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Abstract
1.	 Quantifying the effects of species interactions is key to understanding the relation-
ships between biodiversity and ecosystem functioning but remains elusive due to 
combinatorics issues. Functional groups have been commonly used to capture the 
diversity of forms and functions and thus simplify the reality. However, the explicit 
incorporation of species interactions is still lacking in functional group-based ap-
proaches. Here, we propose a new approach based on an a posteriori clustering of 
species to quantify the effects of species interactions on ecosystem functioning.

2.	 We first decompose the observed ecosystem function using null models, in which 
species diversity does not affect ecosystem function, to separate the effects of 
species interactions and species composition. This allows the identification of a 
posteriori functional groups that have contrasting diversity effects on ecosystem 
functioning. We then develop a formal combinatorial model of species interactions 
in which an ecosystem is described as a combination of co-occurring functional 
groups, which we call an assembly motif. Each assembly motif corresponds to a 
particular biotic environment. We demonstrate the relevance of our approach 
using datasets from a microbial experiment and the long-term Cedar Creek 
Biodiversity II experiment.

3.	 We show that our a posteriori approach is more accurate, more efficient and more 
parsimonious than a priori approaches. The discrepancy between a priori and a 
posteriori approaches results from the way each clustering is set up: a priori ap-
proaches are based on ecosystem or species properties, such as ecosystem size 
(number of species or functional groups) or species’ functional traits, whereas our a 
posteriori approach is based only on the observed interaction and composition ef-
fects on ecosystem functioning.

4.	 Our findings demonstrate that an a posteriori approach is highly explanatory: it 
identifies who interacts with whom, and quantifies the effects of species interac-
tions on ecosystem functioning. They also highlight that a combinatorial modelling 
of ecosystem functioning can predict the functioning of an ecosystem without any 
hypothesis about the biotic or environmental determinants or any information on 
species functional traits. It only requires the species composition of the ecosystem 
and the observed functioning of others that share the same assembly motif.
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1  | INTRODUCTION

Species interactions strongly influence ecosystem functioning (Hooper 
et al., 2005; Loreau & Hector, 2001). However, quantifying their net 
impact is puzzling (Balvanera et al., 2006; Duffy, 2009; Huston, 1997; 
Jiang, Wan, & Li, 2009). Analytical methods have been proposed to 
separate the net effects of species composition from those of spe-
cies interactions (Garnier, Navas, Austin, Lilley, & Gifford, 1997; Jiang 
et al., 2009; Kirwan et al., 2009; Loreau & Hector, 2001; Wilson, 
1988). These methods have successfully explained biodiversity effects 
in several biodiversity–ecosystem functioning experiments (Loreau & 
Hector, 2001; Reich et al., 2012), but they have not quantified the net 
effect of species interactions nor identified the species that really in-
teract. The quantification of all possible pairwise species interactions 
is practically infeasible in species-rich ecosystems because of the 
curse of dimensionality (McGill, Enquist, Weiher, & Westoby, 2006). 
The difficulty of this task lies in the fact that myriad different types of 
positive and negative species interactions can simultaneously occur 
within ecosystems. Several attempts have been proposed to frame a 
pragmatic and operational approach to quantify ecosystem-wide spe-
cies interactions. The trait-based characterization of species’ compet-
itive abilities, that is the search for organism traits that can explain 
how species’ functions influence the performance of competing neigh-
bours (Grace, 1990), paved the road to a generic description of species 
interactions. In the last decade, this approach has been widely used 
to study species interactions (the “interaction milieu” sensu McGill 
et al., 2006) through the systematic evaluation of the community-level 
distribution of interaction traits. However, interaction traits are still 
unknown in most taxa (Violle, Reich, Pacala, Enquist, & Kattge, 2014).

Even if functional-group approaches simplify reality, they offer an 
operational and parsimonious way to analyse and model ecosystem 
functioning. Nevertheless, up to now this approach has mostly relied 
on a priori clustering based on expert knowledge, as illustrated by the 
widespread classification of plants into three groups: legumes, gram-
inoids and forbs. An a posteriori clustering may be promising since it 
will identify functional groups based on realized effects, for instance 
based on the way interacting species modulate ecosystem function-
ing. Such clustering has hardly been applied so far. A notable exception 
is the study of Wright et al. (2006) which searched for the best spe-
cies clustering to predict ecosystem biomass. More recently, Jaillard, 
Rapaport, Harmand, Brauman, and Nunan (2014) developed a novel 
modelling approach to species interactions based on their effects on 
ecosystem functioning. This model was able to successfully reproduce 
all the forms of biodiversity–ecosystem functioning relationships re-
ported in the literature but its flexibility remained low because it is 
based on a priori prevalent assembling rules that determine ecosystem 
functioning. Here, we extend Jaillard et al. (2014)’s model by proposing 

an a posteriori clustering approach to the effects of ecosystem-wide 
species interactions on a given ecosystem function.

