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The addition of spatial structure to ecological concepts and theories has

spurred integration between sub-disciplines within ecology, including com-

munity and ecosystem ecology. However, the complexity of spatial models

limits their implementation to idealized, regular landscapes. We present a

model meta-ecosystem with finite and irregular spatial structure consisting

of local nutrient–autotrophs–herbivores ecosystems connected through

spatial flows of materials and organisms. We study the effect of spatial

flows on stability and ecosystem functions, and provide simple metrics of con-

nectivity that can predict these effects. Our results show that high rates of

nutrient and herbivore movement can destabilize local ecosystem dynamics,

leading to spatially heterogeneous equilibria or oscillations across the meta-

ecosystem, with generally increased meta-ecosystem primary and secondary

production. However, the onset and the spatial scale of these emergent

dynamics depend heavily on the spatial structure of the meta-ecosystem and

on the relative movement rate of the autotrophs. We show how this strong

dependence on finite spatial structure eludes commonly used metrics of con-

nectivity, but can be predicted by the eigenvalues and eigenvectors of the

connectivity matrix that describe the spatial structure and scale. Our study

indicates the need to consider finite-size ecosystems in meta-ecosystem theory.
1. Introduction
The concepts of the population, the community [1] and the ecosystem [2] are fun-

damental to ecological understanding. In order to operationalize these concepts

into usable components of theory, ecologists have added temporal, genetic and

spatial structure to the concepts. The successful incorporation of space has led

to metapopulation [3], metacommunity [4] and meta-ecosystem [5] theories,

which have in turn spurred new experiments, observations and models and

have renewed hope for the integration of community and ecosystem ecology

through spatial structure [6–8].

Modifying population, community or ecosystem models to include space

has been done through limiting cases such as two connected systems [9,10],

implicit space [11,12] or infinite continuous [13,14] or discrete spatial domains

[15]. These limiting cases can help us analyse spatial processes by simplifying

the spatial structure. For example, analysing the effects of the movement of

nutrients on ecosystem dynamics and functioning in meta-ecosystems was

simplified by using idealized spatial structures [9,10,16].

However, the spatial structure of ecological systems are finite and irregular

[17–20] and these finite, irregular features of the physical landscape can affect

how organisms and materials are distributed across space by affecting both

interactions and movement [6,17,20]. Population persistence and dynamics are

affected by realistic landscapes in metapopulation [21–25], epidemic [26] and

predator–prey [27] models, and metrics capturing these effects of the landscape

[21–25] on population persistence have been derived and related to landscape

connectivity [21,28]. What is lacking are equivalent metrics capturing the effects

of spatial structure on ecosystem dynamics and functioning, which are likely to

be affected by the different movement rates of organisms and materials.
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Figure 1. Conceptual diagram for a general meta-ecosystem model. Local
ecosystems (circles) have internal dynamics based on trophic (solid arrows)
and non-trophic (dashed arrows) interactions between ecosystem compart-
ments, which in this case are a limiting nutrient (R), autotrophs (A) and
herbivores (H ). Local ecosystems form a meta-ecosystem through the move-
ment of materials and organisms, which is determined by the connectivity
matrix C and the movement matrix D. The connectivity matrix indicates
how the ecosystems are connected to one another (rectangular boxes),
while the movement matrix gives the movement rates of each ecosystem
compartment (two-headed arrows). Without a connection specified by the
connectivity matrix, materials and organisms cannot move between
ecosystems (capital X). (Online version in colour.)
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The goal of our study is to fill this gap by expanding

meta-ecosystem theory to include finite landscapes and to

examine how the movement of organisms and materials

interacts with landscape connectivity to impact the stability,

dynamics and functioning of ecosystems. We do so by creat-

ing a meta-ecosystem model that consists of nutrient–

autotroph–herbivore ecosystems that exchange materials

and organisms and has a spatial structure determined by a

finite spatial network that mimics aspects of real landscapes.

