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Abstract
1.	 Quantifying	the	effects	of	species	interactions	is	key	to	understanding	the	relation-
ships	between	biodiversity	and	ecosystem	functioning	but	remains	elusive	due	to	
combinatorics	issues.	Functional	groups	have	been	commonly	used	to	capture	the	
diversity	of	forms	and	functions	and	thus	simplify	the	reality.	However,	the	explicit	
incorporation	of	species	 interactions	 is	still	 lacking	in	functional	group-	based	ap-
proaches.	Here,	we	propose	a	new	approach	based	on	an	a	posteriori	clustering	of	
species	to	quantify	the	effects	of	species	interactions	on	ecosystem	functioning.

2.	 We	first	decompose	the	observed	ecosystem	function	using	null	models,	in	which	
species	 diversity	 does	not	 affect	 ecosystem	 function,	 to	 separate	 the	 effects	 of	
species	 interactions	 and	 species	 composition.	 This	 allows	 the	 identification	 of	 a	
posteriori	functional	groups	that	have	contrasting	diversity	effects	on	ecosystem	
functioning.	We	then	develop	a	formal	combinatorial	model	of	species	interactions	
in	which	an	ecosystem	 is	described	as	 a	 combination	of	 co-	occurring	 functional	
groups,	which	we	 call	 an	assembly motif.	 Each	 assembly	motif	 corresponds	 to	 a	
particular	 biotic	 environment.	 We	 demonstrate	 the	 relevance	 of	 our	 approach	
using	 datasets	 from	 a	 microbial	 experiment	 and	 the	 long-	term	 Cedar	 Creek	
Biodiversity II	experiment.

3.	 We	show	that	our	a	posteriori	approach	is	more	accurate,	more	efficient	and	more	
parsimonious	 than	 a	 priori	 approaches.	 The	 discrepancy	 between	 a	 priori	 and	 a	
posteriori	approaches	results	from	the	way	each	clustering	 is	set	up:	a	priori	ap-
proaches	are	based	on	ecosystem	or	 species	properties,	 such	as	ecosystem	size	
(number	of	species	or	functional	groups)	or	species’	functional	traits,	whereas	our	a	
posteriori	approach	is	based	only	on	the	observed	interaction	and	composition	ef-
fects	on	ecosystem	functioning.

4.	 Our	 findings	demonstrate	 that	 an	 a	 posteriori	 approach	 is	 highly	 explanatory:	 it	
identifies	who	interacts	with	whom,	and	quantifies	the	effects	of	species	interac-
tions	on	ecosystem	functioning.	They	also	highlight	that	a	combinatorial	modelling	
of	ecosystem	functioning	can	predict	the	functioning	of	an	ecosystem	without	any	
hypothesis	about	the	biotic	or	environmental	determinants	or	any	information	on	
species	functional	traits.	It	only	requires	the	species	composition	of	the	ecosystem	
and	the	observed	functioning	of	others	that	share	the	same	assembly	motif.
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1  | INTRODUCTION

Species	interactions	strongly	influence	ecosystem	functioning	(Hooper	
et	al.,	2005;	Loreau	&	Hector,	2001).	However,	quantifying	their	net	
impact	is	puzzling	(Balvanera	et	al.,	2006;	Duffy,	2009;	Huston,	1997;	
Jiang,	Wan,	&	Li,	2009).	Analytical	methods	have	been	proposed	 to	
separate	 the	 net	 effects	 of	 species	 composition	 from	 those	of	 spe-
cies	interactions	(Garnier,	Navas,	Austin,	Lilley,	&	Gifford,	1997;	Jiang	
et	al.,	 2009;	 Kirwan	 et	 al.,	 2009;	 Loreau	 &	 Hector,	 2001;	 Wilson,	
1988).	These	methods	have	successfully	explained	biodiversity	effects	
in	several	biodiversity–ecosystem	functioning	experiments	(Loreau	&	
Hector,	2001;	Reich	et	al.,	2012),	but	they	have	not	quantified	the	net	
effect	of	species	interactions	nor	identified	the	species	that	really	in-
teract.	The	quantification	of	all	possible	pairwise	species	interactions	
is	 practically	 infeasible	 in	 species-	rich	 ecosystems	 because	 of	 the	
curse	of	dimensionality	 (McGill,	Enquist,	Weiher,	&	Westoby,	2006).	
The	difficulty	of	this	task	lies	in	the	fact	that	myriad	different	types	of	
positive	 and	negative	 species	 interactions	 can	 simultaneously	 occur	
within	ecosystems.	Several	attempts	have	been	proposed	to	frame	a	
pragmatic	and	operational	approach	to	quantify	ecosystem-	wide	spe-
cies	interactions.	The	trait-	based	characterization	of	species’	compet-
itive	 abilities,	 that	 is	 the	 search	 for	 organism	 traits	 that	 can	 explain	
how	species’	functions	influence	the	performance	of	competing	neigh-
bours	(Grace,	1990),	paved	the	road	to	a	generic	description	of	species	
interactions.	 In	the	 last	decade,	 this	approach	has	been	widely	used	
to	 study	 species	 interactions	 (the	 “interaction	 milieu”	 sensu	McGill	
et	al.,	2006)	through	the	systematic	evaluation	of	the	community-	level	
distribution	 of	 interaction	 traits.	However,	 interaction	 traits	 are	 still	
unknown	in	most	taxa	(Violle,	Reich,	Pacala,	Enquist,	&	Kattge,	2014).

Even	if	functional-	group	approaches	simplify	reality,	they	offer	an	
operational	 and	parsimonious	way	 to	 analyse	and	model	 ecosystem	
functioning.	Nevertheless,	up	to	now	this	approach	has	mostly	relied	
on	a	priori	clustering	based	on	expert	knowledge,	as	illustrated	by	the	
widespread	classification	of	plants	into	three	groups:	legumes,	gram-
inoids	and	forbs.	An	a	posteriori	clustering	may	be	promising	since	it	
will	 identify	functional	groups	based	on	realized	effects,	for	instance	
based	on	the	way	 interacting	species	modulate	ecosystem	function-
ing.	Such	clustering	has	hardly	been	applied	so	far.	A	notable	exception	
is	the	study	of	Wright	et	al.	(2006)	which	searched	for	the	best	spe-
cies	clustering	to	predict	ecosystem	biomass.	More	recently,	Jaillard,	
Rapaport,	Harmand,	Brauman,	and	Nunan	 (2014)	developed	a	novel	
modelling	approach	to	species	interactions	based	on	their	effects	on	
ecosystem	functioning.	This	model	was	able	to	successfully	reproduce	
all	 the	forms	of	biodiversity–ecosystem	functioning	relationships	re-
ported	 in	 the	 literature	but	 its	 flexibility	 remained	 low	because	 it	 is	
based	on	a	priori	prevalent	assembling	rules	that	determine	ecosystem	
functioning.	Here,	we	extend	Jaillard	et	al.	(2014)’s	model	by	proposing	

an	a	posteriori	clustering	approach	to	the	effects	of	ecosystem-	wide	
species	interactions	on	a	given	ecosystem	function.

