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a b s t r a c t

The debate between niche-based and neutral community theories centers around the question of which

forces shape predominantly ecological communities. Niche theory attributes a central role to niche

differences between species, which generate a difference between the strength of intra- and interspecific

interactions. Neutral theory attributes a central role to migration processes and demographic stochas-

ticity. One possibility to bridge these two theories is to combine them in a common mathematical

framework. Here we propose a mathematical model that integrates the two perspectives. From a niche-

based perspective, our model can be interpreted as a Lotka–Volterra model with symmetric interactions

in which we introduce immigration and demographic stochasticity. From a neutral perspective, it can be

interpreted as Hubbell’s local community model in which we introduce a difference between intra- and

interspecific interactions. We investigate the stationary species abundance distribution and other

community properties as functions of the interaction coefficient, the immigration rate and the strength

of demographic stochasticity.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Community ecology aims at describing the forces that structure
ecological communities. Classical theories explain community
dynamics in terms of species niches (Chase and Leibold, 2004;
Loreau, 2010). Niche theory states that the long-term coexistence
of species is possible only if their niches are sufficiently separated.
Niche differences can be due to a range of mechanisms, such as
different ways to use resources, different interactions with compe-
titors or mutualists, and different spatial and temporal characteris-
tics. The Lotka–Volterra competition model provides a convenient
mathematical framework to deal with species niches (MacArthur
and Levins, 1967; MacArthur, 1972). In this model, niche differ-
ences are effectively taken into account as differences between the
strength of intra- and interspecific competition. The more species
niches overlap, the larger the ratio of inter- and intraspecific
competition strength (equal to the parameter a in our model).
Hence, the Lotka–Volterra model can be considered as a minimal
model of niche theory.

Neutral theory takes a quite different approach to community
ecology (Caswell, 1976; Hubbell, 2001). It starts from the
assumption that species are identical in all characteristics that
may affect their population dynamics. Community structure is the
result of stochastic birth–death processes. Species coexistence is
ll rights reserved.

eman),
guaranteed in a trivial way, by considering a constant species flow
into the community (interpreted as immigration or, on a larger
scale, as speciation). Hubbell’s local community model, in which a
demographically fluctuating community of fixed size receives
immigrants from a large species pool, has become the reference
neutral model (Hubbell, 2001; Alonso et al., 2006). This minimal
combination of demographic stochasticity and immigration can
generate a range of community patterns, matching some empirical
data surprisingly well.

It is now generally accepted that niche-based and neutral
community models should not be seen as radically opposed model
paradigms (Gravel et al., 2006; Holyoak and Loreau, 2006; Leibold
and McPeek, 2006; Adler et al., 2007). Rather, each of these model
classes emphasizes a distinct set of ecological mechanisms. Neither
the niche-based nor the neutral framework exclude the integration
of additional processes in principle. Hence, it should be possible to
construct more general community models that take into account
the mechanisms involved in both niche theory and neutral theory.
Such integrative models would allow us to bridge the conceptual
gap between the two theories. In particular, they could reveal
which mechanisms exactly underlie the simplifying approach of
neutral community models, and its empirical successes.

In this paper we build an integrative community model that
incorporates demographic stochasticity, immigration flow, and
(competitive or mutualistic) species interactions. To avoid intract-
able constructions, our model combines a minimal niche model and
a minimal neutral model. As a minimal niche model, we consider
the Lotka–Volterra equations with symmetric species interactions.
This means that (a) intraspecific interaction strength is the same for
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all species, and that (b) interspecific interaction strength is the
same for all species pairs (but intra- and interspecific interaction
strengths can differ). As a minimal neutral model, we consider
Hubbell’s local community model. The resulting model has a
limited number of parameters, can be handled analytically, and
allows a systematic study of its stationary behaviour.

Recently, other proposals have been made to introduce niche
features into the neutral community framework. Some papers have
considered intraspecific interactions, or equivalently, species-level
density dependence, meaning that growth rates depend on the
density of conspecifics only (Volkov et al., 2005). Other papers have
considered interspecific interactions, or equivalently, community-
level density dependence, meaning that growth rates depend on
the total density of all individuals in the community (Kadmon and
Allouche, 2007; Haegeman and Etienne, 2008; Allouche and
Kadmon, 2009). The community model of this paper includes
both intra- and interspecific interactions, and therefore unifies
previous, separate treatments of species-level and community-
level density dependence. Related models have been studied by
Loreau and de Mazancourt (2008), who used a linear approxi-
mation to study the synchronization of population fluctuations,
and by Volkov et al. (2009), who used moment equations to infer
species interactions from abundance data.