Our results show that high nutrient and high herbivore

movement rates can destabilize the meta-ecosystem and can

lead to spatially heterogeneous dynamics, but the destabiliza-

tion and its associated dynamics are dependent on spatial

structure and the autotroph movement. The effect of spatial

structure is revealed by the ‘scales of spatial interactions’

(non-zero eigenvalues of the connectivity matrix) that emerge

from the differences in connectivity between ecosystems, and

which scale is associated with the destabilization can predict

the dynamics seen in the meta-ecosystem. For example, the

dynamics associated with small scales of spatial interaction

have large oscillations in highly connected ecosystems, and

smaller oscillations in less connected ecosystems. Furthermore,

our analysis reveals how the scales of spatial interactions cannot

be easily explained through other network connectivity metrics.

In addition, the spatial structure of a meta-ecosystem can

affect its primary and secondary productivity, indicating com-

plex effects of spatial structure on ecosystem function. Our

results provide new ways of integrating finite spatial structure

into meta-ecosystem theories and of interpreting its impact on

ecosystem function.
2. Material and methods: the meta-ecosystem
model

(a) Regional and local processes in meta-ecosystems
We modify a meta-ecosystem model [9] to highlight the effects

of spatial structure on meta-ecosystem dynamics and function-

ing. The model can be broken up into regional processes

that connect ecosystems and local processes, which des-

cribe the internal dynamics of the ecosystems (figure 1). The

regional processes are the movements of materials and organ-

isms between the ecosystems, whereas the local processes are

trophic and non-trophic interactions (nutrient recycling;

figure 1). As in previous work [9], we limit our local ecosystems

to one limiting nutrient R, and we track the stocks of that

nutrient in autotrophs A and herbivores H (figure 1).

The movements of materials and organisms between eco-

systems are determined by the connectivity matrix (C) and

the movement matrix (D), which allows us to separate out

the effect of spatial structure from the effects of movement

rates [29]. The connectivity matrix is an n � n matrix, where

n is the number of ecosystems in the meta-ecosystem,

whose off-diagonal entries (i.e. cij, i = j ) indicate the links

between the different ecosystems. The diagonal entries (i.e.

cii) represent the total number of connections that ecosystem

i has, normalized by the total possible connections it could

have. Because of certain beneficial properties for analysis

(see the electronic supplementary material, appendix A),

we will consider only symmetric connectivity matrices (i.e.

cij ¼ cji) that allow for no loss of materials and organisms

during movement between ecosystems (i.e.
Pn

j¼1 cij ¼ 0).
The movement matrix is a k � k matrix, where k is the

number of ecosystem compartments in each ecosystem. The

diagonal entries of the movement matrix are the movement

rates of each compartment, whereas the off-diagonal entries

would indicate cross-movement, which occurs when the move-

ment of one ecosystem compartment (e.g. autotrophs) is

dependent on another compartment (e.g. herbivores). However,

we will not consider cross-movement in this study, making the

movement matrix a 3 � 3 diagonal matrix with entries dR, dA

and dH, which are the movement rates of the limiting nutrient,

the autotrophs and the herbivores, respectively.

At the local level, we have the available limiting nutrient

R at the base of the ecosystem. It is supplied at a constant rate

I from rock weathering and other abiotic sources and is lost

at rate E proportional to its concentration in the medium

(e.g. soil, water). Part of the available limiting nutrient R is

assimilated into the autotrophs based on their uptake func-

tion U(R, A), but this is balanced by nutrient recycling

from autotroph losses eMðAÞ; herbivore losses xL(H ) and

assimilation inefficiencies from herbivory gW(A, H ). Auto-

troph nutrient stocks increase through the uptake function

U(R, A), but decrease through their intrinsic losses M(A)

and herbivory W(A, H ). Herbivore nutrient stocks increase

through herbivory (1 2 g)W(A, H ) and decrease through

intrinsic losses L(H ).

Combining regional and local processes gives us the

following system of ordinary differential equations:

dRi

dt
¼ I � ERi �UðRi;AiÞ þ eMðAiÞ þ xLðHiÞ

þ gWðAi;HiÞ þ dR

Xn

j¼1

cijRj; ð2:1aÞ

dAi

dt
¼ UðRi;AiÞ �MðAiÞ �WðAi;HiÞ þ dA

Xn

j¼1

cijAj ð2:1bÞ
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and

dHi

dt
¼ ð1� gÞWðAi;HiÞ � LðHiÞ þ dH

Xn

j¼1

cijHj: ð2:1cÞ

For analytic simplicity, we assume that the parameters

within the functions are the same across the meta-ecosystem

(but see the electronic supplementary material, appendix).

