 0.36 0.302 �0.78 0.41 0.837

Telestes souffia (Dubut et al. 2012) Fishes 0.517 0.056 �0.72 0.523 0.582

Cottus gobio (H€anfling & Weetman 2006) Fishes 0.29 0.27 �0.57 0.54 0.304

Salmo trutta (Horreo et al. 2011) – Nive Fishes �0.114 0.21 �0.53 0.561 0.538

Cottus gobio (Junker et al. 2012) Fishes 0.44 0.053 �0.66 0.657 0.387

Salix hukaoana (Kikuchi et al. 2009) – Tadami Plants 0.571 0.173 �0.49 0.571 0.293

Anodonta californiensis (Mock et al. 2010) Mollusks 0.218 0.089 �0.81 0.409 0.368

Gasterosteus aculeatus (Raeymaekers et al. 2008) Fishes �0.26 0.15 �0.62 0.53 0.152

Gasterosteus aculeatus (Raeymaekers et al. 2009) Fishes 0.403 0.07 �0.87 0.67 0.784

Oncorhynchus clarkii (Wofford et al. 2005) Fishes 0.19 0.125 �0.63 0.184 0.048
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CORAR and CORFST values observed for each model. In

addition, we independently calculated for each model

(i) the proportion of simulations generating a CORAR

lower than the meta-CORAR and (ii) the proportion of

simulations generating CORAR falling within the 95%

CI of meta-CORAR. Given the low sample size for

CORFST (n = 12), this later calculation was not per-

formed for CORFST .

Summary statistics discriminating among processes generat-

ing DIGD. To identify summary statistics that may dis-

criminate among the three processes (and their

interactions) considered in this study when they actu-

ally generate DIGD, we built a random forest classifica-

tion model (RF; Breiman 2001) in which the response

variable was categorical (here, the identity of the eight

models under which simulations were generated) and

the predictor variables were the summary statistics cal-

culated from simulations (i.e. CORAR, CORHE
, CORPA,

CORGW, CORFST , CORIBD, CORIBF, FST, FIS, FIT). RFs

are a type of machine-learning algorithm combining

multiple decision trees to obtain averaged predictions

based on all the trees in the forest (the forest being the

ensemble of all the generated trees; Breiman 2001; Cut-

ler et al. 2007). Each decision tree in the forest is built

using a random subset of simulations and a number p

of randomly chosen predictor variables (here, summary

statistics) for each split of the tree (Liaw & Wiener

2002). Here, our forest was composed of 500 classifica-

tion trees (Breiman et al. 1984), and p was determined

by calculating the square root of the maximum number

of predictor variables (here, p = 3 for a total number of

10 summary statistics; Breiman 2001; Liaw & Wiener

2002). Simulations not used for building the trees at

each bootstrap step (i.e. out-of-bag simulations, OOB)

were then used to estimate an OOB error rate (Liaw &

Wiener 2002; Cutler et al. 2007). We then used the RF

to rank summary statistics through a predictor impor-

tance measure: the mean decrease (in percentage) in

accuracy of the trees in the forest when the observed

values of a predictor are randomly permuted in the

OOB simulations (higher values indicate higher predic-

tor importance). Only simulations generating realistic

DIGD (i.e. CORAR equal to or lower than the meta-

CORAR) were considered for building the RF. We used

the R package ‘randomForest’ (Liaw & Wiener 2002) to

build the RF.

Processes inferred from empirical data sets. We applied

ABC model-choice procedures (Beaumont et al. 2002) to

assess which of the three processes – or their interac-

tions – considered in this study most likely generated

DIGD observed in a subset of studies taken from the

meta-analysis. Independent ABC analyses were specifi-

cally performed for the twelve case studies that were

used to estimate meta-CORFST (see section Spatial pat-

terns of genetic diversity in freshwater organisms

above; Table 2). In ABC, summary statistics (sx) calcu-

lated from many simulated data sets (Dx) generated

under competing models are compared with those cal-

culated from observed data (sobs). Dx producing the

closest sx to sobs are retained to subsequently approxi-

mate the posterior probabilities of the models. The

choice of s in ABC is critical: increasing the number of s

increases the amount of information injected in the pro-

cedure, but also drastically increases the number of

simulations necessary to ensure the efficiency of the

procedure (Aeschbacher et al. 2012; Blum et al. 2013). To

integrate a maximum of information while keeping a

reasonable number of summary statistics, we here con-

sidered for the ABC model-choice procedures a

restricted set of four summary statistics (i.e. CORAR,

CORIBF, FST and CORIBD) that (i) were shown to be

highly powerful to discriminate among processes by the

RF (i.e. that displayed high mean decreases in accuracy;