The aim of this study is to quantify the net effects of species inter-
actions on a given ecosystem function. As suggested by Wilson (1988), 
we first decompose the observed ecosystem function using null mod-
els in which species diversity does not affect ecosystem functioning. 
This allows us to separate the effects of species interactions from the 
effects of species composition on ecosystem functioning. This separa-
tion makes it possible to a posteriori identify functional groups (sensu 
Díaz & Cabido, 2001 and Lavorel & Garnier, 2002) that have contrast-
ing interaction and composition effects on the ecosystem function. 
Then, we propose a formal combinatorial framework to describe an 
ecosystem as a combination of co-occurring functional groups, which 
we call assembly motif, echoing the network motifs in network the-
ory (Milo et al., 2002). Each assembly motif parsimoniously accounts 
for the observed effects of species interactions and composition on 
ecosystem functioning. We test this approach using two datasets: 
one microbial diversity experiment (Langenheder, Bulling, Solan, & 
Prosser, 2010) and the Cedar Creek Biodiversity II experiment (Tilman 
et al., 2001). We demonstrate that our approach can identify who is 
interacting with whom, and quantify the effects of species diversity on 
ecosystem functioning.

2  | MATERIALS AND METHODS

2.1 | Separating the effects of species interactions 
and species composition on ecosystem functioning

Consider a set S = {1, …, s} of s species i (Figure 1a). An ecosystem 
is defined as an assemblage A of individuals that belong to different 
species:

A cumulative function Fobserved(A) such as primary production, res-
piration or nutrient recycling is observed for each ecosystem A. The 
function Fobserved({i}) (with i = 1, … ,s) for monocultures of each species 
is also observed.

We set two null hypotheses, named H0 and G0, respectively 
(Figure S1). The null hypothesis H0 describes a situation where the 
species interactions within an ecosystem do not affect the ecosystem 
functioning. Under H0, the expected function Fexpected/H0(A) of an eco-
system is simply the mean of functions Fobserved({i}) of all monocultures 
of co-occurring species i of A (Wilson, 1988):

The null hypothesis G0 describes a situation where neither the 
species interactions nor the species composition affect the ecosys-
tem function. Under G0, the expected function Fexpected/G0(A) of any 

A={i∈S}.

(1)Fexpected∕H0

(

A
)

= F
i∈A

observed ({i}).

K E Y W O R D S

assembly motif, clustering, combinatorics, community, functional effect groups, modelling, 
theoretical ecology
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ecosystem is consequently constant. By convenience, we assume 
that the constant is the expected function Fexpected/H0(S) of all the 
species used in the experiment, that is according to the Equation 1, 
the mean of functions Fobserved({i}) of all monocultures of species i of S:

The function Fobserved(A) of an ecosystem can then be decomposed 
as follows:

or:

with:

and:

The quotient α(A) corresponds to the effect of species inter-
actions on the ecosystem function. This interaction effect is spe-
cific to an ecosystem. It equals one under H0, is lower than one 
when the species interactions decrease the ecosystem function 
and is higher than one when the species interactions increase the 

ecosystem function. The normalized remainder β(A) corresponds to 
the effect of species composition of the ecosystem on its function. 
This composition effect characterizes the subset of species that 
belong to the ecosystem, relatively to the whole set of species. 
It equals one under G0, is lower than one when the species com-
position decreases the ecosystem function and is higher than one 
when the species composition increases the ecosystem function. 
The composition effect is one on average when all the possible 
ecosystems are tested. Finally, the remainder Fexpected/G0(A) is by 
definition constant: this is a scale factor specific to the species set 
used in the experiment, that is the function expected with neither 
interaction nor composition effects. The scale factor integrates all 
the variations in species functions in the experiment (e.g. variation 
in environmental conditions across time). It has the dimension of 
the ecosystem function. Interaction and composition effects are 
dimensionless.

2.2 | Analysing the diversity effects induced by each 
species on ecosystem functioning

The idea is now to cluster ecosystems on the basis of the ecosystem 
interaction and composition effects. We denote by  the set of eco-
systems A observed in the experiment. We define i (with i = 1, … ,s) 
the cluster of ecosystems A that contains at least one individual of the 
species i of S:

(2)Fexpected∕G0

(

A
)

= Fexpected∕H0

(

S
)

= F
i∈S

observed ({i})

Fobserved

(

A
)

=
Fobserved

(

A
)

Fexpected∕H0

(

A
)

Fexpected∕H0

(

A
)

Fexpected∕G0

(

A
) Fexpected∕G0

(

A
)

.

(3)Fobserved

(

A
)

=α
(

A
)

β
(

A
)

Fexpected∕G0

(

A
)

(4)α
(

A
)

=
Fobserved

(

A
)

Fexpected∕H0

(

A
)

(5)β
(

A
)

=
Fexpected∕H0

(

A
)

Fexpected∕G0

(

A
) .