While much of our mathematical analysis can be done with

the functions of equation (2.1) (see the electronic supplemen-

tary material, appendix B), our numerical simulations require

specified functions. We assume type II/Michaelis–Menten

functional responses based on their widespread prevalence

in plants [30] and herbivores [31] for uptake, and density-

independent losses for both the autotrophs and herbivores,

which transform equation (2.1) into

dRi

dt
¼ I � ERi �

aARiAi

bA þ Ri
þ emAi þ xlHi þ g

aHAiHi

bH þ Ai

þ dR

Xn

j¼1

cijRj; ð2:2aÞ

dAi

dt
¼ aARiAi

bA þ Ri
�mAi �

aHAiHi

bH þ Ai
þ dA

Xn

j¼1

cijAj ð2:2bÞ

and

dHi

dt
¼ ð1� gÞ aHAiHi

bH þ Ai
� lHi þ dH

Xn

j¼1

cijHj; ð2:2cÞ

where aA and aH are maximum uptake rates, bA and

bH are the half-saturation constants and m and l are

density-independent loss rates.
(b) Effects of spatial structure on meta-ecosystem
stability

The meta-ecosystem model presented above can exhibit a wide

range of dynamical behaviour, even when no movement

occurs [9]. However, our focus is on how meta-ecosystem

stability is modulated by its spatial network structure. As in

Marleau et al. [9], we use movement parameters to perturb

the meta-ecosystem, allowing us to highlight spatial processes

instead of local processes.

For simplicity, we restrict ourselves to parameter ranges

that allow a unique stable equilibrium when there are no

regional processes (but see the electronic supplementary

material, appendix). In other words, each ecosystem in the

meta-ecosystem will be in the same state if no nutrients and

no organisms are moving between them. If we add regional

processes, each ecosystem will return to this state after pertur-

bations as long as the Jacobian matrix describing the

dynamics of the whole meta-ecosystem at the spatially homo-

geneous equilibrium state has only eigenvalues with negative

real parts. This Jacobian matrix, which would normally be

a 3n � 3n matrix, can be broken up into n matrices of the

following form [29]:

VðiÞ ¼ Jþ liD; ð2:3Þ

where J is the Jacobian matrix of a local ecosystem without

regional processes and li is the ith eigenvalue of the connec-

tivity matrix C (see the electronic supplementary material,

appendix B). If each V(i) matrix has eigenvalues, fik, with

negative real parts, then each ecosystem will return to its

original equilibrium state after perturbation.
The stability of the ecosystem equilibrium is lost when

the real part of at least one eigenvalue fik of one of the V(i)
matrices becomes positive (bifurcates) as the movement

rates of the nutrients and organisms change. Such bifur-

cations can lead to: (i) spatially heterogeneous equilibria

(see the electronic supplementary material, appendix B),

with individual ecosystems at different equilibrium values,

which can include some local ecosystems having no auto-

trophs, or (ii) spatially heterogeneous oscillations across

individual ecosystems [9]. The minimum, positive movement

rates necessary to cause the bifurcations are defined as the

minimum critical movement rates, dmin;c
X ; where X ¼ R, H,

as autotroph movement cannot cause a bifurcation. The criti-

cal minimum herbivore movement rate, dmin;c
H ; is associated

with spatially heterogeneous equilibria, while the critical

nutrient movement rate, dmin;c
R ; is associated with spatially

heterogeneous oscillations. Our analysis will focus on the

spatially heterogeneous oscillations to compare with previous

work [9].
(c) Scales of spatial interaction in meta-ecosystems
The non-zero eigenvalues of the connectivity matrix play an

important role in creating spatial heterogeneity (equation

(2.3)), similar to how the dominant eigenvalue (l1 ¼ 0) of any

connectivity matrix represents the dynamics without spatial

structure [29]. These eigenvalues represent how the spatial

structure of the meta-ecosystem influences the response of the

ecosystems to perturbations. In equilibrium contexts, they are

the equivalent of the wavenumber or spatial frequency in reac-

tion–diffusion models, which indicates the spatial scale of

perturbations to the equilibrium [29]. This spatial scale of inter-

action between the ecosystems is thus key in predicting the

ability of a perturbation to propagate across a meta-ecosystem

through movement of individuals and matter [32].