see Results section) and (ii) were available from pub-

lished data. We did not include CORGW and FIT in the

ABC even though they were highlighted as highly dis-

criminant statistics by the RF (see Results section),

because these statistics were not always reported in all

the empirical studies investigated here. However, the

increase in OOB classification error rate between a RF

built on the full set of summary statistics as predictors

(OOB error rate of 11.94%; Table 3) and a RF built only

on the restricted set of summary statistics (OOB error

rate of 18.58%; Table S2, Supporting information) was

very low (6.64%), suggesting that proper inferences are

achievable using this restricted set of summary statis-

tics. Pairwise FST were used to calculate CORIBD and

CORIBF by gathering topological distances and between-

demes flow connection matrices determined from pub-

lished maps (Table 2).

Model-choice procedures were performed using

multinomial logistic regressions and considering a toler-

ance rate of 0.0001 with the R package ‘abc’ (Csill�ery

et al. 2012). As a comparison basis, we tested whether

or not predictions made from the RF classification

model built on the restricted number of summary statis-

tics provide results similar to those obtained through

the ABC approach.

Results

Spatial patterns of intraspecific diversity in river
ecosystems

Overall, the distribution of CORAR was skewed to the

right (skewness = 0.762) with 77.22% negative CORAR
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(Fig. 2A). Some populations exhibited very strong

DIGD patterns (i.e. CORAR lower than �0.9, Table S1,

Supporting information) such as, for instance, for the

fish species Xyphophorus helleri (Tatarenkov et al. 2010)

and Xyrauchen texanus (Dowling et al. 2012), or for the

Agnate Lethenteron sp (Yamazaki et al. 2011; Table S1,

Supporting information). We calculated a global coeffi-

cient of correlation (i.e. meta-CORAR) of �0.41 (95% CI:

�0.55 to �0.27), indicating that – overall – DIGD is

actually a significant and general spatial pattern of

genetic diversity in rivers (Fig. 2A). However, there

were notable exceptions, with some strongly positive

relationships between allelic richness and distance to

river mouth (e.g. CORAR of 0.92 for the fish Squalius tor-

galensis, Henriques et al. 2010; Table S1, Supporting

information, Fig. 2A), and nine case studies for which a

better fit was obtained with a quadratic, rather than a

linear relationship between allelic richness and distance

to the river mouth (e.g. bell-shaped relationships for

Salmo salar, Primmer et al. 2006; and U-shaped relation-

ships for Perca flavescens, Leclerc et al. 2008; Table S1,

Supporting information).

We found significant differences in effect sizes

among taxonomic groups (DIC comparison between

the null model and a model including the taxonomic

group as a categorical factor: DDIC = 5.59): the mean

effect size was not significantly different from zero for

plants and amphibians, whereas it was significantly

negative for agnates, arthropods, fish and mollusks

(Fig. 3). It is noteworthy that this later result should

be interpreted with care, as agnates and amphibians

were represented by a single species each (Table S1,

Supporting information). As expected, organisms able

to use overland dispersal displayed lower (and non-

significant) mean effect size (mean effect size = 0.025,

95% CI: �1.20 to 0.64; mean CORAR = �0.158, 95% CI:

�0.342 to 0.026; see Fig. 2A) than organisms with dis-

persal restricted to water corridors (mean effect

size = �0.47, 95% CI: �0.61 to �0.28; mean

CORAR = �0.365, 95% CI: �0.475 to �0.255, see

Fig. 2A). Regarding fish species traits, we found no

single model that best explained the data, given that

60 of the 64 possible models had DDIC < 4. The null

model (i.e. no fixed effects) was included in this set

of selected models, meaning that this null model

explains the data as well as any other models. There

was hence no clear tendency between species traits

and CORAR, which was confirmed by visually inspect-

ing the relationships between each trait and CORAR

(not shown).

Over the subset of 12 case studies, positive CORFST

values were detected in 9 case studies (Table 2). How-

ever, the global coefficient of correlation was weak

(meta-CORFST = 0.139) and the 95% CI included 0

(�0.257 to 0.531), indicating that an increase in genetic

differentiation in upstream demes cannot be considered

as a general spatial pattern.