The	aim	of	this	study	is	to	quantify	the	net	effects	of	species	inter-
actions	on	a	given	ecosystem	function.	As	suggested	by	Wilson	(1988),	
we	first	decompose	the	observed	ecosystem	function	using	null	mod-
els	in	which	species	diversity	does	not	affect	ecosystem	functioning.	
This	allows	us	to	separate	the	effects	of	species	interactions	from	the	
effects	of	species	composition	on	ecosystem	functioning.	This	separa-
tion	makes	it	possible	to	a	posteriori	identify	functional	groups	(sensu	
Díaz	&	Cabido,	2001	and	Lavorel	&	Garnier,	2002)	that	have	contrast-
ing	 interaction	 and	 composition	 effects	 on	 the	 ecosystem	 function.	
Then,	we	propose	a	 formal	combinatorial	 framework	 to	describe	an	
ecosystem	as	a	combination	of	co-	occurring	functional	groups,	which	
we call assembly motif,	 echoing	 the	network	motifs	 in	network	 the-
ory	(Milo	et	al.,	2002).	Each	assembly	motif	parsimoniously	accounts	
for	 the	observed	effects	of	species	 interactions	and	composition	on	
ecosystem	 functioning.	 We	 test	 this	 approach	 using	 two	 datasets:	
one	 microbial	 diversity	 experiment	 (Langenheder,	 Bulling,	 Solan,	 &	
Prosser,	2010)	and	the	Cedar	Creek	Biodiversity II	experiment	(Tilman	
et	al.,	2001).	We	demonstrate	that	our	approach	can	identify	who	is	
interacting	with	whom,	and	quantify	the	effects	of	species	diversity	on	
ecosystem	functioning.

2  | MATERIALS AND METHODS

2.1 | Separating the effects of species interactions 
and species composition on ecosystem functioning

Consider	 a	 set	 S = {1,	…,	s} of s	 species	 i	 (Figure	1a).	 An	 ecosystem	
is defined as an assemblage A	of	individuals	that	belong	to	different	
species:

A	cumulative	function	Fobserved(A)	such	as	primary	production,	res-
piration	or	nutrient	recycling	 is	observed	for	each	ecosystem	A.	The	
function	Fobserved({i})	(with	i =	1,	…	,s)	for	monocultures	of	each	species	
is also observed.

We	 set	 two	 null	 hypotheses,	 named	 H0 and G0,	 respectively	
(Figure	S1).	 The	 null	 hypothesis	H0	 describes	 a	 situation	where	 the	
species	interactions	within	an	ecosystem	do	not	affect	the	ecosystem	
functioning.	Under	H0,	the	expected	function	Fexpected/H0(A)	of	an	eco-
system	is	simply	the	mean	of	functions	Fobserved({i})	of	all	monocultures	
of	co-	occurring	species	i of A	(Wilson,	1988):

The	null	 hypothesis	G0	 describes	 a	 situation	where	neither	 the	
species	interactions	nor	the	species	composition	affect	the	ecosys-
tem	function. Under G0,	the	expected	function	Fexpected/G0(A)	of	any	

A={i∈S}.

(1)Fexpected∕H0

(

A
)

= F
i∈A

observed ({i}).

K E Y W O R D S

assembly	motif,	clustering,	combinatorics,	community,	functional	effect	groups,	modelling,	
theoretical	ecology
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ecosystem	 is	 consequently	 constant.	 By	 convenience,	 we	 assume	
that	 the	 constant	 is	 the	 expected	 function	 Fexpected/H0(S)	 of	 all	 the	
species	used	in	the	experiment,	that	is	according	to	the	Equation	1,	
the	mean	of	functions	Fobserved({i})	of	all	monocultures	of	species	i of S:

The	function	Fobserved(A)	of	an	ecosystem	can	then	be	decomposed	
as follows:

or:

with:

and:

The	 quotient	α(A)	 corresponds	 to	 the	 effect	 of	 species	 inter-
actions	 on	 the	 ecosystem	 function.	This	 interaction effect	 is	 spe-
cific	 to	 an	 ecosystem.	 It	 equals	 one	 under	H0,	 is	 lower	 than	 one	
when	 the	 species	 interactions	 decrease	 the	 ecosystem	 function	
and	is	higher	than	one	when	the	species	interactions	increase	the	

ecosystem	function.	The	normalized	remainder	β(A)	corresponds	to	
the	effect	of	species	composition	of	the	ecosystem	on	its	function.	
This	 composition effect	 characterizes	 the	 subset	 of	 species	 that	
belong	 to	 the	 ecosystem,	 relatively	 to	 the	whole	 set	 of	 species.	
It	equals	one	under	G0,	 is	 lower	than	one	when	the	species	com-
position	decreases	the	ecosystem	function	and	is	higher	than	one	
when	 the	species	composition	 increases	 the	ecosystem	function.	
The	 composition	 effect	 is	 one	 on	 average	when	 all	 the	 possible	
ecosystems	 are	 tested.	 Finally,	 the	 remainder	Fexpected/G0(A)	 is	 by	
definition	constant:	this	is	a	scale	factor	specific	to	the	species	set	
used	in	the	experiment,	that	is	the	function	expected	with	neither	
interaction	nor	composition	effects.	The	scale	factor	integrates	all	
the	variations	in	species	functions	in	the	experiment	(e.g.	variation	
in	environmental	conditions	across	 time).	 It	has	 the	dimension	of	
the	 ecosystem	 function.	 Interaction	 and	 composition	 effects	 are	
dimensionless.

2.2 | Analysing the diversity effects induced by each 
species on ecosystem functioning

The	idea	 is	now	to	cluster	ecosystems	on	the	basis	of	the	ecosystem	
interaction	and	composition	effects.	We	denote	by		 the	set	of	eco-
systems	A	observed	 in	the	experiment.	We	define	i	 (with	 i	=	1,	…	,s)	
the	cluster	of	ecosystems	A	that	contains	at	least	one	individual	of	the	
	species	i of S:

(2)Fexpected∕G0

(

A
)

= Fexpected∕H0

(

S
)

= F
i∈S

observed ({i})

Fobserved

(

A
)

=
Fobserved

(

A
)

Fexpected∕H0

(

A
)

Fexpected∕H0

(

A
)

Fexpected∕G0

(

A
) Fexpected∕G0

(

A
)

.

(3)Fobserved

(

A
)

=α
(

A
)

β
(

A
)

Fexpected∕G0

(

A
)

(4)α
(

A
)

=
Fobserved

(

A
)

Fexpected∕H0

(

A
)

(5)β
(

A
)

=
Fexpected∕H0

(

A
)

Fexpected∕G0

(

A
) .