F IGURE  1 Step-by-step clustering 
framework to model the diversity effects 
on an ecosystem function. (a) An ecosystem 
A is defined as a set of co-occurring species 
and is characterized by an aggregate 
function F. Species are clustered into 
functional groups (here σ = 3 for instance) 
on the basis of the mean diversity effects 
of clusters of ecosystems containing a 
given species. (b) Each ecosystem is then 
described by a combination of functional 
groups, that is an assembly motif Mk 
(here, m = 2σ − 1 = 7 possible assembly 
motifs). Ecosystems described by the 
same assembly motif Mk are grouped into 
the clusters k and characterized by the 
aggregate functions F(k) (k = 1…7). The 
goodness of fit of the model clustering is 
evaluated by its determination coefficient 
and its robustness by cross-validation

(a) (b)
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The interaction and composition effects α(i) and β(i) induced by 
each species within the ecosystems are estimated by the mean diver-
sity effects of ecosystems A that contain at least one individual of the 
species i of S, then:

2.3 | Introducing the concept of assembly 
motif: a simple and operational descriptor of the 
composition of an ecosystem

Each ecosystem is a subset of individuals that belong to different spe-
cies: it can also be described as a subset of individuals that belong 
to different functional groups of species. We cluster the species set 
S = {1, … ,s} into σ functional groups Sj (with j = 1, … ,σ) on the basis of 
their interaction and composition effects α(i) and β(i) (Figure 1a). 
The σ functional groups Sj allow the assembly of m = 2σ − 1 non-
empty combinations of functional groups. We term assembly motif Mk 
(with k = 1, … ,m) each combination of functional groups, then: 

We associate each ecosystem A with an assembly motif Mk by as-
suming that each species i of A belongs to a functional group Sj of Mk 
and that each functional group Sj of Mk is represented by at least one 
individual of species i of A. Then, we define k (k =1, … ,m) as the clus-
ter of ecosystems A described by the assembly motif Mk:

2.4 | Modelling the function of an ecosystem 
according to its assembly motif

An assembly motif characterizes a particular biotic environment. Next, 
we cluster ecosystems by assembly motifs; that is, we cluster eco-
systems that share a similar biotic environment (Figure 1b). We use 
the ecosystem clustering by assembly motifs to model the ecosystem 
function. As in Equation 6, we define i,k (with i = 1, … ,s) the cluster 
of ecosystems A of k that contains at least one individual of the spe-
cies i of S:

According to Equation 7, the interaction and composition effects 
α(i,k) and β(i,k) of ecosystems A of clusters i,k are estimated by:

According to Equations 3 and 8, the function Fmodelled(A) of 
any ecosystem A is finally modelled as the product of the mean 

interaction effect, the mean composition effect and the scale factor 
of ecosystems that contain the same species and share the same 
assembly motif:

2.5 | Combinatorics and statistics

The interaction effects α(A) and the composition effects β(A) are 
computed for each ecosystem using its species composition and the 
monoculture functions of each species (Equations 1–5). The mean in-
teraction and composition effects α(i) and β(i) of the clusters of 
ecosystems containing a given species i of S are computed using all 
the ecosystems containing the species (Equation 7). The species cen-
troids are then clustered in functional groups using Euclidean distance 
and Ward’s linkage algorithm (functions dist, method = “euclidean,” 
and hclust, method = “ward.D” with R, see the scripts in Supporting 
Information) on the basis of mean diversity effects α(i) and β(i) 
(Legendre & Legendre, 2012).

The hierarchical tree of species centroids clustering is cut at differ-
ent levels by increasing step-by-step the number of functional groups 
(see Figure 1). At each step, that is for a given number of functional 
groups, all possible assembly motifs Mk are assembled, and the ecosys-
tems are clustered by assembly motifs. For a comparison of different 
approaches, the species are also clustered by (1) functional groups a 
priori defined by Tilman et al. (2001) and by (2) size (i.e. number of 
species in the ecosystem). In the latter case, each ecosystem size is an 
assembly motif.

The mean diversity effects α(i,k) and β(i,k) of species in each 
assembly motif are computed according to Equation 8. The function 
Fmodelled(A∈k) is then evaluated according to Equation 9. The inter-
action effect is a quotient and thus measures a multiplicative process: 
the mean of this biodiversity effect is computed according to a geo-
metric formula (Equations 7–9). The composition effect is a remainder 
and thus measures an additive process: the mean of this biodiversity 
effect is computed according to an arithmetic formula (Equations 1, 2, 
7–9) (Crawley, 2007).

The goodness of fit of each clustering model is evaluated by the 
coefficient of determination R2 of the relationship between modelled 
and observed ecosystem functions, that is the ratio between the vari-
ance explained by the modelling and the total variance observed in 
the experiment:

The robustness of each clustering model is evaluated by cross-
validation. Because of the small number of observations in most 
experiments, we use a leave-one-out cross-validation; that is, each 
ecosystem function is independently predicted by removing the 

(6)i={A ∈  such that∃ i ∈ A}.

(7)
α
(

i

)

= ᾱ
A∈i

(

A
)

and β
(

i

)

= β̄
A∈i

(

A
)

.