Processes generating DIGD

Using nonparametric probability density functions, we

showed that the frequency of DIGD (i.e. negative

CORAR) was very high for all models except the colo-

nization and the null models (Fig. 2A). More than

Table 3 Out-of-bag confusion matrix obtained for a random forest classification model composed of 500 classification trees where

the identity of the models having generated simulation (i.e. gene flow, habitat availability, colonization, gene flow/habitat,

gene flow/colonization, habitat/colonization, gene flow/habitat/colonization and null) is the response variable, and 10 summary

statistics (i.e. CORAR, CORFST , CORHE
, CORPA, CORGW, FST, FIS, FIT, CORIBD, CORIBF) were the predictor variables

Model under

which OOB

simulations have

been generated:

Percentage of OOB simulations assigned to

Gene flow/

habitat/

colonization

Null

model

Classification

error (%)Gene flow

Habitat

availability Colonization

Gene

flow/

habitat

Gene flow/

colonization

Habitat/

colonization

Gene flow 97.56 0.58 0.11 0.71 0.58 0.33 0.14 0.00 2.45

Habitat availability 0.07 63.34 0.34 0.22 0.05 35.70 0.27 0.00 36.65

Colonization 0.02 0.53 89.40 0.00 2.04 8.00 0.00 0.00 10.59

Gene flow/habitat 1.11 1.29 0 95.48 0.08 1.13 0.91 0.00 4.52

Gene flow/

colonization

0.43 0.03 0.71 0.07 97.22 0.14 1.40 0.00 2.78

Habitat/

colonization

0.06 24.19 1.79 0.19 0.22 73.14 0.41 0.00 26.86

Gene flow/habitat/

colonization

0.14 0.28 0.00 1.06 2.88 0.59 95.05 0.00 4.95

Null model 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00

The last column reports the OOB classification error per model. Percentages of correct assignments are reported in bold.
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80.83% of the simulations had CORAR equal to or lower

than the meta-CORAR for all models but the null and

colonization models, which generated CORAR below the

observed meta-CORAR in only 21.01% and 19.39% of

simulations, respectively (Fig. 2A). Variable proportions

of simulations generated CORAR comprised in the 95%

CI bounding meta-CORAR depending on the assumed

model: 0.15% for the geneflow/habitat/colonization

model, 0.21% for the geneflow/habitat model, 0.85% for

the geneflow model, 3.77% for the geneflow/coloniza-

tion model, 19.65% for the habitat/colonization model,

21.64% for the habitat availability model, 29.43% for the

colonization model and 37.73% for the null model. As

expected (Paz-Vinas & Blanchet 2015), simulations gen-

erated under the null model also revealed that, when

dispersal is symmetric when, there is no variation in

habitat availability nor upstream-directed colonization,

then the relationship between allelic richness and dis-

tance from the river mouth was generally bell-shaped

(see Fig. S1A, Supporting information). Most surpris-

ingly, the distribution of CORAR values obtained from

simulations generated under the colonization model

was very similar to that observed for the null model

(Fig. 2A), hence suggesting that the effects of upstream-

directed colonization on genetic diversity patterns may

be confounded with the unique effect of dendritic con-

nectivity per se.

Globally, the distribution of CORFST was inverse to

that found for CORAR for almost all models (Fig. 2B).

Indeed, CORFST values were positive for almost all sim-

ulations, irrespective of the model considered. Only the

null model and the colonization models displayed non-

negligible proportions of negative CORFST values (21.76

and 30.79%, respectively).

The signature of the three processes generating DIGD

All the processes we considered in this study obviously

had the potential to generate DIGD. Our idea is that

they probably leave distinct genetic signatures that can

be captured by other summary statistics than CORAR,

and that these summary statistics may then be used to
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Fig. 2 (A) Figure representing probability density estimations

of Pearson’s correlation coefficient values between distance

from the river mouth and allelic richness (i.e. CORAR values)

(i) for simulations from each eight models (coloured lines, left

y-axis) and (ii) for populations included in the meta-analysis

(black dotted line, right y-axis). The grey vertical dotted line

represents the mean effect size calculated over all case studies

from the meta-analysis (meta-CORAR). The red and green

boxes represent the 95% confidence intervals for CORAR values

observed for species displaying exclusively waterborne disper-

sal (red) or overland dispersal (green), along with their means

(vertical black dashes). (B) Probability density estimations of

Pearson’s correlation coefficient values between distance from

the river mouth and within-deme FST (i.e. CORFST values) for

simulations from each eight models (coloured lines). The grey

vertical dotted line represents the mean effect size calculated

over twelve case studies from the meta-analysis (meta-CORFST

), along with its confidence interval.