Therefore, we define a scale of spatial interaction to be a

non-zero eigenvalue li of the connectivity matrix C, with

more negative eigenvalues representing smaller spatial

scales. For convenience, we order the non-zero eigenvalues

from the largest (i.e. less negative) to the smallest (i.e. most

negative) such that l2 � l3 � � � � � ln; such that we go

from large scales of spatial interaction to the smallest. Each

meta-ecosystem could have multiple, unique (up to n 2 1,

excluding l1) scales of spatial interaction, each correspond-

ing to an eigenvalue that lies between 0 and 22 (see the

electronic supplementary material, appendix A).

Each scale of spatial interaction has an associated eigenvec-

tor that can provide information on the amplitudes and

frequencies of the emergent spatial perturbation. For finite

meta-ecosystems observed here, the eigenvectors would be

associated with the oscillations within the individual ecosys-

tems. The signs of the elements of the eigenvector indicate the

synchrony between ecosystems, and their relative magnitudes

represent the amplitudes of fluctuations in an ecosystem (see

the electronic supplementary material, appendix C). Combined,

these tools can help us examine the temporal and spatial stab-

ility of finite-size meta-ecosystems, though such information is

of limited value for scales of spatial interaction that are repeated

as the associated eigenvectors can offer different predictions.

Previous work on metapopulations showed the effect of

the dominant eigenvalue of the connectivity matrix, which

should represent the shortest scale of spatial interaction (ln:

[23–25]). Here, we examine the general relationship between



rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20132094

4
the scales of spatial interaction and our critical movement

rates to discern which eigenvalues of the connectivity

matrix play a role in determining meta-ecosystem stability.

(d) Meta-ecosystem dynamics and functioning
We use our general model (equation (2.1)) to quantify the

critical minimum movement rates that capture the shift

from spatial homogeneity to spatial heterogeneity. We also

use numerical simulations of our specified model equations

(2.2) to detail the dynamics of individual ecosystems within

the meta-ecosystem across critical movement rates for stab-

ility. We illustrate our results with 5 � 5 connectivity

matrices with equal link density, but differing spatial net-

work structure. In addition, we examined how the spatial

scale of interaction associated with the spatial heterogeneity

can determine meta-ecosystem dynamics by altering the

movement rate of the autotrophs.

The implication of dynamical responses to movement

for meta-ecosystem function is assessed by measuring the

average primary and secondary production at the meta-

ecosystem level for increasing rates of nutrient movement (dR)

in meta-ecosystems with differing network structures. Average

primary and secondary production was measured by evaluat-

ing U and (1 2 g)W over 5000 time steps, respectively. In

addition, we compare the rankings of network structures

for primary and secondary production across scales of spatial

interactions causing meta-ecosystem destabilization.

(e) Relating network connectivity properties to scales
of spatial interaction

Landscape ecology and network theories have produced a

number of metrics to characterize connectivity. We use our

model to determine whether the scales of spatial interaction
are related to two common metrics of connectivity associated

with network stability: link density and maximum node

degree. There are other metrics available [28], but we focus

on these metrics in order to capture meta-ecosystem-level

connectivity with a single number for use in prediction.

Link density is the number of links divided by the number

of nodes in the network, which in our case is the number of

ecosystems in the meta-ecosystem. Maximum node degree is

the number of links found at the most connected node in the

network. For our purposes, we derived a relative scale of maxi-

mum node degree that goes from 0 (minimum) to 1 (maximum;

electronic supplementary material, appendix A).