Mk = {Sj with j ∈ {1 ,… , σ}}

k={A ∈ such that∀ i∈ A,∃ Sj∈Mk

with i∈Sj, and∀ Sj ∈Mk,∃ i∈Awith i ∈ Sj}.

i,k={A∈k such that ∃ i ∈ A}.

(8)α
(

i,k

)

= ᾱ
A∈i,k

(

A
)

and β
(

i,k

)

= β
A∈i,k

(

A
)

.

(9)
Fmodelled

(

A∈k

)

= ᾱ
i∈A

(

i,k

)

β̄
i∈A

(

i,k

)

Fexpected∕G0

(

A
)

.

R
2=1−

∑

A∈

�

Fobserved

�

A
�

−Fmodelled

�

A
��2

∑
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�

Fobserved

�

A
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− ̄Fobserved

�
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ecosystem to predict from the experiment dataset. The prediction ac-
curacy is evaluated by the model efficiency E, that is the ratio between 
the variance explained by the independent predictions and the total 
variance observed in the experiment (see, e.g., Nash & Sutcliffe, 1970):

When all the possible ecosystems are observed, all the possible 
assembly motifs are represented at least once. When only a part of 
possible ecosystems are observed, some assembly motifs are not 
observed. When an assembly motif is represented by only one eco-
system, the ecosystem function cannot be independently predicted. 
We define the predicting ratio as the number of ecosystems for which 
the function can be predicted by the clustering model, divided by the 
number of all observed ecosystems.

All the computations are done using the R-software (R 
Development Core Team, 2009).

2.6 | Biodiversity datasets

We used two datasets to test our approach. The first dataset is based 
on the observation of all the possible ecosystems assembled with an 
initial pool of microbial species. Langenheder et al. (2010) designed 
this experiment to analyse the biodiversity–productivity relationship 
in bacterial microcosms. They tested all the 63 possible species com-
binations with a pool of six bacteria: 6, 15, 20, 15, 6 and 1 combina-
tions with 1, 2, 3, 4, 5 and 6 bacteria, respectively. Here, we analyse 
the xylose oxidation (ecosystem function) after 48 hr for the 63 bac-
terial ecosystems, of which six are monospecies and 57 plurispecies 
cultures.

The second dataset is the Cedar Creek Biodiversity II experiment 
dataset (Tilman et al., 2001). This experiment was dedicated to the 
analysis of the biodiversity–productivity relationship in grasslands. 
Here, the studied ecosystem function is the yearly plant above-ground 
biomass per unit area. The experiment contained 88 ecosystems from 
a pool of 16 prairie species (Reich et al., 2012; Tilman et al., 2001). 
Diversity treatments consisted of 1-, 2-, 4-, 8- and 16-species plots, 
each replicated 34 times on average, which corresponds to 168 ex-
perimental plots. The species composition in each plot was a random 
draw from the experimental species pool. All species were grown in 
monoculture. The 16 prairie species were a priori clustered into four 
functional groups of four species: legumes, forbs, C3- and C4-grasses. 
As a case study, here we analyse the above-ground biomass harvested 
in the 88 ecosystems in August 2004, of which 35 are monospecies 
and 53 plurispecies plots. Each biomass is the average value of the 
harvests of three “unsorted” strips.

3  | RESULTS

3.1 | Species clustering based on the diversity 
effects on ecosystem functioning

The scale factors Fexpected/G0(A) are 0.633 xylose oxidation and 
114.8 g/m2 of biomass accumulated for a year in the microbial and 
Biodiversity II experiments, respectively. The decomposition of the 
function of each ecosystem into dimensionless effects of species 
interactions α(A) and species composition β(A) allows the com-
parison of these two experiments (Figure 2). The mean interaction 
effect is 1.46 ± 0.23 in the microbial experiment and 2.08 ± 1.18 
in the Biodiversity II experiment. Even though the interaction ef-
fect is significantly correlated with the observed ecosystem func-
tion in both experiments, they are more strongly correlated in the 
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F IGURE  2 Effects of species 
interactions and species composition of an 
ecosystem function. (a) and (b) Ecosystem 
function vs interaction effect, (c) and (d) 
Ecosystem function vs composition effect. 
The coefficient of correlation r2

Pearson of 
the relationship are indicated: they are 
significant at p < .001
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Biodiversity II experiment (p < 10−16) than in the microbial experi-
ment (p = 3.9 × 10−6) (Figure 2a and b). The mean composition ef-
fect is exactly one (1.00 ± 0.27) in the microbial experiment where 
all the species combinations are assembled. The mean composition 
effect is close to one (0.97 ± 0.14) in the Biodiversity II experiment: 
it is not significantly different from one (p < 10−16). In both experi-
ments, the composition effect is significantly correlated with the 
observed function. However, composition effect and observed 
function are more strongly correlated in the microbial experiment 
(p < 10−16) than in the Biodiversity II experiment (p = .007) (Figure 2c 
and d). In both experiments, the interaction effect and the com-
position effect are not correlated (r2

Pearson = .019 and p = .305 in 
the microbial experiment; r2

Pearson = 1.7 × 10−4 and p = .927 in the 
Biodiversity II experiment) (Figure 3).