Agnates

Amphibians
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Fish
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Overall
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Fig. 3 Comparison of the mean effect sizes (Zr) obtained with

Bayesian mixed-effects meta-analysis using the ‘taxonomic

group’ as a categorical fixed effect. Grey lines represent 95%

confidence intervals (95% CI). Mean effect sizes whose 95% CI

did not overlap zero are significant.
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discriminate among competing processes. Using a ran-

dom forest classification model (Breiman 2001), we

found that the most important statistics for discriminat-

ing among processes – and their two- and three-way

interactions – generating DIGD were CORIBF, FST and

CORGW, followed by FIT, CORAR and CORIBD (Figs 4

and S2, Supporting information). Other statistics exhib-

ited low mean decreases in accuracy, indicating that

they have a low predictive importance (Fig. 4).

The predictive performance of the random forest was

very high, with an OOB classification error of only

11.94% (Table 3). Most misclassifications occurred

between the habitat availability vs. the habitat/coloniza-

tion models, indicating a lower statistical power for effi-

ciently discriminating simulations from these two

models (Table 3). It is noteworthy that all simulations

generated under the null model were correctly classi-

fied and that no simulations generated with the other

models were assigned to the null model (Table 3).

Processes inferred from empirical data sets

ABC model-choice procedures unambiguously identi-

fied the most likely processes (among the three pro-

cesses we considered in the study) underlying DIGD in

natural populations for 9 (of 12) case studies, with pos-

terior mode probabilities >0.5 (Table 4). Six of these

nine DIGD were likely to be generated by two interact-

ing processes (Table 4), whereas three other were pre-

dicted to rely on a single process (two from upstream-

directed colonization and one from variation in habitat

availability; Table 4). The upstream-directed coloniza-

tion process was implied (either individually or in

interaction with another process) in 8 of the 9 case stud-

ies, indicating that it may be a major process influenc-

ing DIGD in the wild. For the three DIGD for which

process inference was more challenging, more than 74%

of the total posterior model probabilities were equally

shared by two concurrent hypotheses (i.e. gene flow/

colonization and colonization alone for Wofford et al.

2005; habitat/colonization and habitat availability alone

for Junker et al. 2012; and habitat/colonization and

gene flow/colonization for Alp et al. 2012; Table 4).

When processes were predicted from the alternative

random forest classification model built on the same

summary statistics than those for the ABC procedure (i.e.

CORAR, CORIBF, CORIBD and FST), we found a congru-

ency between the two approaches for nine of the twelve

case studies (Table 4). Two of these three incongruencies

between methods occurred for case studies for which the

ABC failed to clearly identify the process underlying

DIGD (i.e. Wofford et al. 2005, Alp et al. 2012). For these

two cases, the random forest identified the process with

the second highest posterior probability as the most

likely process for explaining DIGD (Table 4).

Discussion

This study illustrates the usefulness of coupling meta-

analysis, pattern-oriented simulations, variable selection

approaches and model-choice procedures to character-

ize spatial patterns of biodiversity in the wild, and to

identify the foremost processes generating these pat-

terns at the intraspecific genetic level, an ecologically

and evolutionary important facet of biodiversity

(Hughes et al. 2008). The meta-analysis revealed that

neutral genetic diversity increases as one moves down-

stream in river ecosystems when characterized over all

case studies. There was, however, strong variation

among taxonomic groups in the strength of the relation-

ship between genetic diversity and distance from the

river mouth. We theoretically showed that the three

processes we considered (downstream-biased gene

flow, variation in habitat availability and upstream-di-

rected colonization) can act independently or in interac-

tion to generate such a spatial pattern. Combining

model-choice procedures (ABC) and a restricted – but

informative – set of discriminant statistics determined
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Fig. 4 Variable importance estimated for 10 summary statistics

(i.e. CORAR, CORHE
, CORPA, CORGW, CORFST , CORIBD, COR-

IBF, FST, FIS, FIT) from a random forest classification model built

for predicting the model having generated a simulation (i.e.

model identity was the response variable). The importance of

each summary statistic has been assessed by measuring the

mean decrease in accuracy of a tree in the forest when the

observed values of the summary statistic are randomly per-

muted in the out-of-bag simulations. Higher values denote

higher importance of the summary for predicting the correct

model.
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through a machine-learning approach (i.e. a random

forest classification model), we finally hypothesized

what are the most likely processes (among the pro-

cesses we considered) underlying DIGD observed in

twelve empirical case studies. In parallel, our results

suggest that the hypothesis that genetic differentiation

should increase as one moves upstream in river net-

works was not verified.