We used 694 071 randomly generated 30� 30 connectivity

matrices to discern whether any or all of these connecti-

vity measures can predict the scales of spatial interaction and

can provide a link between meta-ecosystem properties and con-

nectivity (see the electronic supplementary material, appendix A).
3. Results
(a) Meta-ecosystem stability: the interaction between

movement and spatial structure
We first analyse the stability of the spatially homogeneous

meta-ecosystem following its perturbation by the movement

of nutrients and other organisms. We derive functions of criti-

cal movement rates corresponding to a transition from a

spatially homogeneous ecosystem state throughout the

meta-ecosystem to one with significant spatial heterogeneity

(see the electronic supplementary material, appendix B)

dc
HðliÞ ¼

�detðJÞ þ lidR j23 j32

liðð j11 þ lidRÞð j22 þ lidAÞ � j12 j21Þ
ð3:1aÞ

and
dc
RðliÞ ¼

�Bðli; dA; dHÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðli; dA; dHÞ2 þ 4l2

i ð j22 þ liðdA þ dHÞÞCðli; dA; dHÞ
q

�2l2
i ð j22 þ liðdA þ dHÞÞ

; ð3:1bÞ
where jlk is the row l and column k element of Jacobian

matrix J, det(J) is the determinant of the Jacobian matrix,

and B and C are complex functions of movement rates and

of eigenvalues of the connectivity matrix (see the electronic

supplementary material, appendix B). From these functions,

we derive the minimum movement rates required to create

spatial heterogeneity for given movement rates and a given

connectivity matrix

dmin;c
H ¼ minðdc

Hðl2Þ; dc
Hðl3Þ; . . . ; dc

HðlnÞÞ ð3:2aÞ

and

dmin;c
R ¼ minðdc

Rðl2Þ; dc
Rðl3Þ; . . . ; dc

RðlnÞÞ; ð3:2bÞ

where n is number of patches in the meta-ecosystem, which

means that there is only a finite number (n 2 1) of non-zero

eigenvalues for a specific connectivity matrix. Furthermore,

the number of unique non-zero eigenvalues can range

from 1 to n 2 1, which means that few scales of spatial

interaction (i.e. few unique li) can be present even in large

n meta-ecosystems.
The relationship between the scales of spatial interaction

(li) and the minimum critical movement rates (dmin;c
H and

dmin;c
R ) depends strongly on the movement rate of autotrophs

(dA; figure 2). When dA is low, dc
HðliÞ and dc

HðliÞ decrease

with decreasing li (figure 2a,b). Therefore, for a given meta-

ecosystem, the value of ln (the shortest scale of spatial

interaction) determines the minimum critical movement

rates at low dA (figure 2a,b). As meta-ecosystems with high

maximum node degree and high link density have smaller

ln, meta-ecosystems with greater connectivity, according to

those metrics, are more easily destabilized by nutrient and

herbivore movement at low dA (figure 3a,b).

At higher dA values, dc
HðliÞ and dc

HðliÞ show a parabolic

relationship with li, such that minima are reached at intermedi-

ate values of li (figure 2c,d). For a given meta-ecosystem, this

can lead to either a longer scale of spatial interaction (e.g.

ln21) determining the minimum critical movement rates or it

can result in no destabilization being possible as the li’s all

lead to negative dmin;c
R and dmin;c

H values (figure 2c,d). In other

words, meta-ecosystems lacking longer scales of spatial inter-

action will not be destabilized at high dA. Therefore, all the
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scales of spatial interaction would need to be evaluated to

determine the stability, not just the shortest (figure 2c,d). How-

ever, network connectivity metrics provide little guidance in

predicting what scales of spatial interaction to expect at given

connectivity levels and hence provide little help in determining

meta-ecosystem stability (figure 3c,d).

(b) Meta-ecosystem dynamics: dependence on scale
of spatial interaction and spatial structure

The realized dynamics of local ecosystems after meta-ecosystem

destabilization depend on their spatial structure and the scales

of spatial interaction (figure 4; see the electronic supplementary

material, appendix D for parameter values). If the destabiliza-

tion is associated with the shortest scale of spatial interaction,

ln, the ecosystems with higher node degree (and with neigh-

bours with higher node degree) within the meta-ecosystem

have greater amplitude oscillations than ecosystems with

lower node degree (figure 4a,b). As the node degree of
each ecosystem depends directly on network structure,

meta-ecosystems with different network properties display

different synchrony patterns between ecosystems (figure 4a,b).

