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Abstract

Emerging pathogens constitute a severe threat for human health and biodiversity.

Determining the status (native or non-native) of emerging pathogens, and tracing back

their spatio-temporal dynamics, is crucial to understand the eco-evolutionary factors

promoting their emergence, to control their spread and mitigate their impacts. However,

tracing back the spatio-temporal dynamics of emerging wildlife pathogens is challeng-

ing because (i) they are often neglected until they become sufficiently abundant and

pose socio-economical concerns and (ii) their geographical range is often little known.

Here, we combined classical population genetics tools and approximate Bayesian com-

putation (i.e. ABC) to retrace the dynamics of Tracheliastes polycolpus, a poorly docu-

mented pathogenic ectoparasite emerging in Western Europe that threatens several

freshwater fish species. Our results strongly suggest that populations of T. polycolpus
in France emerged from individuals originating from a unique genetic pool that were

most likely introduced in the 1920s in central France. From this initial population, three

waves of colonization occurred into peripheral watersheds within the next two decades.

We further demonstrated that populations remained at low densities, and hence unde-

tectable, during 10 years before a major demographic expansion occurred, and before

its official detection in France. These findings corroborate and expand the few historical

records available for this emerging pathogen. More generally, our study demonstrates

how ABC can be used to determine the status, reconstruct the colonization history and

infer key evolutionary parameters of emerging wildlife pathogens with low data avail-

ability, and for which samples from the putative native area are inaccessible.
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Introduction

Emerging pathogens (i.e. newly identified or evolved

pathogens increasing rapidly in incidence and/or

expanding their geographical, host or vector ranges)

constitute a threat to human health and biodiversity

(Daszak et al. 2000). So far, an important effort has been

devoted to identify the natural and anthropogenic dri-

vers facilitating the emergence of pathogens (Morse

1995; Kilpatrick 2011; Jones et al. 2013). Accumulating

evidence suggests that the impact of humans on cli-

mate, landscapes and biodiversity plays a large role in
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the emergence of pathogens (Epstein 2001; Altizer et al.

2013).

Of particular concern is the intensification of the glo-

bal human transportation network, which provides new

opportunities for pathogens to disperse worldwide,

establish and eventually propagate (i.e. ‘spill-over’) into

remote na€ıve ecosystems (Gozlan et al. 2005; Lebarben-

chon et al. 2008). Alternatively, introduced free-living

organisms that have benefited from human transporta-

tion may act as competent hosts for native cryptic

pathogens (Poulin et al. 2011); these introduced hosts

may promote and increase pathogen transmission back

to local hosts, thus extending the distribution area of

native pathogens (i.e. ‘spill-back’; Hartigan et al. 2011;

Poulin et al. 2011). Thus, whether the emergence of a

newly identified pathogen results either from the intro-

duction of non-native populations (i.e. non-native

pathogens) or from the recent expansion of cryptic local

populations (i.e. native pathogen) is far from being triv-

ial (Poulin 2014). Nonetheless, tracing out the spatio-

temporal dynamics of emerging pathogens is crucial for

unravelling ecological and evolutionary factors underly-

ing their emergence and spread (Rachowicz et al. 2005).

A critical aspect for reconstructing the spatio-tempo-

ral dynamics of emerging pathogens is to have exten-

sive spatial and temporal data on prevalence and

occurrences, ideally including data from all putative

native areas so as to efficiently (i) test whether or not

the pathogen is native and (ii) estimate demographic

parameters associated with the colonization/expansion

of the pathogen (e.g. Staubach et al. 2011; Pullan et al.

2012). However, incomplete data sets are a recurrent

issue in epidemiology (Woolhouse 2002; de Meeûs et al.

2007). This is particularly true for wildlife emerging

pathogens, because they are often neglected until they

pose socio-economical concerns, and because their

actual geographical distributions are often poorly

informed (Poulin 2014). Such a lack of precise data

greatly hampers our ability to retrace the history of

wildlife pathogens back to their emergence.

The recent advent of the approximate Bayesian com-

putation framework (i.e. ABC) in population genetics

has greatly improved our ability to retrace the evolu-

tionary history of organisms with limited data availabil-

ity (Csill�ery et al. 2010; Lymbery & Thompson 2012).

Briefly, ABC applied to population genetics consists in

comparing observed empirical data to simulated genetic

data sets generated under a range of complex demo-

graphic and/or evolutionary scenarios defined a priori

and that are likely to explain observed pattern

(Beaumont et al. 2002). Comparisons between simulated

and observed data sets are based on statistics that

resume the genetic diversity between and within popu-

lations (Beaumont et al. 2002; Csill�ery et al. 2010). This

approach allows (i) determining which scenario among

a set of likely evolutionary scenarios best explains the

observed data (i.e. ‘model-choice’ procedure) and (ii)

inferring key demographic and evolutionary parameters

from this most likely scenario (Beaumont et al. 2002;

Bertorelle et al. 2010; Csill�ery et al. 2010; Estoup &

Guillemaud 2010). The ABC framework has been suc-

cessfully used to identify the geographical origin and to

precisely reconstruct the spatio-temporal dynamics of

well-monitored pathogens causing socio-economic con-

cerns (e.g. such as the mildew pathogen Plasmopara viti-

cola in Europe; Fontaine et al. 2013; or Plasmodium

falciparum, the pathogen that causes Malaria in South

America; Yalcindag et al. 2012). However, there are still

few case studies using the full potential of ABC to

unravel the spatio-temporal dynamics of wildlife

emerging pathogens (or even non-native free-living spe-

cies) for which spatial and/or temporal data (from the

native or non-native areas) are scarce, a characteristic of

most data sets concerning emerging pathogens (e.g. for

Pseudogymnoascus destructans – the species causing the

white-nose disease – when it was first discovered; War-

necke et al. 2010).

In this study, we demonstrate the utility of the ABC

framework for unravelling the spatio-temporal dynam-

ics of ‘information-lacking’ emerging pathogens, and

notably those for which data on the supposedly native

origin are lacking. We specifically aimed at retracing

the spatio-temporal dynamics of Tracheliastes polycolpus

(von Norman 1832), an emerging and virulent ectopara-

site of freshwater fishes recently detected in Western

Europe (Lootvoet et al. 2013; Blanchet et al. 2009a; Figs 1

and S1, Supporting information). The case of T. polycol-

pus is intriguing because it is suspected to be non-native

in Western Europe (i.e. France, United Kingdom and

Spain; Fryer 1982), where it can be highly abundant

and virulent, whereas it is less abundant (and hence

hard to sample) in its supposedly native area (i.e. East-

ern Europe; see Fig. S1, Supporting information). This

observation lead to an alternative hypothesis stipulating

that the emergence of T. polycolpus in Western Europe

could result from the expansion of local cryptic popula-

tions following biotic (e.g. introduction of a new host

species) and/or abiotic (e.g. climatic) changes. Here, the

main challenge was to tease apart these two scenarios

(i.e. native vs. non-native origin) for a species for which

it is difficult to get data from the supposedly native

areas. We hence focused exclusively on French water-

sheds that are supposed to be part of the invaded area

(Fig. S1, Supporting information; Fryer 1982). We first

determined the genetic diversity and the genetic

structure of T. polycolpus populations using two cluster-

ing approaches. Based on the genetic structure identi-

fied and on the historical knowledge available for
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T. polycolpus, we formulated an evolutionary model

from which we designed six competing scenarios that

may explain such a structure, accounting for both the

native and non-native hypotheses. Using an original

computational pipeline, we identified the most likely sce-

nario using an ABC model-choice procedure. We finally

used ABC inference methods based on the most likely

scenario to estimate key parameters that characterize the

emergence and spatio-temporal colonization history of

T. polycolpus in French watersheds. Beyond providing

fresh insights into the emergence history of T. polycolpus,

our study illustrates how ABC can be used to (i) deter-

mine the status (native or non-native), (ii) reconstruct the

spatio-temporal history and (iii) infer key evolutionary

parameters of emerging wildlife pathogens with low data

availability, and for which samples on the putative native

area are scarce and/or inaccessible.