Downstream increase in genetic diversity: a general
spatial pattern

Kermit Ritland (1989) was the first to propose the idea

of DIGD in riverscapes by predicting DIGD in riparian

and aquatic plants due to the downstream-biased dis-

persal of seeds transported by water. Nevertheless, sev-

eral studies failed at identifying DIGD in natural

populations (e.g. Tero et al. 2003), making it difficult to

generalize the relationship between neutral genetic

diversity and distance from the river mouth. Here, we

explored a broad taxonomic spectrum at a worldwide

spatial extent, and we quantitatively demonstrate that

DIGD can actually be considered as a general spatial

pattern of biodiversity (sensu Lawton 1996).

As expected, the negative relationship between allelic

richness and distance from the river mouth was stron-

ger for organisms with purely aquatic dispersal such as

fishes or mollusks than organisms with overland dis-

persal (e.g. riparian plants, a winged insect and an

amphibian). This suggests that overland dispersal may

counteract processes such as waterborne asymmetric

dispersal, hence allowing the maintenance of genetic

diversity in upstream reaches and homogenizing genetic

diversity over the whole river catchment (Chaput-Bardy

et al. 2008; Campbell Grant et al. 2010; Geismar et al.

2015). Overland dispersal may also explain why – as pre-

viously demonstrated by Honnay et al. (2010) – we found

that riparian plants do not meet the DIGD. This is actu-

ally surprising given the strong expected role of – down-

stream-directed – waterborne seeds dispersal (Ritland

Table 4 Posterior model probabilities obtained with ABC model-choice procedures (based on multinomial logistic regression) for a

subset of twelve populations exhibiting significant DIGD extracted from the meta-analysis

Species name and

Reference

Posterior model probabilities

Gene flow/

habitat/

colonization

Null

modelGene flow

Habitat

availability Colonization

Gene

flow/

habitat

Gene flow/

colonization

Habitat/

colonization

Gammarus fossarum

(Alp et al. 2012)

0.0000 0.0029 0.0077 0.0000 0.3388* 0.4468 0.2038 0.0000

Semotilus atromaculatus

(Boizard et al. 2009)

0.0000 0.0000 0.0024 0.0000 0.9408* 0.0000 0.0569 0.0000

Poecilia reticulata

(Crispo et al. 2005)

0.0000 0.0000 0.0008 0.0000 0.9847* 0.0076 0.0069 0.0000

Telestes souffia

(Dubut et al. 2012)

0.0863 0.2697 0.0000 0.0052 0.0000 0.5762* 0.0626 0.0000

Cottus gobio

(H€anfling &

Weetman 2006)

0.0008 0.0000 0.1333 0.0000 0.8380* 0.0271 0.0008 0.0000

Salmo trutta

(Horreo et al. 2011) – Nive

0.0000 0.0000 0.8698* 0.0000 0.1027 0.0275 0.0000 0.0000

Cottus gobio

(Junker et al. 2012)

0.0565 0.4138 0.0000 0.1049 0.0000 0.4200* 0.0049 0.0000

Salix hukaoana

(Kikuchi et al. 2009) –
Tadami

0.0040 0.0000 0.0531 0.0000 0.6730* 0.0000 0.0000 0.2699

Anodonta californiensis

(Mock et al. 2010)

0.0042 0.0688 0.1131* 0.0000 0.0915 0.6631 0.0592 0.0000

Gasterosteus aculeatus

(Raeymaekers et al. 2008)

0.0000 0.0000 0.9237* 0.0000 0.0478 0.0285 0.0000 0.0000

Gasterosteus aculeatus

(Raeymaekers et al. 2009)

0.0242 0.5275* 0.0000 0.0182 0.0000 0.4293 0.0008 0.0000

Oncorhynchus clarkii

(Wofford et al. 2005)

0.0083 0.0000 0.4154 0.0000 0.3295* 0.0049 0.0000 0.2418

Bold numbers highlight the highest posterior model probabilities found for each population with the ABC procedure.