F IGURE  1 Step-	by-	step	clustering	
framework	to	model	the	diversity	effects	
on	an	ecosystem	function.	(a)	An	ecosystem	
A	is	defined	as	a	set	of	co-	occurring	species	
and	is	characterized	by	an	aggregate	
function	F.	Species	are	clustered	into	
functional	groups	(here	σ = 3	for	instance)	
on	the	basis	of	the	mean	diversity	effects	
of	clusters	of	ecosystems	containing	a	
given	species.	(b)	Each	ecosystem	is	then	
described	by	a	combination	of	functional	
groups,	that	is	an	assembly motif Mk 
(here,	m = 2σ	−	1	=	7	possible	assembly	
motifs).	Ecosystems	described	by	the	
same	assembly	motif	Mk	are	grouped	into	
the	clusters	k	and	characterized	by	the	
aggregate	functions	F(k)	(k = 1…7).	The	
goodness	of	fit	of	the	model	clustering	is	
evaluated	by	its	determination	coefficient	
and	its	robustness	by	cross-	validation

(a) (b)



4  |    Methods in Ecology and Evoluon JAILLARD et AL.

The	interaction	and	composition	effects	α(i)	and	β(i)	induced	by	
each	species	within	the	ecosystems	are	estimated	by	the	mean	diver-
sity	effects	of	ecosystems	A	that	contain	at	least	one	individual	of	the	
species	i of S,	then:

2.3 | Introducing the concept of assembly 
motif: a simple and operational descriptor of the 
composition of an ecosystem

Each	ecosystem	is	a	subset	of	individuals	that	belong	to	different	spe-
cies:	 it	 can	 also	be	described	as	 a	 subset	of	 individuals	 that	belong	
to	different	functional	groups	of	species.	We	cluster	the	species	set	
S = {1,	…	,s}	into	σ	functional	groups	Sj	(with	j =	1,	…	,σ)	on	the	basis	of	
their	 interaction	and	composition	effects	α(i)	 and	β(i)	 (Figure	1a).	
The	 σ	 functional	 groups	 Sj	 allow	 the	 assembly	 of	m = 2σ	−	1	 non-	
empty	combinations	of	functional	groups.	We	term	assembly motif Mk 
(with	k =	1,	…	,m)	each	combination	of	functional	groups,	then:	

We	associate	each	ecosystem	A	with	an	assembly	motif	Mk by as-
suming	that	each	species	i of A	belongs	to	a	functional	group	Sj of Mk 
and	that	each	functional	group	Sj of Mk	is	represented	by	at	least	one	
individual	of	species	i of A.	Then,	we	define	k (k =1,	…	,m)	as	the	clus-
ter	of	ecosystems	A	described	by	the	assembly	motif	Mk:

2.4 | Modelling the function of an ecosystem 
according to its assembly motif

An	assembly	motif	characterizes	a	particular	biotic	environment.	Next,	
we	 cluster	 ecosystems	 by	 assembly	motifs;	 that	 is,	 we	 cluster	 eco-
systems	 that	 share	 a	 similar	biotic	 environment	 (Figure	1b).	We	use	
the	ecosystem	clustering	by	assembly	motifs	to	model	the	ecosystem	
function.	As	in	Equation	6,	we	define	i,k	 (with	 i = 1,	…	,s)	the	cluster	
of	ecosystems	A of k	that	contains	at	least	one	individual	of	the	spe-
cies i of S:

According	to	Equation	7,	the	interaction	and	composition	effects	
α(i,k)	and	β(i,k)	of	ecosystems	A	of	clusters	i,k	are	estimated	by:

According	 to	 Equations	3	 and	 8,	 the	 function	 Fmodelled(A)	 of	
any	 ecosystem	 A	 is	 finally	 modelled	 as	 the	 product	 of	 the	 mean	

interaction	effect,	the	mean	composition	effect	and	the	scale	factor	
of	 ecosystems	 that	 contain	 the	 same	 species	 and	 share	 the	 same	
assembly	motif:

2.5 | Combinatorics and statistics

The	 interaction	 effects	 α(A)	 and	 the	 composition	 effects	 β(A)	 are	
computed	for	each	ecosystem	using	its	species	composition	and	the	
monoculture	functions	of	each	species	(Equations	1–5).	The	mean	in-
teraction	 and	 composition	 effects	α(i)	 and	 β(i)	 of	 the	 clusters	 of	
ecosystems	containing	a	given	species	 i of S	are	computed	using	all	
the	ecosystems	containing	the	species	(Equation	7).	The	species	cen-
troids	are	then	clustered	in	functional	groups	using	Euclidean	distance	
and	Ward’s	 linkage	 algorithm	 (functions	 dist,	 method	=	“euclidean,”	
and	hclust,	method	=	“ward.D”	with	R,	see	the	scripts	 in	Supporting	
Information)	 on	 the	 basis	 of	 mean	 diversity	 effects	 α(i)	 and	 β(i)	
(Legendre	&	Legendre,	2012).

The	hierarchical	tree	of	species	centroids	clustering	is	cut	at	differ-
ent	levels	by	increasing	step-	by-	step	the	number	of	functional	groups	
(see	Figure	1).	At	each	step,	that	 is	for	a	given	number	of	functional	
groups,	all	possible	assembly	motifs	Mk	are	assembled,	and	the	ecosys-
tems	are	clustered	by	assembly	motifs.	For	a	comparison	of	different	
approaches,	the	species	are	also	clustered	by	(1)	functional	groups	a	
priori	 defined	by	Tilman	et	al.	 (2001)	 and	by	 (2)	 size	 (i.e.	 number	of	
species	in	the	ecosystem).	In	the	latter	case,	each	ecosystem	size	is	an	
assembly	motif.

The	mean	 diversity	 effects	 α(i,k)	 and	 β(i,k)	 of	 species	 in	 each	
assembly	motif	are	computed	according	to	Equation	8.	The	function	
Fmodelled(A∈k)	is	then	evaluated	according	to	Equation	9.	The	inter-
action	effect	is	a	quotient	and	thus	measures	a	multiplicative	process:	
the	mean	of	this	biodiversity	effect	is	computed	according	to	a	geo-
metric	formula	(Equations	7–9).	The	composition	effect	is	a	remainder	
and	thus	measures	an	additive	process:	the	mean	of	this	biodiversity	
effect	is	computed	according	to	an	arithmetic	formula	(Equations	1,	2,	
7–9)	(Crawley,	2007).