Material and methods

Biological model

Tracheliastes polycolpus is a freshwater ectoparasite cope-

pod (Crustacea) that displays a direct life cycle (i.e.

development involving a single individual host). Only

females are parasitic; they attach to the fins of the indi-

vidual host and feed on its mucus and epithelial cells,

hence causing severe infections (Blanchet et al. 2009a,b;

Loot et al. 2004; Fig. 1). Parasitic females of T. polycolpus

reproduce with free-living males and develop eggs after

approximately 3 months (Piasecki 1989). Once matured,

the eggs hatch and free-living larvae are released into

the water column.

The distribution of T. polycolpus is not well docu-

mented. Tracheliastes polycolpus has been recorded across

the most of Eurasia (Fig. S1, Supporting information),

including Northern and Eastern Europe (Ponyi &

Molnar 1969; Silfverberg 1999), Middle-East (Pazooki &

Masoumian 2012) and Northern Asia (Popiolek et al.

2011). In Western Europe, T. polycolpus was first

recorded in the United Kingdom in the 1920s (Aubrook

& Fryer 1965) and in France in the 1960s (Tuffery 1967).

Tracheliastes polycolpus is mainly (but not exclusively)

associated with species from the Leuciscus complex

(Fish: Cyprinidae) including Leuciscus idus, Leuciscus

burdigalensis and Leuciscus leuciscus (Fryer 1982). Leucis-

cus idus is a non-native species in French and English

watersheds and has been proposed as the main vector

of T. polycolpus in Western Europe, where the latter is

hence suspected to be a non-native species (i.e. ‘the

non-native pathogen hypothesis’; Fryer 1982). In French

watersheds, L. idus is relatively uncommon (Keith et al.

2011), whereas T. polycolpus is distributed in most

watersheds (Fig. S2, Supporting information), where it

generally infects L. leuciscus and L. burdigalensis and, to

a lesser extent, other Cyprinid species (Phoxinus phoxi-

nus, Rutilus rutilus, Parachondrostoma toxostoma, Gobio

gobio, Barbus barbus and Squalius cephalus; Lootvoet et al.

2013). This discrepancy between L. idus and T. polycol-

pus distributions in French watersheds suggests an

alternative hypothesis whereby T. polycolpus is a native

species that has recently expanded its geographical

range (and/or abundance) following environmental (bi-

otic and/or abiotic) changes (i.e. ‘the native pathogen

hypothesis’).

Sampling design and microsatellite genotyping

We focus on French watersheds, an area in which

T. polycolpus has recently emerged (Tuffery 1967) and

where it is abundant. A total of 130 sites distributed

across all French watersheds were investigated between

2009 and 2011. Tracheliastes polycolpus was found in 74 –
of the 130 – sites distributed among 53 rivers (Fig. S2,

(B)

(A)

(C)

5 mm

Fig. 1 Pictures showing (A) a Tracheliastes

polycolpus parasitic adult female; (B) the

inflamed caudal fin of an infected host

individual (Leuciscus burdigalensis) in

response to the attachment of T. polycol-

pus; and (C) a heavily parasitized host

individual with the pelvic and anal fins

partially or totally destructed and more

than 20 T. polycolpus attached on the cau-

dal fin. In (C), dotted areas are a rough

representation of the fin area destroyed

by T. polycolpus.
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Supporting information), and a total of 663 parasites

were collected. Our sampling hence covers the whole

known current geographical distribution of T. polycolpus

in French watersheds (Fig. S2, Supporting information).

All parasites were collected exclusively from L. leuciscus

and L. burdigalensis. Fish were captured by electric fish-

ing following standard protocols defined by French

environmental agencies (i.e. ‘Office National de l’Eau et

des Milieux Aquatiques’ ONEMA and ‘F�ed�erations

D�epartementales pour la Pêche et la Protection des Mili-

eux Aquatiques’ FDAAPPMA; Poulet et al. 2011). Para-

sites were collected from their host individuals using

forceps and were directly stored in 70% ethanol for sub-

sequent genetic analyses. All host individuals were

returned to their original sampling sites.

Individual DNA was extracted from the cephalothorax

of parasites following a salt extraction protocol (Aljanabi

& Martinez 1997). Individual multilocus genotypes were

obtained at 16 polymorphic microsatellite loci using pri-

mers specifically designed for T. polycolpus using high-

throughput sequencing methods (Loot and Blanchet,

unpublished data). Microsatellite loci were amplified

using classic polymerase chain reactions (see Appendix

S1, Supporting information for more details). Amplified

fragments were separated on an ABI PRISMTM 3730 auto-

mated capillary sequencer (Applied Biosystems, Foster

City, California). Allelic sizes were ultimately scored

using GENEMAPPERTM v.4.0. (Applied Biosystems).

Population structure and genetic diversity

We first determined the uppermost level of genetic

structure of T. polycolpus populations over French

watersheds using the Bayesian clustering approach

implemented in STRUCTURE v.2.3.4 (Pritchard et al. 2000).

This method uses a Markov chain Monte Carlo

(MCMC) algorithm to assign each individual into a

number of genetic clusters (K) so as to maximize

Hardy–Weinberg equilibrium and minimize linkage dis-

equilibrium within each cluster. We performed five

independent runs for K values ranging from K = 1 to

K = 21. Each run consisted of a burn-in period of

2.5 9 105 iterations followed by 106 iterations. We

assumed correlation of allele frequencies and an admix-

ture model (Hubisz et al. 2009). The best model among

the 21 models tested was selected on the basis of the

second-order rate of change in likelihood (DK), accord-
ing to Evanno et al. (2005), using the R package ‘Corr-

Sieve’ (Campana et al. 2011).

Additionally, we conducted the discriminant analysis

of principal components (i.e. DAPC) clustering proce-

dure implemented in the R package ‘adegenet’ (Jombart

2008; Jombart et al. 2010). This procedure consists in

partitioning individuals into K groups so as to minimize

the sum of squares of distances between individuals

and the assigned cluster centroids. This complementary

approach was used to confirm (or infirm) the number

of genetic clusters detected among T. polycolpus sam-

pled populations inferred using STRUCTURE.

Finally, for the uppermost hierarchical level of struc-

ture identified (i.e. K = 4 for both approaches; see Re-

sults), we achieved ten additional independent

STRUCTURE runs using the same settings as previously to

refine the cluster assignation probabilities (Qs) for each

individual. The individual Qs were averaged over the

ten independent runs using the greedy algorithm

implemented in the CLUMPP software (Jakobsson &

Rosenberg 2007). We used the individual averaged Qs

over the ten runs to generate summary barplots with

DISTRUCT v.1.1 (Rosenberg 2004).

Several indices of genetic diversity were estimated for

each cluster. Unbiased expected heterozygosities (He)

and fixation indexes (FIS) were estimated using GENETIX

(Belkhir et al. 1996–2004). Allelic richness (Ar) and pri-

vate allele richness (Ap) were estimated with the rarefac-

tion procedure implemented in ADZE v1.0 (Szpiech et al.

2008) based on the minimal sampling size (n = 94; see

Results). Pairwise population differentiation values (i.e.

pairwise FST) were also estimated between each pair of

populations using the GENEPOP software (Rousset 2008).

Spatio-temporal dynamics of T. polycolpus in French
watersheds

We used an ABC approach to unravel the spatio-tempo-

ral dynamics of T. polycolpus in France. We designed six

competing evolutionary scenarios that could potentially

explain the current structure of genetic diversity

observed for T. polycolpus in France, accounting for both

the native and the non-native origin hypotheses. We then

determined the evolutionary scenario that best explains

observed data by applying ABC model-choice procedures

(Beaumont et al. 2002). Finally, we applied ABC inference

procedures based on the most probable evolutionary sce-

nario to estimate key demographic and evolutionary

parameters characterizing the emergence of T. polycolpus

in France. We detail each of these steps below.