*The model predicted by the random forest classification model.
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1989). This absence of relationships between genetic

diversity and distance from the river mouth in riparian

plants may result from overland pollen transfer (trans-

ported either by insects or by air flows), which is proba-

bly independent from river network configuration and

which participates to gene flow. It would not be surpris-

ing that overland pollen diffusion can impede the estab-

lishment of DIGD. These later results confirm that the

ability to disperse outside the river network is probably a

trait of major importance for predicting the strength and

shape of empirical DIGD.

When focusing on fish species, we did not identify

biological traits that were statistically related to the

strength of the relationship between allelic richness and

distance from the river mouth. Interestingly, this con-

clusion holds true even for traits that are traditionally

believed to underlie dispersal ability in fish such as

maximum body length, swimming ability or migratory

behaviour. This means that our understanding of the

links between biological traits and the spatial distribu-

tion of genetic diversity is still scarce, although our

results suggest that these links might be better under-

stood if traits are considered in interactions with other

structuring forces. For instance, DIGD observed in two

river networks for the fish Gasterosteus aculeatus (Raey-

maekers et al. 2008, 2009) were likely caused by two dif-

ferent mechanisms (Table 4), suggesting interactive

effects among landscape (network) structure, historical

contingency and biological characteristics of the taxa.

Such interactive effects also probably explain why in

some cases, the spatial pattern of genetic diversity strik-

ingly varies among river networks for a single species.

The most extreme example was for the fish Salmo trutta

(Horreo et al. 2011), which displayed four different rela-

tionships in four different river systems (i.e. negative,

positive, U-shaped and bell-shaped relationships;

Table S1, Supporting information). It is worth mention-

ing that such intraspecific differences could also be in

part explained by intraspecific variation in biological

traits (e.g. differences in maximum body length

between different populations of a single species) and/

or differences among the river networks (e.g. size of the

river network), two features that were not included in

our analyses. We hence anticipate that future empirical

and theoretical studies should focus more specifically

on such interactive effects, and especially on the interac-

tions between network characteristics and both intra-

and interspecific variation in biological traits.

Other spatial patterns than DIGD

It is noteworthy that we found exceptions to the general

pattern of increase in genetic diversity downstream,

some of them deserving considerations. We noticed that

several populations display a positive relationship

between distance from the river mouth and genetic

diversity. Such patterns may be due to the same, but

inverted, processes as those generating DIGD. For

instance, it is possible that effective population sizes

increase upstream due, for instance, to relaxed competi-

tion for resources, to altitudinal shifts of species ranges

(e.g. due to climate change; Conti et al. 2015), or that a

downstream-directed colonization occurs after a mass

extinction, an introduction or a glacial event (Cyr &

Angers 2012). In these cases, the processes can generate

positive relationships between distance from the river

mouth and allelic richness, as was confirmed by supple-

mentary simulations (see Appendix S2, Supporting

information). Upstream-biased gene flow on the con-

trary is less biologically likely (although it can theoreti-

cally generate increased genetic diversity upstream; see

Appendix S2, Supporting information), as most species

considered disperse in or on moving water.

The detection of nonlinear spatial patterns of allelic

richness in 11.4% of our simulations was surprising. In

most of them, allelic richness was higher in the middle

of the river network. This may empirically arise when

population densities follow a similar distribution

(Watanabe et al. 2008) or when species ranges are lim-

ited at boundaries, with peripheral populations (e.g.

the most upstream and downstream populations)

exhibiting lower local genetic diversities (Kirkpatrick &

Barton 1997; Eckert et al. 2008; Liggins et al. 2015), two

situations that were not simulated here. In our simula-

tions, this pattern was mainly due to the unique effect

of dendritic connectivity per se, as previously demon-

strated by Paz-Vinas & Blanchet (2015). Demes situated

in intermediate sections of the river network are

enriched in genetic diversity, because they act as ‘cross-

roads’ between genetically distinct demes (notably

when migration rates are low), a result that comes to

complement similar findings on taxonomic diversity

(Carrara et al. 2012). This confirms that new connectiv-

ity-based statistics such as network centrality measures

(informing how a node is important in terms of its con-

nectivity) need to be considered to gain insights into

the role of network connectivity on spatial patterns of

biodiversity in rivers (Altermatt 2013).

Additionally, we explored the hypothesis that genetic

differentiation (as measured by FST) should be higher in

upstream than in downstream demes in river networks, a

spatial pattern of genetic differentiation that has been

observed both empirically (Finn et al. 2011; M�urria et al.