The	goodness	of	fit	of	each	clustering	model	 is	evaluated	by	the	
coefficient	of	determination	R2	of	the	relationship	between	modelled	
and	observed	ecosystem	functions,	that	is	the	ratio	between	the	vari-
ance	explained	by	 the	modelling	and	 the	 total	variance	observed	 in	
the	experiment:

The	 robustness	 of	 each	 clustering	model	 is	 evaluated	 by	 cross-	
validation.	 Because	 of	 the	 small	 number	 of	 observations	 in	 most	
experiments,	we	 use	 a	 leave-	one-	out	 cross-	validation;	 that	 is,	 each	
ecosystem	 function	 is	 independently	 predicted	 by	 removing	 the	
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ecosystem	to	predict	from	the	experiment	dataset.	The	prediction	ac-
curacy	is	evaluated	by	the	model	efficiency	E,	that	is	the	ratio	between	
the	variance	explained	by	the	 independent	predictions	and	the	total	
variance	observed	in	the	experiment	(see,	e.g.,	Nash	&	Sutcliffe,	1970):

When	all	 the	possible	ecosystems	are	observed,	 all	 the	possible	
assembly	motifs	are	 represented	at	 least	once.	When	only	a	part	of	
possible	 ecosystems	 are	 observed,	 some	 assembly	 motifs	 are	 not	
observed.	When	an	assembly	motif	 is	 represented	by	only	one	eco-
system,	 the	ecosystem	function	cannot	be	 independently	predicted.	
We	define	the	predicting ratio	as	the	number	of	ecosystems	for	which	
the	function	can	be	predicted	by	the	clustering	model,	divided	by	the	
number	of	all	observed	ecosystems.

All	 the	 computations	 are	 done	 using	 the	 R-	software	 (R	
Development	Core	Team,	2009).

2.6 | Biodiversity datasets

We	used	two	datasets	to	test	our	approach.	The	first	dataset	is	based	
on	the	observation	of	all	the	possible	ecosystems	assembled	with	an	
initial	 pool	 of	microbial	 species.	 Langenheder	 et	al.	 (2010)	designed	
this	experiment	to	analyse	the	biodiversity–productivity	relationship	
in	bacterial	microcosms.	They	tested	all	the	63	possible	species	com-
binations	with	a	pool	of	six	bacteria:	6,	15,	20,	15,	6	and	1	combina-
tions	with	1,	2,	3,	4,	5	and	6	bacteria,	respectively.	Here,	we	analyse	
the	xylose	oxidation	(ecosystem	function)	after	48	hr	for	the	63	bac-
terial	ecosystems,	of	which	six	are	monospecies	and	57	plurispecies	
cultures.

The	second	dataset	 is	the	Cedar	Creek	Biodiversity II	experiment	
dataset	 (Tilman	 et	al.,	 2001).	This	 experiment	was	 dedicated	 to	 the	
analysis	 of	 the	 biodiversity–productivity	 relationship	 in	 grasslands.	
Here,	the	studied	ecosystem	function	is	the	yearly	plant	above-	ground	
biomass	per	unit	area.	The	experiment	contained	88	ecosystems	from	
a	pool	of	16	prairie	 species	 (Reich	et	al.,	 2012;	Tilman	et	al.,	 2001).	
Diversity	treatments	consisted	of	1-	,	2-	,	4-	,	8-		and	16-	species	plots,	
each	replicated	34	times	on	average,	which	corresponds	 to	168	ex-
perimental	plots.	The	species	composition	in	each	plot	was	a	random	
draw	from	the	experimental	species	pool.	All	species	were	grown	 in	
monoculture.	The	16	prairie	species	were	a	priori	clustered	into	four	
functional	groups	of	four	species:	legumes,	forbs,	C3-		and	C4-	grasses.	
As	a	case	study,	here	we	analyse	the	above-	ground	biomass	harvested	
in	the	88	ecosystems	in	August	2004,	of	which	35	are	monospecies	
and	53	plurispecies	plots.	 Each	biomass	 is	 the	average	value	of	 the	
harvests	of	three	“unsorted”	strips.

3  | RESULTS

3.1 | Species clustering based on the diversity 
effects on ecosystem functioning

The	 scale	 factors	 Fexpected/G0(A)	 are	 0.633	 xylose	 oxidation	 and	
114.8 g/m2	of	biomass	accumulated	for	a	year	in	the	microbial	and	
Biodiversity II	experiments,	respectively.	The	decomposition	of	the	
function	 of	 each	 ecosystem	 into	 dimensionless	 effects	 of	 species	
interactions	 α(A)	 and	 species	 composition	 β(A)	 allows	 the	 com-
parison	of	these	two	experiments	(Figure	2).	The	mean	interaction	
effect	 is	 1.46	±	0.23	 in	 the	microbial	 experiment	 and	 2.08	±	1.18	
in	 the	 Biodiversity II	 experiment.	 Even	 though	 the	 interaction	 ef-
fect	 is	 significantly	correlated	with	 the	observed	ecosystem	 func-
tion	in	both	experiments,	they	are	more	strongly	correlated	in	the	
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F IGURE  2 Effects	of	species	
interactions	and	species	composition	of	an	
ecosystem	function.	(a)	and	(b)	Ecosystem	
function	vs	interaction	effect,	(c)	and	(d)	
Ecosystem	function	vs	composition	effect.	
The	coefficient	of	correlation	r2

Pearson of 
the	relationship	are	indicated:	they	are	
significant	at	p < .001
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Biodiversity II	 experiment	 (p < 10−16)	 than	 in	 the	microbial	 experi-
ment	 (p = 3.9 × 10−6)	 (Figure	2a	and	b).	The	mean	composition	ef-
fect	is	exactly	one	(1.00	±	0.27)	in	the	microbial	experiment	where	
all	the	species	combinations	are	assembled.	The	mean	composition	
effect	is	close	to	one	(0.97	±	0.14)	in	the	Biodiversity II	experiment:	
it	is	not	significantly	different	from	one	(p < 10−16).	In	both	experi-
ments,	 the	 composition	 effect	 is	 significantly	 correlated	with	 the	
observed	 function.	 However,	 composition	 effect	 and	 observed	
function	are	more	strongly	correlated	 in	 the	microbial	experiment	
(p < 10−16)	than	in	the	Biodiversity II	experiment	(p	=	.007)	(Figure	2c	
and	 d).	 In	 both	 experiments,	 the	 interaction	 effect	 and	 the	 com-
position	 effect	 are	 not	 correlated	 (r2

Pearson = .019 and p = .305 in 
the	microbial	experiment;	 r2

Pearson = 1.7 × 10−4 and p	=	.927	 in	 the	
Biodiversity II	experiment)	(Figure	3).

A	 species-	centred	 analysis	 can	 be	 performed	 when	 comparing	
the	location	of	ecosystems	containing	a	given	species	on	the	α- by- β 
space	(Figure	3).	Overall,	such	an	analysis	highlights	tremendous	dif-
ferences	between	 species	effects.	 For	 instance,	 in	 the	microbial	 ex-
periment,	SL104	belongs	to	ecosystems	with	the	highest	composition	
effect	 on	 xylose	 oxidation	 (Figure	3a).	 The	 other	 species	 belong	 to	
ecosystems	that	are	close	to	each	other’s	(Figure	3c	and	Figure	S2a).	