A species-centred analysis can be performed when comparing 
the location of ecosystems containing a given species on the α-by-β 
space (Figure 3). Overall, such an analysis highlights tremendous dif-
ferences between species effects. For instance, in the microbial ex-
periment, SL104 belongs to ecosystems with the highest composition 
effect on xylose oxidation (Figure 3a). The other species belong to 
ecosystems that are close to each other’s (Figure 3c and Figure S2a). 

In the Biodiversity II experiment, the functional groups defined by 
Tilman et al. (2001) are not homogeneous in their effects (Figure 3b 
and d). Among legumes, Lupinus perennis (Luppe) and Lespedeza capi-
tata (Lesca) belong to ecosystems with the highest interaction effects, 
whereas Amorpha canescens (Amocan) belongs to ecosystems with 
the highest composition effect (Figure 3d and Figure S2b). Finally, 
Petalostemum purpureum (Petpu) belongs to ecosystems characterized 
by low interaction and composition effects (Figure 3d and Figure S2b).

The hierarchical clustering (Figure 3e and f) corroborates this 
explanatory analysis. In the microbial experiment, SL104 is first iso-
lated in a singleton, then SL68 and SL187. Based on a four-group 
clustering, the functional groups of species are namely: { SL104 }, 
{ SL68 } and { SL187 } in singletons, then { SLWC2, SL106, SL197 } 
(Figure 3e). This means that, when the three species SLWC2, SL106 
and SL197 co-occur with each other inside their functional group, and 
with species SL104, SL68 and SL187 that belong to singletons, they 
induce similar diversity effects on the ecosystem functioning. In the 
Biodiversity II experiment, the species are first separated in two groups, 
then Lupinus perennis is isolated from the smallest group. Based on a 
three-group clustering, the functional groups of species are namely: 
{Lupinus perennis} in a singleton, {Lespedeza capitata, Koeleria cristata, 

F IGURE  3 Species clustering based on 
the mean diversity effects of the clusters 
of ecosystems containing a given species. 
(a) and (b) Interaction effect vs composition 
effect. Example of a cluster of ecosystems 
containing a given species (SL104 or 
Lupinus perennis). (c) and (d) Interaction 
effect vs composition effect. Centroids of 
the clusters of ecosystems containing each 
species. (e) and (f) Trees of hierarchical 
clustering of centroids of the ecosystem 
clusters containing each species. The 
centroids are clustered using Euclidean 
distance and Ward’s linkage algorithm. In 
(d) and (f), different colours correspond 
to different functional groups defined by 
Tilman et al. (2001), legumes (blue), C3-
grasses (red), C4-grasses (green) and forbs 
(gold)

(a) (b)

(c) (d)

(e) (f)

Pearson Pearson
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Agropyron smithii, Achillea millefolium, Poa pratensis} and {Amorpha ca-
nescens, Liatris aspera, Monarda fistulosa, Andropogon gerardi, Elymus 
canadensis, Asclepias tuberose, Panicum virgatum, Sorghastrum nutans, 
Petalostemum purpureum, Schizachyrium scoparium} (Figure 3f). Ten 
species belong to the largest group, that is a C3-grass, two legumes, 
three forbs and the four C4-grasses. This clustering means that, when 
the ten species co-occur with each other inside the largest functional 
group, and with species of other functional groups, they induce similar 
diversity effects on the ecosystem functioning. Except the C4-grasses, 
the functional groups a priori defined by Tilman et al. (2001) are split 
into several clusters: C3-grasses and forbs into two, and the four le-
gumes into three different clusters.

3.2 | Modelling the ecosystem functioning based 
on the ecosystem clustering

Next, we focus on the modelling of ecosystem function based on the 
ecosystem clustering by assembly motifs, that is the combination of 
functional groups of species (see Figure 1). We recall that each species 
clustering in functional groups is a model, which generates a new set 
of assembly motifs. Consequently, we explore the model quality, ac-
curacy and efficiency, by increasing step-by-step the number of func-
tional groups (Figure 4). The goodness of fit of the model increases 
from a low value until one when there are as many functional groups 
as species (Figure 4a and b). The model robustness is evaluated by its 
efficiency: it also increases, but remains always lower than the good-
ness of fit of the model. In contrary, the predicting ratio decreases 
with the number of functional groups, from one when all the ecosys-
tems are clustered together in a singleton (all ecosystem functions are 
predicted by the mean function of all ecosystems), until zero when 

there are as many functional groups as species (no ecosystem func-
tion can be predicted because each ecosystem cluster is a singleton) 
(Figure 4c and d). The best number of functional groups results from a 
trade-off between the accuracy (R2), the efficiency (E) and the predict-
ing ability (predicting ratio) of the model. In the microbial experiment, 
R2 increases from 1 to 5 functional groups (Figure 4a). However, E 
presents a maximum for four clusters of species, which corresponds to 
a predicting ratio of 53/57 ecosystems (Figure 4c). In the Biodiversity II 
experiment, R2 increases, with local maximums for 3, 6 and 8 species 
functional groups, and the predicting ratio decreases quickly from 1 to 
16 functional groups. A species clustering in three functional groups 
allows to predict the functions of 52 of 53 ecosystems.