Definition of scenarios. Scenarios were built from the

genetic structure of T. polycolpus populations identified

using the clustering approaches, that is by considering

four main genetic clusters: Central, Northern, Pyrenean

and Southern clusters (see Results and Fig. 2A–B).
Regarding the ‘native pathogen hypothesis’, three com-

peting scenarios (namely Sc1 to Sc3) were designed,

whereas three additional scenarios (namely Sc4 to Sc6)

were designed for the ‘non-native pathogen hypothesis’.

All scenarios are depicted graphically in Fig. 3, and

© 2015 John Wiley & Sons Ltd
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Central Pyrenean Southern Northern(A)

Central

Pyrenean

Southern

Northern

0.05

0.07

0.04

0.11

0.09

0.12

(B)
100 Km

Fig. 2 Genetic clustering of Tracheliastes

polycolpus populations in France. (A)

Summary barplot indicating the averaged

probability for each individual (vertical

line) to belong to each of the four clus-

ters identified. (B) Spatial structure of the

four T. polycolpus clusters determined via

the Bayesian clustering approach imple-

mented in the program STRUCTURE. Blue,

red, green and yellow dots are sampling

sites characterized by individuals belong-

ing to the Central, Northern, Pyrenean

and Southern genetic clusters, respec-

tively. The colour intensity of the dots

indicates the average probability of indi-

viduals from a given site to belong to

their assigned genetic clusters. Light to

dark colours indicate low to high average

probabilities. Delimited regions (black

lines) are the main watersheds. Values

indicated on arrows are the FST estimates

between clusters.

Scenario 2 Scenario 3

Scenario 4 Scenario 5 Scenario 6

Scenario 1

Present

Past

Present

Past

Fig. 3 Schematic representation of each

scenario tested by the approximate Baye-

sian computation approach. Scenarios are

detailed in the main text (Material and

methods section). Colours of each popu-

lation (circles) correspond to the colours

of each genetic cluster in Fig. 2

(blue = Central; red = Northern;

green = Pyrenean; and yellow = South-

ern). The sizes of the circles correspond

to the effective population sizes. Hori-

zontal arrows represent migration

between clusters.
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associated parameters (together with their prior values)

are described in Table 1. We will first describe parame-

ters that are common to all scenarios and will then fully

describe (in a forward-in-time manner, i.e. from past to

present) each scenario together with their specific

parameters.

For all scenarios, we defined four parameters describ-

ing the current effective population size of each cluster,

namely NCentral, NNorthern, NPyrenean and NSouthern. As

previous analyses indicated that the Central cluster

clearly exhibits a higher effective population size

than peripheral clusters (i.e. NNorthern, NPyrenean and

NSouthern; data not shown), we constrained NNorthern,

NPyrenean and NSouthern to be smaller than NCentral for

each scenario. Moreover, the date of first detection of

the parasite in Western Europe, that is 1920s in the UK

(Aubrook & Fryer 1965) and 1960s in France (Tuffery

1967), was used to calibrate and to bound a parameter

called Tdetect (Table 1). This parameter corresponds to

the time (from present) at which clusters experienced a

demographic expansion, reaching ‘detectable’ effective

population sizes (i.e. their current population effective

sizes NNorthern, NCentral, NPyrenean and NSouthern). In all

scenarios but Sc1, we further assumed that at Tdetect,

clusters started exchanging migrants at a rate MX-Y

(where X and Y indicate the pair of clusters involved in

the exchange of migrants, Table 1). For all scenarios, we

geographically constrained migration between clusters

by assuming that (i) migration rates between non-adja-

cent clusters are smaller than between adjacent clusters

and (ii) migration rates between the Central cluster and

the three peripheral clusters are identical (MCentral-North-

ern = MCentral-Pyrenean = MCentral-Southern). Hereafter, we

will consider that all scenarios but Sc1 follow the same

rule from Tdetect to present. We now describe in a for-

ward-in-time manner the three scenarios (Sc1 to Sc3)

related to the ‘native pathogen hypothesis’.

Scenario 1 (Sc1). This scenario corresponds to a situation

for which T. polycolpus is not an emerging parasite, but

rather a wildlife parasite that has long been overlooked

and detected only recently in France (i.e. in the 1960s).

We assumed that the Northern, Central, Pyrenean and

Southern clusters have been present since the last gla-

cial event (c. 10 000–12 000 years ago) at constant effec-

tive population sizes NNorthern, NCentral, NPyrenean and

NSouthern, respectively, and that clusters exchanged

migrants across generations at rates defined by MX-Y

(Sc1 in Fig. 3; Table 1 for details on parameters). In this

scenario, we thus did not account for the parameter

Tdetect.

Scenario 2 (Sc2). In this scenario, the four clusters were

historically present, but at low (i.e. undetectable)

effective population sizes (N0
Northern, N

0
Central, N

0
Pyrenean,

N0
Southern) until Tdetect, the time at which (i) effective

population sizes reach a detectable size (i.e. their

current sizes NNorthern, NCentral, NPyrenean and NSouthern)

and (ii) migration between clusters begins (Sc2 in Fig. 3;

Table 1).

Scenario 3 (Sc3). Here, we considered a unique original

cluster (i.e. the Central cluster, where T. polycolpus was

first described in France; Tuffery 1967) of low effective

population size N0
Central (Sc3 in Fig. 3). At times TNorthern,

TPyrenean and TSouthern, individuals from the Central

cluster spread and founded the Northern, Pyrenean and

Southern clusters, respectively. TNorthern, TPyrenean and

TSouthern were allowed to occur asynchronously.

Clusters remained at low effective population sizes

(N0
Northern, N0

Central, N0
Pyrenean, N0

Southern) without

exchanging migrants until Tdetect, the time at which (i)

effective population sizes reach their current sizes

(NNorthern, NCentral, NPyrenean and NSouthern) and (ii)

migration between clusters begins (Fig. 3; Table 1).

We now describe the three scenarios (Sc4 to Sc6)

related to the ‘non-native pathogen hypothesis’. In these

scenarios, we assumed a latency time of LX generations

(where X indicates the name of the cluster) that follows

each introduction event from an original unknown

source (for which we assume Ne = 20 000). During LX,

the size of the initial founding population remains

equal to the number of introduced founder individuals

N″X. After LX, populations experienced a first demo-

graphic expansion from N″X to N0
X. Latency time

between introduction and first expansion (also called

time lag) is expected in introduced populations, in par-

ticular when the introduced individuals are not (yet)

well adapted to the invaded environment or because of

purely demographic processes (Facon et al. 2006).

Scenario 4 (Sc4). Here, we considered that each cluster

originated from independent unknown source

populations (Sc4 in Fig. 3). At times T0
Central, T

0
Northern,

T0
Pyrenean and T0

Southern, N″Central, N″Northern, N″Pyrenean
and N″Southern individuals originating from independent

source populations colonized and founded each cluster.

After LCentral, LNorthern, LPyrenean and LSouthern genera-

tions (i.e. at TCentral, TNorthern, TPyrenean and TSouthern,

respectively), clusters expanded and remained at

N0
Central, N0

Northern, N0
Pyrenean and N0

Southern without

exchanging migrants until Tdetect, the time at which (i)

effective population sizes reach their current sizes

(NNorthern, NCentral, NPyrenean and NSouthern) and (ii)

migration between clusters begins (Fig. 3; Table 1).

Scenario 5 (Sc5). Here we considered that all clusters

originated from a single unknown source population

© 2015 John Wiley & Sons Ltd
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(Sc5 in Fig. 3). Founder individuals were introduced

asynchronously and founded the different clusters at

times T0
Central, T0

Northern, T0
Pyrenean and T0

Southern for

the Central, Northern, Pyrenean and Southern clus-

ters, respectively. After LCentral, LNorthern, LPyrenean and

LSouthern generations (i.e. at TCentral, TNorthern, TPyrenean

and TSouthern, respectively), clusters expanded and

remained at N0
Central, N

0
Northern, N

0
Pyrenean and N0

Southern

without exchanging migrants until Tdetect, the time at

which (i) effective population sizes reach their current

sizes (NNorthern, NCentral, NPyrenean and NSouthern) and (ii)

migration between clusters begins (Fig. 3; Table 1).