In	 the	 Biodiversity II	 experiment,	 the	 functional	 groups	 defined	 by	
Tilman	et	al.	 (2001)	are	not	homogeneous	 in	their	effects	 (Figure	3b	
and	d).	Among	legumes,	Lupinus perennis	(Luppe)	and	Lespedeza capi-
tata	(Lesca)	belong	to	ecosystems	with	the	highest	interaction	effects,	
whereas Amorpha canescens	 (Amocan)	 belongs	 to	 ecosystems	 with	
the	 highest	 composition	 effect	 (Figure	3d	 and	 Figure	S2b).	 Finally,	
Petalostemum purpureum	(Petpu)	belongs	to	ecosystems	characterized	
by	low	interaction	and	composition	effects	(Figure	3d	and	Figure	S2b).

The	 hierarchical	 clustering	 (Figure	3e	 and	 f)	 corroborates	 this	
explanatory	analysis.	 In	 the	microbial	experiment,	SL104	 is	 first	 iso-
lated	 in	 a	 singleton,	 then	 SL68	 and	 SL187.	 Based	 on	 a	 four-	group	
clustering,	 the	 functional	 groups	 of	 species	 are	 namely:	 {	SL104	},	
{	SL68	}	 and	 {	SL187	}	 in	 singletons,	 then	 {	SLWC2,	 SL106,	 SL197	}	
(Figure	3e).	This	means	that,	when	the	three	species	SLWC2,	SL106	
and	SL197	co-	occur	with	each	other	inside	their	functional	group,	and	
with	species	SL104,	SL68	and	SL187	that	belong	to	singletons,	they	
induce	similar	diversity	effects	on	the	ecosystem	functioning.	 In	the	
Biodiversity II	experiment,	the	species	are	first	separated	in	two	groups,	
then	Lupinus perennis	is	isolated	from	the	smallest	group.	Based	on	a	
three-	group	clustering,	 the	 functional	groups	of	species	are	namely:	
{Lupinus perennis}	 in	a	singleton,	{Lespedeza capitata, Koeleria cristata, 

F IGURE  3 Species	clustering	based	on	
the	mean	diversity	effects	of	the	clusters	
of	ecosystems	containing	a	given	species.	
(a)	and	(b)	Interaction	effect	vs	composition	
effect.	Example	of	a	cluster	of	ecosystems	
containing	a	given	species	(SL104	or	
Lupinus perennis).	(c)	and	(d)	Interaction	
effect	vs	composition	effect.	Centroids	of	
the	clusters	of	ecosystems	containing	each	
species.	(e)	and	(f)	Trees	of	hierarchical	
clustering	of	centroids	of	the	ecosystem	
clusters	containing	each	species.	The	
centroids	are	clustered	using	Euclidean	
distance	and	Ward’s	linkage	algorithm.	In	
(d)	and	(f),	different	colours	correspond	
to	different	functional	groups	defined	by	
Tilman	et	al.	(2001),	legumes	(blue),	C3-	
grasses	(red),	C4-	grasses	(green)	and	forbs	
(gold)

(a) (b)

(c) (d)

(e) (f)

Pearson Pearson
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Agropyron smithii,	Achillea millefolium, Poa pratensis} and {Amorpha ca-
nescens, Liatris aspera, Monarda fistulosa, Andropogon gerardi, Elymus 
canadensis, Asclepias tuberose, Panicum virgatum, Sorghastrum nutans, 
Petalostemum purpureum, Schizachyrium scoparium}	 (Figure	3f).	 Ten	
species	belong	to	the	largest	group,	that	is	a	C3-	grass,	two	legumes,	
three	forbs	and	the	four	C4-	grasses.	This	clustering	means	that,	when	
the	ten	species	co-	occur	with	each	other	inside	the	largest	functional	
group,	and	with	species	of	other	functional	groups,	they	induce	similar	
diversity	effects	on	the	ecosystem	functioning.	Except	the	C4-	grasses,	
the	functional	groups	a	priori	defined	by	Tilman	et	al.	(2001)	are	split	
into	several	clusters:	C3-	grasses	and	forbs	into	two,	and	the	four	le-
gumes	into	three	different	clusters.

3.2 | Modelling the ecosystem functioning based 
on the ecosystem clustering

Next,	we	focus	on	the	modelling	of	ecosystem	function	based	on	the	
ecosystem	clustering	by	assembly	motifs,	that	 is	the	combination	of	
functional	groups	of	species	(see	Figure	1).	We	recall	that	each	species	
clustering	in	functional	groups	is	a	model,	which	generates	a	new	set	
of	assembly	motifs.	Consequently,	we	explore	the	model	quality,	ac-
curacy	and	efficiency,	by	increasing	step-	by-	step	the	number	of	func-
tional	groups	 (Figure	4).	The	goodness	of	 fit	of	 the	model	 increases	
from	a	low	value	until	one	when	there	are	as	many	functional	groups	
as	species	(Figure	4a	and	b).	The	model	robustness	is	evaluated	by	its	
efficiency:	it	also	increases,	but	remains	always	lower	than	the	good-
ness	of	 fit	 of	 the	model.	 In	 contrary,	 the	predicting	 ratio	decreases	
with	the	number	of	functional	groups,	from	one	when	all	the	ecosys-
tems	are	clustered	together	in	a	singleton	(all	ecosystem	functions	are	
predicted	by	 the	mean	 function	of	 all	 ecosystems),	 until	 zero	when	

there	are	as	many	functional	groups	as	species	(no	ecosystem	func-
tion	can	be	predicted	because	each	ecosystem	cluster	is	a	singleton)	
(Figure	4c	and	d).	The	best	number	of	functional	groups	results	from	a	
trade-	off	between	the	accuracy	(R2),	the	efficiency	(E)	and	the	predict-
ing	ability	(predicting	ratio)	of	the	model.	In	the	microbial	experiment,	
R2	 increases	 from	1	 to	 5	 functional	 groups	 (Figure	4a).	However,	E 
presents	a	maximum	for	four	clusters	of	species,	which	corresponds	to	
a	predicting	ratio	of	53/57	ecosystems	(Figure	4c).	In	the	Biodiversity II 
experiment,	R2	increases,	with	local	maximums	for	3,	6	and	8	species	
functional	groups,	and	the	predicting	ratio	decreases	quickly	from	1	to	
16	functional	groups.	A	species	clustering	in	three	functional	groups	
allows	to	predict	the	functions	of	52	of	53	ecosystems.