2013) and theoretically (this study, see also Paz-Vinas &

Blanchet 2015). Our meta-analysis did not allow us to

generalize this pattern, given that the tendency for a posi-

tive correlation between genetic differentiation and dis-

tance from the outlet was not significant. On the
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contrary, our simulations confirmed previous theoretical

works demonstrating that dendritic connectivity can gen-

erate this pattern (Paz-Vinas & Blanchet 2015), and actu-

ally show that this pattern can be reinforced when

asymmetric gene flow, differences in effective population

sizes and/or upstream-directed colonization occur. This

discrepancy between our empirical and theoretical find-

ings might simply be due to the low number of case stud-

ies we considered here (n = 12). Despite this weakness,

our empirical results somewhat corroborate the findings

of Finn et al. (2011). In a meta-analysis, they indeed

showed that genetic differentiation was actually signifi-

cantly higher in isolated upstream populations than in

more connected downstream populations when differen-

tiation was measured using an ecological index of dis-

similarity (Sorensen’s dissimilarity), but not when

measured using the ‘classical’ FST measure. It seems

therefore that in natural populations, genetic differentia-

tion (when measured using FST) might not be higher in

upstream than in downstream populations in dendritic

networks. We believe that further insights on the patterns

of population differentiation in dendritic networks could

be obtained in the future by developing studies partition-

ing the turnover and nestedness components of popula-

tion genetic differentiation (Baselga 2010; Liggins et al.

2015).

Different processes can lead to similar patterns, but
with different genetic signatures

Our simulations revealed that downstream-biased gene

flow, variation in habitat availability between demes

and upstream-directed colonization can all generate

DIGD, either independently or in interaction. Down-

stream-biased gene flow generates DIGD in most cases,

as even weak asymmetric gene flow breaks down the

effect of dendritic connectivity and generates strong

DIGD, even in the presence of another interacting pro-

cess (see Appendix S3 and Fig. S1B, Supporting informa-

tion). However, this pattern was less often identified by

the ABC procedures as the most likely process generat-

ing empirical DIGD (i.e. it is supported in 4 of the 12

empirical case studies, always in combination with colo-

nization; Table 4). Similarly, weak differences in effec-

tive population sizes along the upstream–downstream

gradient of habitat availability were sufficient to gener-

ate moderate to strong DIGD, especially when this pro-

cess acts alone or in interaction with upstream-directed

colonization (see Appendix S3 and Fig. S1C, Supporting

information). In contrast, upstream-directed colonization

generated moderate DIGD only under restricted (and

complex) combinations of parameter values when acting

alone. Stronger DIGD were most likely to occur in the

colonization model in simulations involving demes of

small effective sizes connected by low dispersal rates

(Appendix S3, Supporting information). These simula-

tions hence revealed that although all the processes we

assumed can generate DIGD, the probability of observ-

ing DIGD in river networks might be higher for popula-

tions experiencing asymmetric gene flow or a gradient

in habitat availability (or any other parameter acting

similarly on effective population sizes).

This conclusion was, however, challenged by the

inference of processes generating DIGD in natural popu-

lations with ABC model-choice procedures, which

shows the limitation of theoretical works when they are

not confronted to empirical patterns. The ABC model-

choice procedures revealed that DIGD observed in the

wild are probably not primarily generated by a single

specific process, but rather by the combination of two

interacting processes. In addition, upstream-directed col-

onization was probably implied in almost all the empiri-

cal cases investigated (either independently or in

interaction with another process), which suggest that

this process has a great importance in natural popula-

tions. Unexpectedly, the process that was first proposed

by Kermit Ritland as the main generator of DIGD and

that is generally suspected as the most likely to generate

DIGD (i.e. downstream-directed gene flow) was implied

in only four case studies and always in interaction with

the colonization process (Table 4). It is noteworthy that

one potential risk in model-based statistical inference

(and hence, in ABC-based statistical inference) is the

sensitivity of the inference methods to misspecification

of the models. Here, we simulated a single generic land-

scape structure with only three putative processes gen-

erating DIGD, whereas a specific landscape structure

that mimics the real empirical one should ideally be

designed for each case study. Notwithstanding this, our

results clearly show that competing processes related to

the demography, history and dispersal patterns of popu-

lations can all underlie DIGD in the wild, and must

therefore be considered conjointly when predicting spa-

tial patterns of intraspecific diversity.