In particular, ecosystems with the same connectivity properties

(e.g. node degree and node degree of immediate neighbours)

exhibit synchronized and identical oscillations (figure 4a,b).

These dynamics can be seen even with spatially hetero-

geneous nutrient supplies or high nutrient supplies that lead

to local oscillations without movement (see the electronic

supplementary material, appendix E).

When the scales of spatial interaction between ecosystems

are longer (e.g. ln21), the resulting dynamics are more complex

(figure 4c,d). For example, it is possible for central ecosystems

within the network to be barely affected by the instability,

whereas the outer ecosystems show large and anti-phase oscil-

lations (figure 4c). Or there can be little discernible pattern in the

spatial distribution of oscillations across the meta-ecosystem

(figure 4d). Furthermore, ecosystems with similar connectivity

properties no longer demonstrate synchronized dynamics nor
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Figure 3. Relationships between network connectivity measures and the scales of spatial interaction in randomly generated 30 � 30 connectivity matrices.
(a) Higher link density is somewhat associated with more negative values for the shortest scale of spatial interaction (ln), though there is a good deal of variability.
(b) Higher maximum node degree is tightly associated with more negative values for the shortest scale of spatial interaction (ln). (c) Higher link density is associ-
ated with more negative (i.e. shorter) scales of spatial interaction, but the ranges are very large at any given link density level. (d ) Higher maximum node degree
allows for more (shorter) negative scales of interaction, which matches with (b), but provides little insight on the location of the longer scales of spatial interaction
for a given maximum node degree for a meta-ecosystem. (Online version in colour.)
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do they necessarily oscillate at the same amplitude as they did at

shorter scales of spatial interaction (figure 4c,d).

The dynamics shown above can, in certain cases, be pre-

dicted through the eigenvectors associated with the scales of

spatial interaction (see the electronic supplementary material,

appendix D). For example, meta-ecosystems with the same

scale of spatial interaction and the same associated eigenvec-

tor will have the same spatial and temporal dynamics close to

dmin;c
R (see the electronic supplementary material, figure C.1).

However, the predictive ability of the eigenvectors weaken as

the movement rates increase beyond dmin;c
R . The reason for this

is that the other scales of spatial interaction could destabilize

the meta-ecosystem at the new higher rates of movement

independently of the original destabilizing scale and their

contributions to the dynamics become significant (see the

electronic supplementary material, appendix C).

(c) Meta-ecosystem production
The differences in meta-ecosystem dynamics owing to spatial

structure lead to differences in meta-ecosystem functioning

(figure 5). When small-scale interactions cause the spatially

homogeneous equilibrium to lose stability, both primary

and secondary production generally increase with increasing

nutrient movement (figure 5a,b). The specific network struc-

tures show differences in terms of their production, with
the network with the highest maximum node degree consist-

ently having the highest production at all levels of nutrient

movement rate (figure 5a,b).

Similar to the results involving meta-ecosystem dynamics,

the destabilization associated with large-scale interactions results

in patterns in meta-ecosystem production that differ from those

associated with small-scale interactions (figure 5c,d). Both pri-

mary and secondary production show small, non-monotonic

increases with increasing nutrient movement relative to the equi-

librium case (figure 5c,d). Furthermore, the network with the

highest maximum node degree consistently has the lowest pri-

mary production, which is in opposition to the small-scale

spatial interaction case, though it does not always hold for

secondary production (figure 5c,d).
4. Discussion
Our analysis reveals that non-zero eigenvalues of the connec-

tivity matrix describing the finite spatial structure of the meta-

ecosystem, and hence multiple scales of spatial interaction,

can determine meta-ecosystem stability and productivity in

response to increasing movement of matter and organisms.

We also show how the scales of spatial interactions driving

the loss of meta-ecosystem stability can predict the distribution

of dynamical regimes among local ecosystems. The study of
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finite-size landscapes escapes predictions relating ecosystem

dynamics to the dominant scales of spatial interaction and

made under the assumption of infinite or well-mixed space.