For a given species clustering, each ecosystem can be described by 
a unique assembly motif, and its function can be evaluated by model-
ling (Figures S3 and S4 for the independent modelling of both diversity 
effects). In the microbial experiment, all the 63 species combinations 
are observed. Species richness is the most frequently used metric of 
diversity in biodiversity–ecosystem functioning research (Hooper 
et al., 2005; Langenheder et al., 2010; Reich et al., 2012; Tilman et al., 
1997, 2001). As a consequence, here we use species number (ecosys-
tem size) as a reference (Figures 5a and b). This modelling leads to dis-
persed and overlapping diversity effects (Figure 5a), but goodness of fit 
(R2 = .438, p = 9.1 × 10−7) and efficiency (E = .245, p = 1.8 × 10−3) are 
significant (Figure 5b). Based on a four-group species clustering, the 
resulting ecosystem clustering by assembly motifs is much more struc-
tured (Figure 5c and d). The diversity effects of ecosystems that share 
an assembly motif are close to each other, confirming the functional 
redundancy of clustered species (Figure 5c). The goodness of fit is high 
(R2 = .892, p < 10−16), and the efficiency of this modelling remains high 
and highly significant (E = .828, p < 10−16) (Figure 5d).

F IGURE  4 Accuracy, efficiency and 
predicting ability of modelling vs the 
number of functional groups. (a) and (b) 
Coefficient of determination R2 (in black) 
and efficiency E (in red) of the relationship 
between the ecosystem function observed 
vs modelled (R2) or predicted (E) by cross-
validation. (c) and (d) Predicting ratios, 
that is the proportion of ecosystems of 
which the function can be predicted by the 
clustering model

(a) (b)

(c) (d)
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In the Biodiversity II experiment, only 53 of 65519 
(65535 - 16 monocultures) plurispecies ecosystems are observed, 
thus less than 0.1% of all possible species assemblages. The cluster-
ing of ecosystems by their size induces dispersed and overlapping 
ecosystem groups (Figure 6a), a poor goodness of fit (R2 = .489, p = 
1.2 × 10−9) and a poor efficiency (E = .142, p = 1.2 × 10−3) of the 
modelling (Figure 6b). A four-group clustering based on functional 
groups a priori defined by Tilman et al. (2001) improves significantly 
the goodness of fit (R2 = .771, p = 4.4 × 10−16), but more weakly the 
efficiency of the modelling (E = .375, p = 2.7 × 10−8), and the predict-
ing ratio equals to 46/53 (Figure 6c and d). An a posteriori species 
clustering in only three groups improves strongly both the goodness of 
fit (R2 = .863, p < 10−16) and the efficiency (E = .717, p = 2.2 × 10−14) 
of the modelling (Figure 6e and f). Moreover, the function of 52/53 
ecosystems can be predicted independently.

4  | DISCUSSION

4.1 | Separating the interaction and composition 
effects: an alternative proposal

The decomposition of ecosystem functions into diversity effects has 
been successfully used in the past to analyse biodiversity–ecosystem 
functioning experiments (Loreau & Hector, 2001; Reich et al., 2012). 
This method follows an integrative path by computing the covariance 
between the observed and expected contributions of each species to 
ecosystem functioning. We here followed the same philosophy but 
used the ratio between observed and expected yield (so-called rela-
tive yield of the mixture, RYM) instead of the covariance, as suggested 

by Wilson (1988). Based on this decomposition, we defined two new 
elementary ecosystem-level diversity effects: interaction and compo-
sition effects. Both interaction and composition effects are dimen-
sionless, which allows comparisons between experiments performed 
in various conditions.

The two experiments that we re-analyse here are very different: 
bacterial assemblages grown for 48 hr in laboratory (Langenheder 
et al., 2010) and grassland mixtures cultivated for several years in 
the field (Tilman et al., 2001). In the microbial experiment, the ob-
served function is strongly correlated to the composition effect. In 
both experiments, species interactions greatly increase ecosystem 
function, between 1.4 and 2.1 times, indicating strong complemen-
tary interactions (e.g., facilitation, niche differentiation) between 
species, as suggested by Tilman et al. (2001) and Langenheder et al. 
(2010). In addition, we found that the covariance between the in-
teraction and composition effects is not significantly different from 
zero, which corroborates Loreau and Hector (2001)’s results. These 
findings demonstrate that the interaction and composition effects 
are independent in both experiments, but the two diversity effects 
contribute significantly to ecosystem functioning.