Scenario 6 (Sc6). This scenario assumes that a first intro-

duction event from a single unknown source into a sin-

gle locality occurred at T0
Central and was composed of N

″Central individuals (Sc6 in Fig. 3). After LCentral genera-

tions (i.e. at TCentral), this pool of founder individuals

experienced a first demographic expansion and reached

N0
Central individuals. At times TNorthern, TPyrenean and

TSouthern, individuals from the Central cluster spread

and founded the Northern, Pyrenean and Southern

clusters, respectively. Clusters remained at low densi-

ties (N0
Central, N0

Northern, N0
Pyrenean, N0

Southern) without

exchanging migrants until Tdetect, the time at which (i)

effective population sizes reach their current sizes

(NNorthern, NCentral, NPyrenean and NSouthern) and (ii)

migration between clusters begins (Fig. 3; Table 1).

Simulation procedure. We simulated genetic data sets

given each scenario by following four major steps: (i)

sampling of a vector of parameter values (φx) for a

given scenario from prior parameter distributions (de-

fined in Table 1), (ii) simulation of a genetic data set

given φx, (iii) calculation of a vector of statistics sx that

summarizes the simulated data set and (iv) repeat

steps (i) to (iii) a large number of times. We imple-

mented this procedure in a handmade computational

pipeline that combines multiple population genetics

and statistical programs (see Appendix S2, Supporting

information for more details). This pipeline was devel-

oped to allow us (i) calculating a wide set of informa-

tive summary statistics that cannot be obtained from

only a single population genetics program and (ii)

using a genetic data simulator that allows accounting

for gene flow between populations, a requisite that is

not implemented in some user-friendly ABC softwares

(Cornuet et al. 2008) and that was necessary in our

study, given the small spatio-temporal extent we

investigated. The program ABCsampler (Wegmann

et al. 2010) was used to manage the pipeline (see

Appendix S2, Supporting information for more

details), and the coalescent-based program SIMCOAL v2.0

(Laval & Excoffier 2004) was used to simulate 1 9 106

microsatellite data sets under each demographic sce-

nario. Sixteen independent microsatellite loci per indi-

vidual were generated per simulation, assuming a

stepwise mutation model (SMM; Ohta & Kimura 1973)

and a neutral mutation rate of 5 9 10�4 over loci

(Estoup & Angers 1998). We assumed the SMM rather

than other mutation models to be conservative, as the

most variable microsatellite loci used in this study

exhibit allelic distributions expected under an SMM

(i.e. uniform and symmetric distributions; data not

shown). We sampled a number of diploid individuals

per cluster per simulated data set identical to the num-

ber of individuals in the empirical genetic data set (i.e.

321, 96, 132 and 114 for the Central, Northern, Pyre-

nean and Southern clusters, respectively). From each

simulated data set, we computed a series of genetic

variation indexes. We used ADZE (Szpiech et al. 2008)

for estimating mean allelic richness (Ar) and mean pri-

vate allelic richness (Ap) over loci per cluster. The pro-

gram arlsumstat (Excoffier & Lischer 2010) was used

for estimating, at the cluster level and over loci,

expected heterozygosities (He), their standard distribu-

tions sd(He), mean allelic ranges (R), Garza–Wil-

liamson’s indexes (GW; Garza & Williamson 2001),

along with global FIS and FST values, and among clus-

ter pairwise FST values.

Model choice. Before applying ABC model-choice proce-

dures, we assessed whether the six demographic sce-

narios were able to provide a good fit to the observed

data by running a principal component analysis (PCA)

in the space of 16 summary statistics calculated at dif-

ferent levels: (i) 8 summary statistics calculated within

clusters (i.e. Ar and GW for each cluster), (ii) 2 global

summary statistics calculated at the whole scenario

level (i.e. global FIS and FST) and (iii) 6 summary statis-

tics calculated among clusters (i.e. pairwise FST values).

The use of summary statistics calculated at different

levels is recommended in ABC, as it allows to better

capture the properties of the modelled demographic

scenarios (Cornuet et al. 2010). The PCA approach was

used to graphically show the position of the observed

(real) data set vs. the 10 000 simulations the closest to

the observed data set (assuming a Euclidean distance)

under each demographic scenario (Cornuet et al. 2010;

Marino et al. 2013).

We then applied ABC model-choice procedures to

determine the scenario that best explains the observed

data (Beaumont et al. 2002) using the subset of 16 sum-

mary statistics described above. The posterior support

for each scenario given the observed data was assessed

using a neural network algorithm with a tolerance rate

of 0.0001 (Csill�ery et al. 2012). The neural network

algorithm was chosen in this step to reduce the large
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Table 1 Prior parameter values explored in simulations of genetic data sets under all scenarios tested in the approximate Bayesian

computation procedure. Prior values were drawn from uniform distributions for all parameters

Parameter Description Prior values Scenarios Unit

NCentral Current effective size of the Central cluster 10–300 All scenarios 2n individuals

NSouthern Current effective size of the Southern cluster 25–150 All scenarios 2n individuals

NPyrenean Current effective size of the Pyrenean cluster 25–150 All scenarios 2n individuals

NNorthern Current effective size of the Northern cluster 10–40 All scenarios 2n individuals

Tdetect Time since the last expansion of the different

genetic clusters

16–300 All but scenario 1 Generations

TSouthern Split time of the peripheral Southern cluster 161–350 Scenarios 3–6 Generations

TPyrenean Split time of the peripheral Pyrenean cluster 161–350 Scenarios 3–6 Generations

TNorthern Split time of the peripheral Northern cluster 161–350 Scenarios 3–6 Generations

TCentral Time at which the initial invasive population

established from the founder individuals

first expanded

250–400 Scenarios 6 Generations

LSouthern Latency time between the introduction of

N″Southern individuals and first expansion

1–50 Scenarios 4–5 Generations

LPyrenean Latency time between the introduction of

N″Pyrenean individuals and first expansion

1–50 Scenarios 4–5 Generations

LNorthern Latency time between the introduction of

N″Northern individuals and first expansion

1–50 Scenarios 4–5 Generations

LCentral Latency time between the introduction of

N″Central individuals and first expansion

1–50 Scenarios 4–6 Generations

T0
Pyrenean Time since the introduction of founder

individuals at the origin of the Pyrenean cluster

(TPyrenean + LPyrenean) Scenarios 4–5 Generations

T0
Southern Time since the introduction of founder

individuals at the origin of the Southern cluster

(TSouthern + LSouthern) Scenarios 4–5 Generations

T0
Northern Time since the introduction of founder

individuals at the origin of the Northern cluster

(TNorthern + LNorthern) Scenarios 4–5 Generations

T0
Central Time since the introduction of founder

individuals at the origin of the Central cluster

(TCentral + LCentral) Scenarios 4–6 Generations

N0
Pyrenean Size of the ancestral Pyrenean cluster

relative to NPyrenean before Tdetect

0.1–0.4 All but scenario 1 Relative ratio

N0
Northern Size of the ancestral Northern cluster

relative to NNorthern before Tdetect

0.1–0.4 All but scenario 1 Relative ratio

N0
Central Size of the ancestral Central cluster relative

to NCentral before Tdetect

0.1–0.4 All but scenario 1 Relative ratio

N0
Southern Size of the ancestral Southern cluster relative

to NSouthern before Tdetect

0.1–0.4 All but scenario 1 Relative ratio

N″Northern Number of founder individuals of the Northern

cluster from an unknown source population

0.2–0.4 Scenarios 4–5 Relative ratio

N″Central Number of founder individuals of the Central

cluster from an unknown source population

0.2–0.4 Scenarios 4–6 Relative ratio

N″Pyrenean Number of founder individuals of the Pyrenean

cluster from an unknown source population

0.2–0.4 Scenarios 4–5 Relative ratio

N″Southern Number of founder individuals of the Southern

cluster from an unknown source population

0.2–0.4 Scenarios 4–5 Relative ratio

MCentral-Southern Migration between the Central and the

Southern cluster

0.001–0.04 All scenarios Rate

MCentral-Pyrenean Migration between the Central and the

Pyrenean cluster

0.001–0.04 All scenarios Rate

MCentral-Northern Migration between the Central and the

Northern cluster

0.001–0.04 All scenarios Rate

MNorthern-Southern Migration between the Northern and the

Southern clusters

0.001–0.04 All scenarios Rate

MNorthern-Pyrenean Migration between the Northern and the

Pyrenean clusters

0.001–0.04 All scenarios Rate

MSouthern-Pyrenean Migration between the Southern and the

Pyrenean clusters

0.001–0.04 All scenarios Rate
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number of selected summary statistics into a smaller