For	a	given	species	clustering,	each	ecosystem	can	be	described	by	
a	unique	assembly	motif,	and	its	function	can	be	evaluated	by	model-
ling	(Figures	S3	and	S4	for	the	independent	modelling	of	both	diversity	
effects).	In	the	microbial	experiment,	all	the	63	species	combinations	
are	observed.	Species	richness	is	the	most	frequently	used	metric	of	
diversity	 in	 biodiversity–ecosystem	 functioning	 research	 (Hooper	
et	al.,	2005;	Langenheder	et	al.,	2010;	Reich	et	al.,	2012;	Tilman	et	al.,	
1997,	2001).	As	a	consequence,	here	we	use	species	number	(ecosys-
tem	size)	as	a	reference	(Figures	5a	and	b).	This	modelling	leads	to	dis-
persed	and	overlapping	diversity	effects	(Figure	5a),	but	goodness	of	fit	
(R2	=	.438,	p = 9.1 × 10−7)	and	efficiency	(E	=	.245,	p = 1.8 × 10−3)	are	
significant	 (Figure	5b).	Based	on	a	 four-	group	 species	 clustering,	 the	
resulting	ecosystem	clustering	by	assembly	motifs	is	much	more	struc-
tured	(Figure	5c	and	d).	The	diversity	effects	of	ecosystems	that	share	
an	assembly	motif	are	close	to	each	other,	confirming	the	functional	
redundancy	of	clustered	species	(Figure	5c).	The	goodness	of	fit	is	high	
(R2 =	.892,	p < 10−16),	and	the	efficiency	of	this	modelling	remains	high	
and	highly	significant	(E	=	.828,	p < 10−16)	(Figure	5d).

F IGURE  4 Accuracy,	efficiency	and	
predicting	ability	of	modelling	vs	the	
number	of	functional	groups.	(a)	and	(b)	
Coefficient	of	determination	R2	(in	black)	
and efficiency E	(in	red)	of	the	relationship	
between	the	ecosystem	function	observed	
vs modelled (R2)	or	predicted	(E)	by	cross-	
validation.	(c)	and	(d)	Predicting	ratios,	
that	is	the	proportion	of	ecosystems	of	
which	the	function	can	be	predicted	by	the	
clustering	model

(a) (b)

(c) (d)
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In	 the	 Biodiversity II	 experiment,	 only	 53	 of	 65519	
(65535	-		16	monocultures)	 plurispecies	 ecosystems	 are	 observed,	
thus	less	than	0.1%	of	all	possible	species	assemblages.	The	cluster-
ing	 of	 ecosystems	 by	 their	 size	 induces	 dispersed	 and	 overlapping	
ecosystem	groups	 (Figure	6a),	 a	poor	 goodness	of	 fit	 (R2	=	.489,	p = 
1.2 × 10−9)	 and	 a	 poor	 efficiency	 (E	=	.142,	 p = 1.2 × 10−3)	 of	 the	
modelling	 (Figure	6b).	 A	 four-	group	 clustering	 based	 on	 functional	
groups	a	priori	defined	by	Tilman	et	al.	 (2001)	 improves	significantly	
the	goodness	of	fit	 (R2	=	.771,	p = 4.4 × 10−16),	but	more	weakly	the	
efficiency	of	the	modelling	(E	=	.375,	p = 2.7 × 10−8),	and	the	predict-
ing	 ratio	 equals	 to	 46/53	 (Figure	6c	 and	 d).	An	 a	 posteriori	 species	
clustering	in	only	three	groups	improves	strongly	both	the	goodness	of	
fit	 (R2	=	.863,	p < 10−16)	and	the	efficiency	(E	=	.717,	p = 2.2 × 10−14)	
of	 the	modelling	 (Figure	6e	and	f).	Moreover,	 the	 function	of	52/53	
ecosystems	can	be	predicted	independently.

4  | DISCUSSION

4.1 | Separating the interaction and composition 
effects: an alternative proposal

The	decomposition	of	ecosystem	functions	into	diversity	effects	has	
been	successfully	used	in	the	past	to	analyse	biodiversity–ecosystem	
functioning	experiments	(Loreau	&	Hector,	2001;	Reich	et	al.,	2012).	
This	method	follows	an	integrative	path	by	computing	the	covariance	
between	the	observed	and	expected	contributions	of	each	species	to	
ecosystem	 functioning.	We	here	 followed	 the	 same	philosophy	but	
used	the	ratio	between	observed	and	expected	yield	(so-	called	rela-
tive	yield	of	the	mixture,	RYM)	instead	of	the	covariance,	as	suggested	

by	Wilson	(1988).	Based	on	this	decomposition,	we	defined	two	new	
elementary	ecosystem-	level	diversity	effects:	interaction	and	compo-
sition	 effects.	 Both	 interaction	 and	 composition	 effects	 are	 dimen-
sionless,	which	allows	comparisons	between	experiments	performed	
in	various	conditions.

The	two	experiments	that	we	re-	analyse	here	are	very	different:	
bacterial	assemblages	grown	for	48	hr	 in	 laboratory	(Langenheder	
et	al.,	2010)	and	grassland	mixtures	cultivated	for	several	years	 in	
the	field	(Tilman	et	al.,	2001).	In	the	microbial	experiment,	the	ob-
served	function	is	strongly	correlated	to	the	composition	effect.	In	
both	experiments,	species	interactions	greatly	increase	ecosystem	
function,	between	1.4	and	2.1	times,	indicating	strong	complemen-
tary	 interactions	 (e.g.,	 facilitation,	 niche	 differentiation)	 between	
species,	as	suggested	by	Tilman	et	al.	(2001)	and	Langenheder	et	al.	
(2010).	In	addition,	we	found	that	the	covariance	between	the	in-
teraction	and	composition	effects	is	not	significantly	different	from	
zero,	which	corroborates	Loreau	and	Hector	(2001)’s	results.	These	
findings	demonstrate	that	the	interaction	and	composition	effects	
are	independent	in	both	experiments,	but	the	two	diversity	effects	
contribute	significantly	to	ecosystem	functioning.

4.2 | The emerging concept of assembly motifs

We	 propose	 to	 quantify	 the	 net	 effect	 of	 species	 interactions	 on	
ecosystem	functioning	through	the	 lens	of	assembly motifs,	 that	 is	a	
combination	of	co-	occurring	functional	groups	within	an	ecosystem.	
An	assembly	motif	is	a	pattern	of	species	composition	that	reflects	a	
given	biotic	environment.	Our	results	show	that	ecosystems	described	
by	 the	 same	 assembly	motif	 display	 diversity	 effects	 on	 ecosystem	

F IGURE  5 Ecosystem	clustering,	
goodness	of	fit	and	efficiency	of	the	
clustering	model	for	ecosystem	functioning	
in	the	microbial	experiment	(Langenheder	
et	al.,	2010).	(a)	and	(b)	Modelling	based	on	
the	ecosystem	size	(number	of	species).	(c)	
and	(d)	Modelling	based	on	an	a	posteriori	
four-	group	species	clustering.	(a)	and	(c)	
Interaction	effect	vs	composition	effect.	(b)	
and	(d)	Relationship	between	modelled	and	
observed	ecosystem	functions.	Each	bar	
corresponds	to	the	error	induced	by	leaving	
out	the	ecosystem	to	predict.	Different	
coloured	symbols	correspond	to	different	
assembly	motifs.	Solid	black	line	is	the	1:1	
line

(a) (b)

(c) (d)
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functioning	similar	to	each	other	in	terms	of	interaction	and	composi-
tion	effects.	An	assembly	motif	 therefore	describes	 the	biotic	envi-
ronment	that	regulates	the	effects	of	species	interactions	on	a	given	
ecosystem	function.