4.2 | The emerging concept of assembly motifs

We propose to quantify the net effect of species interactions on 
ecosystem functioning through the lens of assembly motifs, that is a 
combination of co-occurring functional groups within an ecosystem. 
An assembly motif is a pattern of species composition that reflects a 
given biotic environment. Our results show that ecosystems described 
by the same assembly motif display diversity effects on ecosystem 

F IGURE  5 Ecosystem clustering, 
goodness of fit and efficiency of the 
clustering model for ecosystem functioning 
in the microbial experiment (Langenheder 
et al., 2010). (a) and (b) Modelling based on 
the ecosystem size (number of species). (c) 
and (d) Modelling based on an a posteriori 
four-group species clustering. (a) and (c) 
Interaction effect vs composition effect. (b) 
and (d) Relationship between modelled and 
observed ecosystem functions. Each bar 
corresponds to the error induced by leaving 
out the ecosystem to predict. Different 
coloured symbols correspond to different 
assembly motifs. Solid black line is the 1:1 
line

(a) (b)

(c) (d)
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functioning similar to each other in terms of interaction and composi-
tion effects. An assembly motif therefore describes the biotic envi-
ronment that regulates the effects of species interactions on a given 
ecosystem function.

The underlying condition of our modelling framework is that 
the presence/absence of at least one species from each functional 
group changes the ecosystem-wide species effect in a similar way 
(Jaillard et al., 2014). This condition is the simplest and the most 
commonly used in ecology (Díaz & Cabido, 2001; Hooper et al., 
2005). It implicitly assumes that the presence of particular species, 
thus of particular interactions, is more important than the number 
of interactions, the number of species or the number of functional 
groups. Some authors have long pointed out that the composition of 
an ecosystem, that is the identity of species or functional groups, af-
fects its functioning more than diversity per se (Hooper & Vitousek, 
1997). Our results confirm the validity of this hypothesis in both 
studied experiments.

Our modelling framework is based on combinatorics through 
combinations and clustering of species, functional groups and ecosys-
tems. Clustering of species or ecosystems is a simplification of the real 
world. It assumes that clustered species are functionally redundant, 
which means in our case that they induce roughly the same effects on 
the ecosystem functioning. However, the functional redundancy, and 
thus the species clustering, is specific to the considered experiment, to 
the set of species used and to the ecosystem function observed in the 
experiment (Loreau, 2004). Species clustering is only a shortcut that 
should enable a better understanding of reality. The clustering of spe-
cies based on their diversity effects reduces the range of possibilities 
to affect the ecosystem functioning. The clustering of ecosystems by 
assembly motifs reduces the range of effects induced by the species 
interactions and composition on ecosystem functioning. The variance 
within each ecosystem cluster is low. The clustering thus enables the 
a posteriori determination of a likely interacting schema based on par-
simonious species clusters and readable ecosystem clusters. It finally 

F IGURE  6 Ecosystem clustering, 
goodness of fit and efficiency of the 
clustering model for ecosystem functioning 
in the Biodiversity II experiment (Tilman 
et al., 2001). (a) and (b) Modelling based 
on the ecosystem size (number of species). 
(c) and (d) Modelling based on an a priori 
four-group species clustering defined by 
Tilman et al. (2001), that is legumes, forbs, 
C3- and C4-grasses. (c) and (d) Modelling 
based on an a posteriori three-group 
species clustering. (a), (c) and (e) Interaction 
effect vs composition effect. (b), (d) and 
(f) Relationship between modelled and 
observed ecosystem functions. Each bar 
corresponds to the error induced by leaving 
out the ecosystem to predict. Different 
coloured symbols correspond to different 
assembly motifs. Solid black line is the 1:1 
line

(a) (b)

(c) (d)

(e) (f)
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sets up a comprehensive interacting organization of species within 
ecosystems, without any a priori knowledge of species properties.

4.3 | Identifying and quantifying the interacting 
roles of species within ecosystems

We clearly showed that an ecosystem clustering based on assem-
bly motifs is much more suitable than the classical clustering based 
on the ecosystem size, such as the number of species or functional 
groups. Langenheder et al. (2010) biologically showed that the 
species SL104 plays a key role on xylose oxidation. Our modelling 
approach retrieves this key role of SL104 and specifies that the spe-
cies increases the ecosystem function by composition effect rather 
than interaction effect. It also shows that the three species SLWC2, 
SL106 and SL197 are clustered in a same functional group; thus, 
they induce similar diversity effects by interacting between them 
and with others.