We show here that each of these processes leaves dis-

tinct genetic footprints that can be apprehended with a

small number of simple descriptive statistics, which pro-

vides a possible way to discriminate among competing

processes when DIGD are observed empirically. More

particularly, we demonstrated that the three processes

leave strikingly different signatures in terms of genetic

differentiation between flow-connected and flow-uncon-

nected demes (isolation by flow). Genetic differentiation

was generally higher between flow-unconnected demes

than between flow-connected demes, but this pattern

was stronger for models ruled by asymmetric gene flow

(either independently or in interaction with other pro-

cesses) than for any other model (Fig. S2, Supporting

© 2015 John Wiley & Sons Ltd

4600 I . PAZ- VINAS ET AL.



information). This illustrates how metrics accounting for

network connectivity may improve the characterization

of spatial patterns of biodiversity, especially in dendritic

ecological networks (Carrara et al. 2012; Altermatt 2013;

Peterson et al. 2013). However, the discriminant ability

of our approach was much higher when information on

isolation by flow was combined to four other statistics.

Three of them (FST, FIT and the slope of isolation by dis-

tance) are routinely used by population geneticists,

whereas the fourth one (the correlation between Garza–
Williamson’s statistic and distance to river mouth) is

more rarely reported, although it proved to be a really

insightful statistic. Surprisingly, when the random forest

classification model built on a restricted set of four dis-

criminant summary statistics was used for predicting

processes from empirical patterns of DIGD, we found a

high congruency between this approach and results from

the ABC (Table 4). Despite this high congruency, ran-

dom forest classification models should not be used

directly for inferring processes from empirical genetic

data but only to reduce the number of summary statis-

tics that will be used in ABC, as there is no study – to

our knowledge – evaluating and validating the efficiency

of random forests vs. ABC procedures for model-choice

issues. That being said, our study shows that the combi-

nation of few simple, but informative statistics (com-

bined to an ABC model-choice approach) proved here to

be powerful for identifying the most likely process

underlying empirical DIGD among a set of competing

processes, which paves the way towards a new frame-

work for investigating empirical spatial patterns of

intraspecific diversity.

Conclusions and implications

Our study provides novel insights into the description

and understanding of spatial patterns of biodiversity in

river systems. The pattern of downstream increase in

genetic diversity highlighted here complements the

well-established observation that taxonomic diversity

also increases as one moves downstream (Campbell

Grant et al. 2007; Altermatt 2013). This suggests that bio-

diversity patterns might often be congruent across bio-

logical levels in dendritic ecological networks (e.g. Finn

& Poff 2011; Blum et al. 2012). Future studies should

investigate to which extent the processes generating spa-

tial patterns of genetic and taxonomic diversity correlate

in dendritic networks (Vellend & Geber 2005; Pauls et al.

2014; Vellend et al. 2014) so as to develop management

plans accounting for multiple biodiversity facets.

Our study demonstrates the strength of model and

empirical coupling to unravel the patterns of intraspeci-

fic genetic diversity, even within a meta-analytical

framework. We demonstrate that coupling meta-

analyses and simulation-based studies is powerful for

describing empirical genetic patterns and for discrimi-

nating among alternative underlying processes.

Intraspecific genetic diversity is the fuel for species to

adapt to environmental variability and can also have

strong indirect influences on ecosystem functioning

(Hughes et al. 2008; Caballero & Garc�ıa-Dorado 2013).

Although next works should rapidly focus on the spa-

tial distribution of adaptive genetic diversity in river

networks (e.g. Nukazawa et al. 2014), understanding the

distribution of neutral genetic diversity in river net-

works is a first step for predicting the potential for local

adaptation in these ecosystems. There have been very

few attempts to describe spatial patterns of local adap-

tation in rivers, or more generally in dendritic net-

works. However, the nonrandom distribution of genetic

diversity in these systems may have a strong influence

on the ability of populations to adapt to local conditions

(Kawecki & Holt 2002). We hence believe that the time

is ripe to make a valuable use of the large amount of

data that has been collected in the last decades in popu-

lation genetics, so as to transform a collection of inde-

pendent case studies into general rules (ArchMiller

et al. 2015). As describing and understanding the pat-

terns of biological diversity is one of the bases of inte-

grative and efficient conservation measures (Chave

2013), this should become a priority for population and

conservation geneticists.
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