Our results demonstrate that the importance of multiple

scales of interactions for resolving the complex response of stab-

ility and productivity to fluxes of matter and individuals across

meta-ecosystems of finite size.
(a) Scales of spatial interaction: the importance of finite
space in ecological models

Our study uses the non-zero eigenvalues and eigenvectors

of the connectivity matrix to help characterize the spatial struc-

ture of meta-ecosystems. These eigenvalues represent the

scales of spatial interaction between local ecosystems, indicate

how the ecosystems will respond to perturbations and each of

them can lead to the destabilization of meta-ecosystesms. In

addition, these eigenvalues are not well predicted by other

measures of spatial structure commonly used in ecology,

which makes them a novel tool for research [17,20]. Further-

more, when modelling multi-level movement models, the

need to examine all scales of spatial interaction leads to the

inadequacy of two-patch [9] and infinite domain [14] models

to capture these critical elements of spatial structure.
Two-patch models can be represented by a connectivity

matrix with a single eigenvalue or scale of spatial interaction

[9]. This makes the two-patch model similar to a fully con-

nected network as every ecosystem is connected to every

possible neighbour and its results do not scale up when net-

works are not fully connected. By contrast, models of infinite

domain can be formulated to contain all possible scales

of spatial interaction such that movement could always

destabilize them if destabilization is possible [29]. The issue

here is that metapopulations, metacommunities and meta-

ecosystems are not infinite in size, but finite [4,8,21,22,27].

Such finite size leads to a limited number of associated

scales of spatial interaction where perturbations can manifest

and destabilize meta-ecosystems at equilibrium. Therefore,

infinite domain models may predict that a perturbation will

destabilize an ecological system, while a more realistic finite

network model will predict its stability.
(b) Unequal movement rates of materials
and of organisms across landscapes

Spatial instabilities are produced and their impacts on

dynamics and functioning are modulated through the unequal

movement of nutrients and of organisms [29,32,33]. Our study
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shows how multiple scales of spatial interaction resulting from

such movement are determined by the spatial structure of the

meta-ecosystem. Our model predicts that if the shortest scale

of spatial interaction drives destabilization, increasing connec-

tivity (i.e. the link density or the maximum node degree of the

meta-ecosystem) can further promote instabilities. However,

increasing the movement rate of the autotrophs allows for

longer scales of spatial interaction to have a dominant destabi-

lizing role, which then results in the relationship between

instabilities and connectivity to be highly irregular.

Interactions between the structure and rates of movement

have profound implications for ecosystem functioning. The

loss of regional stability driven by spatial structure and move-

ment rates leads to the emergence of source-sink ecosystems for

autotrophs [10,34] and to increased productivity at the regional

level. However, the production gains are offset by increases in

variability at local and regional scales, which may lead to local

loss of autotrophs and herbivores [9]. Our results support the

importance of integrating movement properties of ecosystem

compartments to the spatial structure of landscapes.

Our analysis emphasizes the importance of unequal

movement across ecosystem compartments. Other efforts to

discern the importance of movement on community and
ecosystem processes have postulated that spatial structure

could be subsumed through the coupling of fast moving,

high trophic-level organisms, which would have the stron-

gest support in marine ecosystems [12,35,36]. However,

coupling can occur at all trophic levels, and we predict that

even limited movement can have large impacts on dynamics,

functioning and stability. The study of differential movement

in finite-size ecosystems should allow for greater integration

between food web and landscape ecology [5,6,8].

Our model has several limitations with regards to the

unequal movement rates of materials and of organisms that

should be addressed in future studies. First, the impacts of

cross-diffusion were ignored, even though herbivores can

serve as vectors for autotroph movement [37]. Second, adding

another autotroph or herbivore with a different movement

rate should be explored in order to determine how this can

impact dynamics, functioning and stability. Lastly, we recog-

nize that ecosystems are not immobile spatial patches, but are

spatially distributed and formed through the interactions

between their biotic and abiotic components [8,38]. Given

these features of natural ecosystems, our study reinforces the

notion that more research is needed to understand the impacts

of connectivity on communities and ecosystems if we are to
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develop better conservation strategies [39,40]. Our study points

towards the multiple scales over which ecosystems interact

across landscapes as a tool to predict and understand their

complex dynamics.
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