In the Biodiversity II experiment, we highlight that only three a 
posteriori functional effect groups explain and successfully predict 
ecosystem functioning. The a priori species clustering based on the 
number of species as well as the clustering defined by Tilman et al. 
(2001) are both based on four groups: they explain and predict less 
accurately the ecosystem biomass than our a posteriori approach. 
Our a posteriori approach is thus more accurate, more efficient and 
more parsimonious than both a priori approaches based on ecosys-
tem size and functional groups a priori defined. Surprisingly, the four 
legumes classically clustered into a single functional group (legume) 
were found in different functional groups based on our a posteriori 
clustering. Lupinus perennis belongs to the ecosystem cluster with the 
highest interaction effects. Lupinus perennis is a legume, the leaves 
and fine roots of which have a very short longevity, lesser than 
4 weeks, releasing large amounts of nitrogen in soil (Craine et al., 
2002). In Europe, the Lupinus genus is also known among legumes to 
produce cluster roots that release citrate and protons and mobilize 
poorly available nutrients such as phosphorus (Hinsinger, Plassard, 
Tang, & Jaillard, 2002; Jaillard, Plassard, & Hinsinger, 2003; Lambers, 
Clements, & Nelson, 2013). The Lupinus species from the New World 
are less studied but Lambers, Bishop, Hopper, Laliberté, and Zúñiga-
Feest (2012) reported that Lupinus lepidus also produces cluster-like 
roots. Lespedeza capitata is clustered with a forb (Achillea millefo-
lium) and three C3-grasses (Koeleria cristata, Agropyron smithii and 
Poa pratensis). The species cluster has high interaction effects but 
low composition effects. Note that Lupinus perennis and Lespedeza 
capitata are always isolated in small functional groups and have 
strong structuring effects on the ecosystem function across years 
(from 2001 to 2007, data not shown). Amorpha canescens belongs 
to ecosystems with the highest composition effects but low inter-
action effects. Our results confirm that legumes play a key role in 
ecosystem-level biomass production, as previously highlighted by 
many authors (e.g. Tilman et al., 1997, 2001), but, as suggested by 
Craine et al. (2002) and Wright et al. (2006), they also indicate that 
the “legume” functional group is not homogeneous in the ability of 
legumes to affect plant biomass.

4.4 | Biodiversity effects: a new conceptual  
framework

The approach developed here first separates the interaction effect 
from the composition effect of diversity on an ecosystem function, 
then clusters species in functional groups on the basis of these diver-
sity effects on ecosystem functioning. However, the novelty is mainly 
to combine functional groups of species and to assume that any spe-
cies assemblage, matching to all possible combinations of functional 
groups; that is, all possible assembly motifs, can significantly affect, 
positively or negatively, the interaction and composition effects. 
Jaillard et al. (2014) already showed that a combinatorial approach 
makes it possible to reproduce all shapes of diversity–ecosystem 
functioning relationships reported in the experimental literature, sug-
gesting that the multifaceted response of ecosystems to biodiversity 
changes is driven by effects of assembly probabilities and variations 
in species properties. We here demonstrate that a combinatorial ap-
proach also allows the modelling of ecosystem functioning without 
any hypothesis about its biotic or environmental determinants, and 
without any information on species functional traits. We only use 
the available experimental data, that is the function and species com-
position of ecosystems, and the function of species in monoculture. 
Wright et al. (2006) study is the only one to assess random species 
clustering based on their ability to predict an ecosystem function. The 
main result obtained by Wright et al. (2006) was that the explanatory 
powers of a priori and random clustering were not significantly differ-
ent. In contrast to the conclusion of Wright et al. (2006), our results 
show that an a posteriori species clustering can be highly explanatory. 
It even makes it possible to predict with accuracy the functioning of 
an ecosystem on the sole basis of its species composition.

A posteriori approaches such as ours aim at describing the struc-
ture of raw data. In our case, the idea is to determine the functional 
structure of ecosystems that best accounts for the observed data 
without attempting to explain the underlying biological processes. 
This approach allows testing some hypotheses; in particular, it 
allowed us to challenge the widespread use of the legume–forb–
graminoid clustering when investigating the role of biodiversity in 
regulating ecosystem functioning. It also makes it possible to effi-
ciently predict a given ecosystem function based on a set of ecosys-
tems in which species composition and function have already been 
observed. Nevertheless, a posteriori approaches remain statistical 
and phenomenological. They should be complemented by a priori 
approaches that formulate new explanatory hypotheses based on 
the findings of a posteriori approaches. For instance, the identifi-
cation of functional traits associated with different species groups 
identified by our combinatorial approach could help to reveal the 
underlying biological processes. Ultimately, a deeper understanding 
of biodiversity–ecosystem functioning relationships should ideally 
come from a combination of a posteriori and a priori approaches: 
the former to explore data and reveal real patterns and the latter 
to determine the functional traits or biological processes respon-
sible for the observed species patterns. This combination is best 
suited to providing robust, general, explanatory and anticipatory 
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predictions of the effects of species diversity on ecosystem func-
tioning (Mouquet et al., 2015).

5  | CONCLUSION

We propose a combinatorial model to quantify the net effects of spe-
cies interactions on ecosystem functioning and an efficient method 
to fit species clustering to experimental datasets. When applied to 
two datasets, a microbial experiment and the Biodiversity II experi-
ment, we show that assembly motifs, that is patterns of ecosystem 
assembly that reflect patterns of species interactions, explain a large 
part of the biodiversity effects on ecosystem functioning. This con-
firms that the existence of interactions of a certain type is more im-
portant than the number of interactions, of species or of functional 
groups. Our model is based solely on assembly motifs defined as 
patterns of ecosystem functional structure: it is the first model that 
characterizes species by their ability to affect ecosystem function-
ing, without explicitly accounting for their biological properties (e.g. 
functional traits).
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