number of dimensions (Blum & Franc�ois 2010). Addi-

tionally, we conducted a Bayesian model comparison

by computing Bayes factors (BFs) between each pair of

competing scenarios.

Finally, the robustness of the model-choice procedure

was evaluated by estimating type I (i.e. how frequently

a simulation generated under scenario X has been

excluded when it has been actually generated under

scenario X) and type II (i.e. how frequently a simulation

has been assigned to a scenario X when it has not been

generated under scenario X) error rates. To do so, we

used the leave-one-out cross-validation procedure

implemented in the R package ‘abc’ v.2.0 (Csill�ery et al.

2012). In this procedure, a given number of simulations

are randomly selected as ‘validation’ simulations, as

opposed to ‘training’ simulations (i.e. the unselected

simulations). Each validation simulation is therefore

successively submitted to an ABC model-choice algo-

rithm. We used 100 validation simulations per scenario,

assuming a neural network algorithm, and a tolerance

rate of 0.0001.

Estimation of demographic parameters. Based on the best-

supported scenario, we first assessed the accuracy of

ABC and the sensitivity of parameter estimates to the

tolerance rate for three alternative estimation methods

(i.e. rejection, local linear regression and neural net-

work). This was achieved using the leave-one-out cross-

validation procedure implemented in the R package

‘abc’ v2.0 (Csill�ery et al. 2012). The procedure was based

on 100 cross-validation simulations generated under the

best-supported scenario for each estimation method and

assuming four different tolerance rates (i.e. 0.001, 0.005,

0.01 and 0.05). For each couple of estimation method/

tolerance rate, we then calculated the sum of all stan-

dardized estimation errors obtained for each parameter

of the best-supported scenario.

Demographic parameters for the best-supported sce-

nario were estimated by considering the couple of esti-

mation method/tolerance rate that showed the smallest

sum of standardized error rates during the cross-valida-

tion procedure (i.e. neural network method and a toler-

ance rate of 0.001; see Results section), and using the

same set of 16 summary statistics used for the model-

choice procedure (i.e. Ar, GW, global FIS, global FST and

pairwise FST values). The spatio-temporal dynamics of

T. polycolpus was then reconstructed by using the mode

of the posterior parameter distributions obtained by

ABC for each parameter as point estimates, and 2.5–
97.5% percentiles as confidence intervals. Times in years

were calculated from times inferred by ABC in genera-

tions, by assuming that four generations correspond to

a year (Piasecki 1989).

We further checked the goodness of fit of the best-

supported scenario to the observed data using two

alternative methods: (i) a principal component analysis

(PCA) in the space of summary statistics and (ii) a for-

mal hypothesis testing procedure where the test statistic

is the mean of the distance between simulations’ sum-

mary statistics and observed summary statistics. These

two methods were based on 1000 posterior simulations

generated under the best-supported scenario by sam-

pling parameter values from their posterior distribu-

tions, and on an alternative set of 16 summary statistics

(i.e. He, sd(He), Ar and Ap per cluster). Using an alterna-

tive set of summary statistics for posterior checks

allows avoiding overfitting (Cornuet et al. 2010; Marino

et al. 2013). We finally conducted posterior predictive

checks (Gelman et al. 2003) to graphically confirm that

the best-supported scenario provides a good fit to the

T. polycolpus real data, by plotting the distribution of

the 16 alternative summary statistics computed for the

1000 posterior simulations described above, along with

the observed values.

Results

Population structure and genetic diversity

Results from the Bayesian clustering approach and the

DK test revealed that the uppermost hierarchical level

of structure of T. polycolpus populations was K = 4 (Figs

S3 and S4, Supporting information). Individuals within

watersheds were generally assigned with high probabil-

ity (i.e. high Q value; Fig. 2A) to a single genetic clus-

ter. Four similar main genetic clusters were detected

using DAPC, although the latter analysis also revealed

finer genetic substructure within each main cluster

(Fig. S5, Supporting information). The two clustering

methods converged towards the identification of a

major cluster covering a large central area (hereafter

‘Central’ cluster), and three peripheral clusters that are

more restricted geographically: a cluster was found in

Northern France (hereafter ‘Northern’ cluster), another

in South-Western France (hereafter ‘Southern’ cluster),

and the third cluster covered the whole Pyrenean

Mountains (hereafter ‘Pyrenean’ cluster) (Fig. 2B).

Genetic clusters covered at least two adjacent water-

sheds, except the Northern cluster, which was restricted

to a single watershed (Fig. 2B).

Estimates of genetic differentiation between pairs of

clusters (i.e. FST) were all significant (P-values < 0.01)

ranging from 0.04 (between the Central and the Pyre-

nean clusters) to 0.12 (between the Northern and the

Pyrenean clusters). Nonadjacent clusters were more

genetically differentiated than adjacent clusters (t-test,

t = �4.3, d.f. = 3, P-value = 0.01; Fig. 2B). The Central
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cluster displayed the highest genetic diversity com-

pared to peripheral clusters, although this was much

more evident when considering allelic richness rather

than heterozygosity (Table 2). Similarly, the Central

cluster contained more private alleles (Ap = 0.40) than

the other clusters (Table 2).

Spatio-temporal dynamics of T. polycolpus in French
watersheds

Best-supported scenario. The cross-validation procedure

for ABC model-choice displayed an overall misclassifi-

cation rate of 36% (Table S1, Fig. S6, Supporting infor-

mation). Type I errors were moderate to high for all

scenarios (with rates ranging from 24% for Sc2 to 56%

for Sc1) except for Sc4, for which the type I error rate

was very low (4%). Two pairs of scenarios displayed

high rates of cross-misclassifications: Sc1/Sc3 (32–56%)

and Sc2/Sc5 (20–46%). The scenarios related to the ‘na-

tive pathogen hypothesis’ (i.e. Sc1–3) displayed the

highest rates of type II errors (9–17.6%), whereas the

lowest rates of type II errors were found for the ‘non-

native’ scenarios Sc4 and Sc6 (0% and 1.6%, respec-

tively; Table S1, Fig. S6, Supporting information).

The adequacy of the different scenarios to generate a

set of summary statistics similar to that of the empirical

data set was confirmed visually by the PCA for all sce-

narios but the Sc1 and Sc3 (Fig. S7, Supporting informa-

tion). For these two scenarios, the 99% envelopes of the

two principal components of the PCA did not compre-

hend the observed data set, suggesting that these two

models are unlikely to have a good fit with the real

data.

Among the six scenarios, Sc6 was the best supported

according to the ABC model-choice procedure (poste-

rior probability = 0.7625; Table S2, Supporting informa-

tion). This result was confirmed by the very high

pairwise BFs obtained between Sc6 and all others sce-

narios, compared to BFs computed between all other

pairs of scenarios (Table S3, Supporting information).