The	 underlying	 condition	 of	 our	 modelling	 framework	 is	 that	
the	presence/absence	of	at	least	one	species	from	each	functional	
group	changes	the	ecosystem-	wide	species	effect	 in	a	similar	way	
(Jaillard	 et	al.,	 2014).	 This	 condition	 is	 the	 simplest	 and	 the	most	
commonly	 used	 in	 ecology	 (Díaz	 &	 Cabido,	 2001;	 Hooper	 et	al.,	
2005).	It	implicitly	assumes	that	the	presence	of	particular	species,	
thus	of	particular	 interactions,	 is	more	 important	than	the	number	
of	interactions,	the	number	of	species	or	the	number	of	functional	
groups.	Some	authors	have	long	pointed	out	that	the	composition	of	
an	ecosystem,	that	is	the	identity	of	species	or	functional	groups,	af-
fects	its	functioning	more	than	diversity	per	se	(Hooper	&	Vitousek,	
1997).	Our	 results	 confirm	 the	 validity	 of	 this	 hypothesis	 in	 both	
studied	experiments.

Our	 modelling	 framework	 is	 based	 on	 combinatorics	 through	
combinations	and	clustering	of	species,	functional	groups	and	ecosys-
tems.	Clustering	of	species	or	ecosystems	is	a	simplification	of	the	real	
world.	 It	 assumes	 that	 clustered	 species	 are	 functionally	 redundant,	
which	means	in	our	case	that	they	induce	roughly	the	same	effects	on	
the	ecosystem	functioning.	However,	the	functional	redundancy,	and	
thus	the	species	clustering,	is	specific	to	the	considered	experiment,	to	
the	set	of	species	used	and	to	the	ecosystem	function	observed	in	the	
experiment	(Loreau,	2004).	Species	clustering	is	only	a	shortcut	that	
should	enable	a	better	understanding	of	reality.	The	clustering	of	spe-
cies	based	on	their	diversity	effects	reduces	the	range	of	possibilities	
to	affect	the	ecosystem	functioning.	The	clustering	of	ecosystems	by	
assembly	motifs	reduces	the	range	of	effects	induced	by	the	species	
interactions	and	composition	on	ecosystem	functioning.	The	variance	
within	each	ecosystem	cluster	is	low.	The	clustering	thus	enables	the	
a	posteriori	determination	of	a	likely	interacting	schema	based	on	par-
simonious	species	clusters	and	readable	ecosystem	clusters.	It	finally	

F IGURE  6 Ecosystem	clustering,	
goodness	of	fit	and	efficiency	of	the	
clustering	model	for	ecosystem	functioning	
in	the	Biodiversity II	experiment	(Tilman	
et	al.,	2001).	(a)	and	(b)	Modelling	based	
on	the	ecosystem	size	(number	of	species).	
(c)	and	(d)	Modelling	based	on	an	a	priori	
four-	group	species	clustering	defined	by	
Tilman	et	al.	(2001),	that	is	legumes,	forbs,	
C3-		and	C4-	grasses.	(c)	and	(d)	Modelling	
based	on	an	a	posteriori	three-	group	
species	clustering.	(a),	(c)	and	(e)	Interaction	
effect	vs	composition	effect.	(b),	(d)	and	
(f)	Relationship	between	modelled	and	
observed	ecosystem	functions.	Each	bar	
corresponds	to	the	error	induced	by	leaving	
out	the	ecosystem	to	predict.	Different	
coloured	symbols	correspond	to	different	
assembly	motifs.	Solid	black	line	is	the	1:1	
line

(a) (b)

(c) (d)

(e) (f)
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sets	 up	 a	 comprehensive	 interacting	 organization	 of	 species	within	
ecosystems,	without	any	a	priori	knowledge	of	species	properties.

4.3 | Identifying and quantifying the interacting 
roles of species within ecosystems

We	clearly	 showed	 that	 an	ecosystem	clustering	based	on	 assem-
bly	motifs	is	much	more	suitable	than	the	classical	clustering	based	
on	the	ecosystem	size,	such	as	the	number	of	species	or	functional	
groups.	 Langenheder	 et	al.	 (2010)	 biologically	 showed	 that	 the	
species	SL104	plays	a	key	 role	on	xylose	oxidation.	Our	modelling	
approach	retrieves	this	key	role	of	SL104	and	specifies	that	the	spe-
cies	increases	the	ecosystem	function	by	composition	effect	rather	
than	interaction	effect.	It	also	shows	that	the	three	species	SLWC2,	
SL106	 and	 SL197	 are	 clustered	 in	 a	 same	 functional	 group;	 thus,	
they	 induce	 similar	 diversity	 effects	 by	 interacting	 between	 them	
and	with	others.

In	 the	Biodiversity II	 experiment,	we	highlight	 that	 only	 three	 a	
posteriori	 functional	 effect	groups	explain	and	 successfully	predict	
ecosystem	functioning.	The	a	priori	species	clustering	based	on	the	
number	of	species	as	well	as	the	clustering	defined	by	Tilman	et	al.	
(2001)	are	both	based	on	four	groups:	they	explain	and	predict	less	
accurately	 the	 ecosystem	 biomass	 than	 our	 a	 posteriori	 approach.	
Our	a	posteriori	approach	is	thus	more	accurate,	more	efficient	and	
more	parsimonious	than	both	a	priori	approaches	based	on	ecosys-
tem	size	and	functional	groups	a	priori	defined.	Surprisingly,	the	four	
legumes	classically	clustered	into	a	single	functional	group	(legume)	
were	found	in	different	functional	groups	based	on	our	a	posteriori	
clustering.	Lupinus perennis	belongs	to	the	ecosystem	cluster	with	the	
highest	 interaction	effects.	Lupinus perennis	 is	a	 legume,	 the	 leaves	
and	 fine	 roots	 of	 which	 have	 a	 very	 short	 longevity,	 lesser	 than	
4	weeks,	 releasing	 large	 amounts	 of	 nitrogen	 in	 soil	 (Craine	 et	al.,	
2002).	In	Europe,	the	Lupinus	genus	is	also	known	among	legumes	to	
produce	cluster	roots	that	release	citrate	and	protons	and	mobilize	
poorly	 available	nutrients	 such	 as	phosphorus	 (Hinsinger,	 Plassard,	
Tang,	&	Jaillard,	2002;	Jaillard,	Plassard,	&	Hinsinger,	2003;	Lambers,	
Clements,	&	Nelson,	2013).	The	Lupinus	species	from	the	New	World	
are	less	studied	but	Lambers,	Bishop,	Hopper,	Laliberté,	and	Zúñiga-	
Feest	(2012)	reported	that	Lupinus lepidus	also	produces	cluster-	like	
roots.	 Lespedeza capitata	 is	 clustered	 with	 a	 forb	 (Achillea millefo-
lium)	 and	 three	 C3-	grasses	 (Koeleria cristata, Agropyron smithii and 
Poa pratensis).	 The	 species	 cluster	 has	 high	 interaction	 effects	 but	
low	 composition	 effects.	Note	 that	 Lupinus perennis and Lespedeza 
capitata	 are	 always	 isolated	 in	 small	 functional	 groups	 and	 have	
strong	 structuring	 effects	 on	 the	 ecosystem	 function	 across	 years	
(from	2001	 to	 2007,	 data	 not	 shown).	Amorpha canescens belongs 
to	 ecosystems	with	 the	highest	 composition	effects	 but	 low	 inter-
action	 effects.	Our	 results	 confirm	 that	 legumes	 play	 a	 key	 role	 in	
ecosystem-	level	 biomass	 production,	 as	 previously	 highlighted	 by	
many	authors	 (e.g.	Tilman	et	al.,	1997,	2001),	but,	as	suggested	by	
Craine	et	al.	(2002)	and	Wright	et	al.	(2006),	they	also	indicate	that	
the	“legume”	functional	group	is	not	homogeneous	 in	the	ability	of	
legumes	to	affect	plant	biomass.

4.4 | Biodiversity effects: a new conceptual  
framework

The	 approach	 developed	 here	 first	 separates	 the	 interaction	 effect	
from	 the	composition	effect	of	diversity	on	an	ecosystem	 function,	
then	clusters	species	in	functional	groups	on	the	basis	of	these	diver-
sity	effects	on	ecosystem	functioning.	However,	the	novelty	is	mainly	
to	combine	functional	groups	of	species	and	to	assume	that	any	spe-
cies	assemblage,	matching	to	all	possible	combinations	of	functional	
groups;	 that	 is,	all	possible	assembly	motifs,	 can	significantly	affect,	
positively	 or	 negatively,	 the	 interaction	 and	 composition	 effects.	
Jaillard	 et	al.	 (2014)	 already	 showed	 that	 a	 combinatorial	 approach	
makes	 it	 possible	 to	 reproduce	 all	 shapes	 of	 diversity–ecosystem	
functioning	relationships	reported	in	the	experimental	literature,	sug-
gesting	that	the	multifaceted	response	of	ecosystems	to	biodiversity	
changes	is	driven	by	effects	of	assembly	probabilities	and	variations	
in	species	properties.	We	here	demonstrate	that	a	combinatorial	ap-
proach	 also	 allows	 the	modelling	of	 ecosystem	 functioning	without	
any	hypothesis	 about	 its	 biotic	 or	 environmental	 determinants,	 and	
without	 any	 information	 on	 species	 functional	 traits.	 We	 only	 use	
the	available	experimental	data,	that	is	the	function	and	species	com-
position	of	ecosystems,	and	the	function	of	species	 in	monoculture.	
Wright	et	al.	 (2006)	study	 is	 the	only	one	to	assess	 random	species	
clustering	based	on	their	ability	to	predict	an	ecosystem	function.	The	
main	result	obtained	by	Wright	et	al.	(2006)	was	that	the	explanatory	
powers	of	a	priori	and	random	clustering	were	not	significantly	differ-
ent.	In	contrast	to	the	conclusion	of	Wright	et	al.	(2006),	our	results	
show	that	an	a	posteriori	species	clustering	can	be	highly	explanatory.	
It	even	makes	it	possible	to	predict	with	accuracy	the	functioning	of	
an	ecosystem	on	the	sole	basis	of	its	species	composition.

A	posteriori	approaches	such	as	ours	aim	at	describing	the	struc-
ture	of	raw	data.	In	our	case,	the	idea	is	to	determine	the	functional	
structure	of	ecosystems	 that	best	 accounts	 for	 the	observed	data	
without	attempting	to	explain	the	underlying	biological	processes.	
This	 approach	 allows	 testing	 some	 hypotheses;	 in	 particular,	 it	
allowed	 us	 to	 challenge	 the	widespread	 use	 of	 the	 legume–forb–
graminoid	clustering	when	 investigating	 the	 role	of	biodiversity	 in	
regulating	ecosystem	functioning.	 It	also	makes	 it	possible	 to	effi-
ciently	predict	a	given	ecosystem	function	based	on	a	set	of	ecosys-
tems	in	which	species	composition	and	function	have	already	been	
observed.	Nevertheless,	 a	 posteriori	 approaches	 remain	 statistical	
and	 phenomenological.	They	 should	 be	 complemented	 by	 a	 priori	
approaches	 that	 formulate	 new	 explanatory	 hypotheses	 based	 on	
the	 findings	 of	 a	 posteriori	 approaches.	 For	 instance,	 the	 identifi-
cation	of	functional	traits	associated	with	different	species	groups	
identified	 by	 our	 combinatorial	 approach	 could	 help	 to	 reveal	 the	
underlying	biological	processes.	Ultimately,	a	deeper	understanding	
of	 biodiversity–ecosystem	 functioning	 relationships	 should	 ideally	
come	 from	a	 combination	of	 a	posteriori	 and	a	priori	 approaches:	
the	 former	 to	explore	data	and	 reveal	 real	patterns	and	 the	 latter	
to	 determine	 the	 functional	 traits	 or	 biological	 processes	 respon-
sible	 for	 the	 observed	 species	 patterns.	 This	 combination	 is	 best	
suited	 to	 providing	 robust,	 general,	 explanatory	 and	 anticipatory	
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predictions	of	 the	effects	of	 species	diversity	on	ecosystem	 func-
tioning	(Mouquet	et	al.,	2015).

5  | CONCLUSION

We	propose	a	combinatorial	model	to	quantify	the	net	effects	of	spe-
cies	interactions	on	ecosystem	functioning	and	an	efficient	method	
to	fit	species	clustering	to	experimental	datasets.	When	applied	to	
two	datasets,	a	microbial	experiment	and	the	Biodiversity II	experi-
ment,	we	show	that	assembly	motifs,	that	is	patterns	of	ecosystem	
assembly	that	reflect	patterns	of	species	interactions,	explain	a	large	
part	of	the	biodiversity	effects	on	ecosystem	functioning.	This	con-
firms	that	the	existence	of	interactions	of	a	certain	type	is	more	im-
portant	than	the	number	of	interactions,	of	species	or	of	functional	
groups.	 Our	model	 is	 based	 solely	 on	 assembly	motifs	 defined	 as	
patterns	of	ecosystem	functional	structure:	it	is	the	first	model	that	
characterizes	species	by	their	ability	 to	affect	ecosystem	function-
ing,	without	explicitly	accounting	for	their	biological	properties	(e.g.	
functional	traits).
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