The five other scenarios were clearly rejected compared

to Sc6 (i.e. posterior probabilities <0.1239; Table S2, Sup-

porting information). Under scenario Sc6, T. polycolpus

populations in French watersheds originate from a sin-

gle genetic entity from which the Central cluster

emerged. The three peripheral clusters emerged from

the establishment of few founder individuals originat-

ing from the Central cluster into remote watersheds.

Estimation of demographic parameters. Our cross-valida-

tion procedure indicated that the neural network

method and a tolerance rate of 0.001 was the most ade-

quate combination to minimize errors in the estimates

of parameters for Sc6 (Table S4, Supporting informa-

tion). Using these settings, we found low standardized

estimation errors for the current effective size of all but

the Northern cluster, and low to moderate standardized

estimation errors for time since the last expansion of

the different genetic clusters and split time of the

peripheral clusters. The highest standardized estimation

errors concerned the migration rates between clusters

(Table S4, Supporting information). This suggests that

the estimates of these parameters may be less accurate

than the others and should be carefully interpreted.

Both the PCA and the hypothesis testing procedure

based on 1000 posterior simulations and the alternative

set of summary statistics confirmed the goodness of fit

of Sc6 to the observed data set (Figs S8 and S9, Support-

ing information). The adequacy of Sc6 for generating

simulated data sets akin to the real data was further

graphically assessed through the comparison between

the distribution of the alternative summary statistics

computed for the posterior simulations and the

observed values (Fig. S10, Supporting information).

The inference of key parameter values from Sc6 with

ABC (Fig. 4; Table S5, Supporting information) revealed

that 38 founder individuals (i.e. N″Central; 2.5–97.5% per-

centile: [2–44]) were most likely introduced in France at

T0
Central = 368 [271–434] generations ago, which is about

92 years before sampling (i.e. in 1918), considering a

generation time for T. polycolpus of four generations per

year (see Material and methods). After a latency time of

about 6 years (at TCentral = 343 [260–407] generations),

this set of founder individuals established an initial

effective population N0
Central of 100 individuals [19–

111]. Three subsequent colonization events dispersed

from this initial population to peripheral watersheds 69

(Northern), 74 (Southern) and 75 (Pyrenean) years

before the sampling (i.e. at TNorthern = 282 [199–339],
TSouthern = 301 [202–344] and TPyrenean = 303 [201–339]
generations, respectively; Fig. 4A). These colonization

events involved 13 (N0
Northern; [2–19]), 29 (N0

Southern;

[6–60]) and 31 (N0
Pyrenean; [5–59]) individuals for the

establishment of the Northern, Southern and Pyrenean

Table 2 Estimates of genetic diversity within each of the four

genetic clusters identified in the STRUCTURE analysis

Cluster

name Nind Ar

SE

(Ar) Ap

SE

(Ap) He

SE

(He) FIS

Northern 96 3.73 0.36 0.06 0.03 0.52 0.15 0.16

Central 321 5.03 0.45 0.40 0.11 0.57 0.18 0.12

Pyrenean 132 4.40 0.42 0.23 0.08 0.56 0.14 0.16

Southern 114 4.40 0.39 0.15 0.05 0.54 0.21 0.14

Nind, number of T. polycolpus individuals assigned to each clus-

ter; Ar, allelic richness; Ap, private allele richness; He, unbiased

expected heterozygosity; SE, standard error.
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clusters, respectively. The four clusters were maintained

at low effective sizes until 1948 (Tdetect = 252 [172–303]
generations), when they attained their current effective

sizes (NCentral = 262 [114–279], NNorthern = 41 [22–46],
NSouthern = 94 [57–142] and NPyrenean = 107 [51–149]
individuals; Fig. 4A; Table S5, Supporting information).

Current migration rates between clusters varied signifi-

cantly, from 0.016 [0.013–0.028] between the Northern/

Southern and Northern/Pyrenean clusters, to 0.034

[0.025–0.049] between the Pyrenean and the Southern

clusters (Fig. 4A; Table S5, Supporting information).

Discussion

In this study, we combined population genetics tools

and ABC model-based inference to unravel the spatio-

temporal dynamics of a poorly documented emerging

wildlife pathogen with scarcely available data. Our

results provide novel information regarding the non-

native status and the colonization history of T. polycol-

pus since its emergence in French watersheds. More

generally, this case study illustrates the value of ABC

for inferring key evolutionary and demographic

parameters in ‘information-lacking’ wildlife emerging

pathogens.

Tracheliastes polycolpus in France: a non-native
pathogen?

The main challenge of this study was to tease apart the

native vs. non-native origin of T. polycolpus in French

watersheds without genetic data sampled over the

whole distribution of this species. Altogether, our

results strongly support that – according to previous

expectations (Fryer 1982) – T. polycolpus is a non-native

species in France. First, among the six scenarios tested,

the two statistical approaches used to select the best

scenario (posterior probabilities and BFs) clearly

favoured one of the non-native scenarios (Sc6) as the

most likely to explain observed genetic data. Moreover,

all validation tests (Bertorelle et al. 2010) confirm our

model-choice procedure. Overall, both type I and type

II error rates inversely related to the confidence in the

choice of a scenario were higher in the ‘native scenar-

ios’ than in the ‘non-native scenarios’ (although differ-

ences were less pronounced for type I errors). We
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(38 [2 – 44])

(31 [5 - 59])

(13 [2 - 19])

(29 [6 - 60])
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TCentral : 1925 [1909 - 1946]

Fig. 4 Spatio-temporal dynamics of Tracheliastes polycolpus in France, based on the best-supported scenario among the six scenarios

tested using approximate Bayesian computation. (A) Schematic representation of the best-supported scenario (i.e. Scenario 6). The

numbers in parentheses are the effective population sizes of populations or the number of founding individuals at the time of their

introduction. The chronological axis on the left is determined assuming four generations of T. polycolpus per year. (B) Map illustrating

the propagation of T. polycolpus in French watersheds since its introduction, according to the best-supported scenario. In A and B,

the 95% confidence interval of each estimate is in square brackets.
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further tested the goodness of fit between each of the

six scenarios and observed data prior to running the

model-choice procedure. The three scenarios related to

the ‘non-native pathogen hypothesis’ generated data

similar to that observed, whereas two of the three sce-

narios related to the ‘native pathogen hypothesis’ failed

to do so, hence discrediting the ‘native hypothesis’ at

the expense of the ‘non-native hypothesis’. It is, how-

ever, noteworthy that the only ‘native’ scenario that

generated data similar to the observed (i.e. Sc2) was

also the second best-supported model (Table S2, Sup-

porting information). Further, both the second and the

third best-supported scenarios (Sc2 and Sc4) showed

non-negligible support (12.39% and 10.13% for Sc2 and

Sc4, respectively; Table S2, Supporting information),

indicating that these two scenarios were able to gener-

ate data akin to that generated under the Sc6 scenario

for at least some specific combination of parameters

(Table S5, Supporting information). For instance, infer-

ences of parameters under scenarios Sc2 and Sc4 pro-

vided similar small ancestral populations effective sizes

(N0
X parameters, see Table S5, Supporting information)

than those observed for Sc6, a characteristic that may

similarly shape genetic diversity generated under the

three scenarios (i.e. by imposing strong genetic bottle-

necks due to founder effects, see below). Thus, even if

the model-choice procedure clearly highlights Sc6 as the

best-supported scenario, we cannot completely reject

Sc2 and Sc4.

Second, according to the best-supported scenario

(Sc6; Fig. 4), the Central population of T. polycolpus, ini-

tially composed of a few individuals having immigrated

from an unknown source population, underwent a

strong bottleneck before establishing a stable, initial

population. Genetic bottlenecks due to founder effects

are a classical demographic imprint of introduced pop-

ulations (Sakai et al. 2001; Blanchet 2012), and the exis-

tence of a temporal gap between the first event of

introduction and the first detection of non-native organ-

isms is also common (Watari et al. 2011). This is espe-

cially the case for small-bodied and neglected

nonmodel organisms (Litchman 2010). Moreover, we

estimated that the first genetic bottleneck event under-

went by the T. polycolpus Central population occurred

in the 1920s, which coincides with the initial introduc-

tion of Leuciscus idus in France as an ornamental fish in

the early 1900s (Keith et al. 2011). Leuciscus idus is the

principal host of T. polycolpus in the United Kingdom

and Eastern Europe (Fryer 1982), and established wild

populations of L. idus in France have been almost exclu-

sively reported in the central Loire River watershed

(Fig. S2, Supporting information; Keith et al. 2011). Alto-

gether, these evidences strongly suggest that T. polycol-

pus was introduced together with L. idus in Western

Europe before shifting on native host species, and

expanding its demographic and geographical range.

Despite all the accumulated evidence that T. polycol-

pus is non-native, the hypothetical native origin of

T. polycolpus in French watersheds will not be definitely

ruled out unless further analyses including samples

from the UK, and, ideally, from the supposedly native

area (i.e. Eastern Europe) are performed. Unravelling

the phylogenetic relationships between populations

across most of the geographical distribution of T. poly-

colpus would hence provide new insights into the evolu-

tionary history of this species and shed light on the

origin of the populations established in Western Eur-

ope. More specifically, the ABC framework would be

particularly useful to revaluate the likelihood of non-

native vs. native scenarios, by including complex

scenarios that imply known potential sources, such as,

for instance, the hypothetical two-step scenario in

which T. polycolpus was first introduced in the United

Kingdom before being introduced in French watersheds

(Fryer 1982).

Invasion dynamics of T. polycolpus in French
watersheds

We were able to retrace the invasion dynamics of

T. polycolpus among French watersheds since its proba-

ble introduction in Central watersheds of France in the

1920s. In particular, we found that the range expansion

of T. polycolpus through almost all French riverine sys-

tems has involved three main dispersal events of few

founder individuals (i.e. from 13 to 31 individuals).

These three dispersal events have occurred almost syn-

chronously in the late 1930s from the initial Central

watersheds population to three distinct remote water-

sheds. Interestingly, the mean parasite intensity in indi-

vidual hosts can reach up to 80 individuals on daces

(L. burdigalensis) and two to five individuals on gud-

geons (G. gobio) and minnows (P. phoxinus; Lootvoet

et al. 2013). Thus, we can hypothesize that the stocking

of a few infected host individuals (i.e. 1–15 host indi-

viduals; depending on the host species stocked) would

have been sufficient for T. polycolpus to disperse, estab-

lish and expand over the main French watersheds.

Moreover, our results also indicate that once estab-

lished, these populations were maintained at a small

effective population size before expanding demographi-

cally around 1948, that is two decades before T. polycol-

pus was first identified in France (Tuffery 1967). Finally,

ongoing gene flow between the Central and peripheral

clusters and, to a lower extent, between peripheral clus-

ters was also detected, which indicates that T. polycolpus

colonization in French watersheds is still an ongoing

process. It is noteworthy that large credibility intervals
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were found for most parameter estimates. Wide credi-

bility intervals for parameter estimates can sometimes

be obtained from ABC algorithms mainly because of

the loss of information during the ABC process (Csill�ery

et al. 2010; Benazzo et al. 2015). In our case, the low

level of genetic diversity observed in T. polycolpus over

all genetic clusters, which is most likely due to its

recent evolutionary history in Western Europe, might

also have hampered our ability to obtain more accurate

estimates of the demographic parameters. Thus,

although the parameter estimates obtained are consis-

tent with the limited historical data available for T. poly-

colpus, they should be interpreted carefully.

The apparent fast expansion of T. polycolpus since its

emergence in the Central watersheds raises important

questions regarding the factors that allow this parasite

to propagate so rapidly. The direct life cycle of T. poly-

colpus and its low specificity (i.e. the propensity to use a

large host spectrum) constitute a real asset for its

spread over French watersheds (Criscione et al. 2005).

Indeed, T. polycolpus can infect at least eight common

host species that display different dispersal capacities

(Lootvoet et al. 2013). According to the consensual view

that host movement is a major determinant in parasite

dispersion (Criscione et al. 2005; Blasco-Costa et al.

2012), the broad host species range of T. polycolpus may

allow this parasite to cover long-distance dispersal

within watersheds and increase its probability to estab-

lish locally as soon as one of these host species is pre-

sent. Moreover, some alternative host species used by

T. polycolpus are affiliated to human activities such as

aquaculture or angling (e.g. Gobio gobio, Rutilus rutilus

and Phoxinus phoxinus) and are hence prone to be

stocked from one watershed to another (Lewin et al.

2006). This may allow T. polycolpus to disperse rapidly

within and among watersheds and may explain the

non-negligible among-watershed migration rates

inferred in this study.

Conclusion

Understanding the anthropogenic, ecological and evolu-

tionary factors that favour the emergence of wildlife

pathogens is a major current challenge (Morens et al.

2004). A key step in breaching this challenge is to

develop and propose analytical frameworks that help

clarifying the spatio-temporal dynamics of pathogens

over short-time scales, especially during emergence

events. ABC is one of such frameworks. The ABC

framework has been mainly used to retrace the eco-evo-

lutionary dynamics of populations at large spatial scales

(e.g. populations from different continents; Guillemaud

et al. 2009) but rarely at low temporal and spatial

extents. We show here that by using a large set of

informative summary statistics and by explicitly

accounting for gene flow among populations, an ABC

framework can be used to distinguish between closely

similar scenarios at low spatial and temporal resolu-

tions. Moreover, despite the lack of precise data on the

expansion and emergence of T. polycolpus and the scar-

city of samples from the putative native geographical

range (i.e. Eastern Europe), we additionally show that

ABC can successfully infer key parameters related to

the recent colonization of information-lacking organ-

isms. Specifically, our results strongly support the non-

native origin of T. polycolpus in France and have pro-

vided information on the size of the founder popula-

tions and the timing of colonization among watersheds.

Our results constitute a foundation for future research-

ers focusing on the evolutionary potential of T. polycol-

pus, and more particularly on the evolution of

T. polycolpus virulence on na€ıve host populations or the

rise of local adaptation patterns in novel host–pathogen
interactions (Dunn 2009).

More generally, we believe that T. polycolpus is far

from being an isolated case study, since historical

records and scientific knowledge of most wildlife patho-

gens are limited until some associated public health or

veterinarian issues become apparent (Magurran et al.

2010; but see Staubach et al. 2011). The ongoing advent

of molecular biology together with the development of

computational resources will improve our ability to test

increasingly complex and realistic demographic scenar-

ios and improve the accuracy of estimates of a wider

range of demographic parameters associated with the

emergence and spread of emerging wildlife pathogens.
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de Meeûs T, McCoy KD, Prugnolle F et al. (2007) Population

genetics and molecular epidemiology or how to “d�ebusquer

la bête”. Infection, Genetics and Evolution, 7, 308–332.
Morens DM, Folkers GK, Fauci AS (2004) The challenge of

emerging and re-emerging infectious diseases. Nature, 430,

242–249.
Morse SS (1995) Factors in the emergence of infectious dis-

eases. Emerging Infectious Diseases, 1, 7–15.
Ohta T, Kimura M (1973) A model mutation appropriate to

estimate the number of electrophoretically detectable alleles

in a finite population. Genetical Research, 22, 201–204.
Pazooki J, Masoumian M (2012) Synopsis of the parasites in

Iranian freshwater fishes. Iranian Journal of Fisheries Sciences,

11, 570–589.
Piasecki W (1989) Life cycle of Tracheliastes maculatus Kollar,

1835 (Copepoda, Siphonostomatoida, Lernaeopodidae). Wi-

adomosci Parazytologiczne, 35, 187–245.
Ponyi J, Molnar L (1969) Studies on the parasite fauna of fish

in Hungary V. Parasitic Copepods. Parasitologia Hungarica, 2,

137–148.

Popiolek M, Kubizna J, Wolnicki J, Kusznierz J (2011) Parasites

of lake minnow, Eupallasella percnurus (Pall.): the state of

knowledge and threats. Archives of Polish Fisheries, 19, 133–
226.

Poulet N, Beaulaton L, Dembski S (2011) Time trends in fish

populations in metropolitan France: insights from national

monitoring data. Journal of Fish Biology, 79, 1436–1452.
Poulin R (2014) Parasite biodiversity revisited: frontiers

and constraints. International Journal for Parasitology, 44, 581–
589.

Poulin R, Paterson RA, Townsend CR, Tompkins DM, Kelly

DW (2011) Biological invasions and the dynamics of endemic

diseases in freshwater ecosystems. Freshwater Biology, 56,

676–688.
Pritchard JK, Stephens M, Donnelly P (2000) Inference of popu-

lation structure using multilocus genotype data. Genetics,

155, 945–959.
Pullan RL, Sturrock HJW, Magalhaes RJS, Clements ACA,

Brooker SJ (2012) Spatial parasite ecology and epidemiology:

a review of methods and applications. Parasitology, 139,

1870–1887.
Rachowicz LJ, Hero JM, Alford RA et al. (2005) The novel and

endemic pathogen hypotheses: competing explanations for

the origin of emerging infectious diseases of wildlife. Conser-

vation Biology, 19, 1441–1448.
Rosenberg NA (2004) DISTRUCT: a program for the graphical

display of population structure. Molecular Ecology Notes, 4,

137–138.
Rousset F (2008) GENEPOP ‘007: a complete re-implementation

of the GENEPOP software for Windows and Linux. Molecu-

lar Ecology Resources, 8, 103–106.
Sakai AK, Allendorf FW, Holt JS et al. (2001) The population

biology of invasive species. Annual Review of Ecology and Sys-

tematics, 32, 305–332.
Silfverberg H (1999) A provisional list of Finnish Crustacea.

Memoranda-Societas Pro Fauna et Flora Fennica, 75, 15–37.
Staubach C, Hoffmann L, Schmid VJ, Ziller M, Tackmann K,

Conraths FJ (2011) Bayesian space-time analysis of Echinococ-

cus multilocularis infections in foxes. Veterinary Parasitology,

179, 77–83.
Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rar-

efaction approach for counting alleles private to combina-

tions of populations. Bioinformatics, 24, 2498–2504.
Tuffery G (1967) Importance des consid�erations topographi-

ques, biologiques, �ecologiques, lors de l’am�enagement ou du

classement d’un bassin hydrographique. Bulletin Franc�ais du

Pisciculture, 226, 5–21.
Warnecke L, Turner JM, Bollinger TK et al. (2010) Inoculation

of bats with European Geomyces destructans supports the

novel pathogen hypothesis for the origin of white-nose syn-

drome. Proceedings of the National Academy of Sciences, 109,

6999–7003.
Watari Y, Nagata J, Funakoshi K (2011) New detection of a

30-year-old population of introduced mongoose Herpestes

auropunctatus on Kyushu Island, Japan. Biological Invasions,

13, 269–276.
Wegmann D, Leuenberger C, Neuenschwander S, Excoffier L

(2010) ABCtoolbox: a versatile toolkit for approximate Baye-

sian computations. BMC Bioinformatics, 11, 116.

Woolhouse MEJ (2002) Population biology of emerging and

re-emerging pathogens. Trends in Microbiology, 10, s3–s7.

© 2015 John Wiley & Sons Ltd

5362 O. REY ET AL.



Yalcindag E, Elguero E, Arnathau C et al. (2012) Multiple inde-

pendent introductions of Plasmodium falciparum in South

America. Proceedings of the National Academy of Sciences, 109,

511–516.

The study was designed by S.B. and G.L. O.R. and I.P.V.

wrote the manuscript with the help of L.F., B.R., G.L. and

S.B. S.B., G.L. and C.V. collected the samples; G.L. and C.V.

produced the genetic data; I.P.V., O.R. and L.F. conducted

the statistical analyses with the help of S.B. and B.R.

Data accessibility

Detailed information on sampling sites, on samples and

on individual microsatellite genotypes: Dryad

doi:10.5061/dryad.vn536

Supporting information

Additional supporting information may be found in the online ver-

sion of this article.

Fig. S1 Worldwide distribution of Tracheliastes polycolpus based

on all records found in the literature.

Fig. S2 Sampling map of Tracheliastes polycolpus (circles).

Fig. S3 Plot of mean posterior probability (LnP(D)) values

(open circles) per cluster (K) generated by the STRUCTURE pro-

gram (Pritchard et al. 2000).

Fig. S4 Magnitude of DK as a function of the number of K clus-

ters (mean over five replicates) according to Evanno et al.

(2005) using the R package ‘CorrSieve’.

Fig. S5 Scatterplot of the two first principal components of the

DAPC used to identify the number of T. polycolpus genetically

differentiated clusters present among French watersheds.

Fig. S6 Type I (i.e. how frequently a simulation generated

under scenario X has been excluded when it has been actually

generated under scenario X; blue bars), type II (i.e. how fre-

quently a simulation has been assigned to a scenario X when it

has not been generated under scenario X; red bars) error rates

and rate of correct classifications (green bars) estimated from a

leave-one-out cross-validation procedure based on 100

validation simulations per demographic scenario (Sc1 to Sc6),

16 summary statistics (see Material and methods section), a

neural network algorithm and a tolerance rate of 0.0001.

Fig. S7 Ninety-nine percent envelopes of the two principal

components (i.e. PC1 and PC2) of a principal component anal-

ysis on the space of 16 summary statistics calculated for the

10 000 simulations closest (using an Euclidean distance) to the

observed (i.e. real) dataset under each demographic scenario.

Fig. S8 Ninety-nine percent envelope of the two principal com-

ponents (i.e. PC1 and PC2) of a principal component analysis

on the space of 16 alternative summary statistics (see Mate-

rial and methods section) calculated for 1000 simulations

generated under the best-supported scenario (Sc6) with param-

eter values extracted from the posterior distribution of parame-

ters.

Fig. S9 Histogram of the null distribution of the goodness-of-

fit test statistic (i.e. the mean of the distance between accepted

and observed summary statistics) along with the test P-value,

estimated from 1000 simulations generated under the best-sup-

ported scenario (Sc6) with parameter values extracted from the

posterior distribution of parameters.

Fig. S10 Posterior predictive checks for Tracheliastes polycolpus

in France under the best demographic scenario (Sc6), estimated

from 1000 simulations generated under Sc6 assuming parame-

ter values extracted from the posterior distribution of parame-

ters.

Table S1 Confusion matrix obtained using a leave-one-out

cross-validation procedure based on 100 validation simulations

per scenario, a neural network algorithm and a tolerance rate

of 0.00001.

Table S2 Posterior probabilities obtained for the six scenarios

through the ABC model-choice procedure, using a neural net-

work algorithm with a tolerance rate of 0.0001.

Table S3 Bayes factors computed between each pair of scenar-

ios (the definition of each scenario is detailed in the Material

and methods section of the main text; see also Fig. S2).

Table S4 Estimation errors (standardized by feature scaling)

obtained for different ABC parameter inference methods (rejec-

tion, local linear regression and neural network) and tolerance

rates (0.001, 0.005, 0.01 and 0.05) through a leave-one-out cross

validation procedure based on 100 simulated datasets gener-

ated under the scenario Sc6.

Table S5 Mode value, 2.5 and 97.5% percentiles of the poste-

rior distributions inferred by the ABC inference procedure for

each parameter for the first, second, and third ranked scenarios

(i.e., Scenarios 6, 2 and 4 respectively; ranked decreasingly

based on the posterior probabilities found with the ABC

model-choice procedure), using neural networks and tolerance

rates of 0.001.

Appendix S1 Details on the microsatellite multiplex PCR pro-

tocols.

Appendix S2 The computational pipeline used for implement-

ing the simulation procedure.
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