Niche processes can also be introduced more explicitly into
neutral-like models. For example, species-specific habitat prefer-
ences can be defined in a spatially heterogeneous environment, and
regulate the stochastic birth–death dynamics of the different species.
This is close in spirit to metacommunity models (Mouquet and
Loreau, 2003), and has been considered in a neutral setting by several
authors (Tilman, 2004; Schwilk and Ackerly, 2005; Gravel et al., 2006;
Zillio and Condit, 2007). Here we do not consider spatial
heterogeneity, but restrict our attention to a local community.
We consider immigration from a large species pool, without
modeling the species pool dynamics. We compare the effects of
the immigration process and the internal community dynamics
(intra- and interspecific interactions, and demographic stochasticity)
on community patterns.
2. Population model

Before tackling the multi-species community model, we study a
dynamical model for a single species. The population model will be
the basic building block for the community model of the next
section. It can be obtained from the logistic growth model by
adding demographic stochasticity and immigration. The resulting
stochastic logistic model (with or without immigration) has been
studied extensively (Pielou, 1977; Renshaw, 1991; Matis and Kiffe,
2000). Here we recall some basic model properties, and introduce a
number of analytical tools; both properties and tools will be useful
for the study of our community model.

As a baseline model, we consider the deterministic population
model with logistic growth and immigration,

dN

dt
¼ rN 1�

N

K

� �
þm, ð1Þ

with population size N, intrinsic growth rate r, carrying capacity K

and immigration rate m. The model (1) has a single equilibrium N*,

N� ¼
K

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4

m
rK

r� �
, ð2Þ

which is globally stable. For weak immigration (m5rK), the
equilibrium population size N* is close to the carrying capacity
K. For stronger immigration, the equilibrium population size N*
increases with the immigration rate m. In the latter case, the
population is externally forced to a larger size than its internal
dynamics can sustain.

2.1. Construction of the stochastic model

To include demographic stochasticity into (1), we take into
account the discrete nature of the population size N, i.e., the
population size N can only take integer values 0,1,2,y, in contrast
to the continuous variable N of model (1). The stochastic model
dynamics consist of a series of events affecting the population size
N: the population can increase by one individual due to a birth or
immigration event, and it can decrease by one individual due to a
death event. We have to specify the rate at which these events
occur: denote by q+(N) the rate of population increase, and by
q�(N) the rate of population decrease. This means that during a
small time interval dt, the probability

that the population size increases by one equals qþ ðNÞdt,

that the population size decreases by one equals q�ðNÞdt,

that the population size stays the same equals 1�ðqþ ðNÞþq�ðNÞÞdt:

Note that by going from a continuous to a discrete variable N, we
have simultaneously gone from a deterministic to a stochastic
model (see Appendix A for the notation we use to describe
stochastic models).

To construct a stochastic version of population model (1), we
have to specify the transition rates q+(N) and q�(N). In Appendix B
we show that the deterministic part of a stochastic population
model with transition rates q+(N) and q�(N) is given by the
difference q+(N)�q�(N). Formally,

E½dN�

dt
¼ qþ ðNÞ�q�ðNÞ, ð3Þ

where E½dN� is the expected change in population size in a small
time interval dt (see (B.1) for a more rigorous formulation). Hence,
by requiring that

qþ ðNÞ�q�ðNÞ ¼ rN 1�
N

K

� �
þm ð4Þ

we guarantee that the expected, i.e., deterministic, behaviour of the
stochastic population model is identical to that of the corres-
ponding deterministic model (1).

Condition (4) does not fix uniquely the transition rates q+(N)
and q�(N). After imposing the difference q+(N)�q�(N), we still can
choose the sum q+(N)+q�(N) independently. In Appendix B we
show that the sum of the transition rates q+(N) and q�(N) measures
the intensity of the stochastic fluctuations superimposed on the
deterministic model (3). Formally,

Var½dN�

dt
¼ qþ ðNÞþq�ðNÞ, ð5Þ

where Var½dN� is the variance of the change in population size, see
(B.2). As a consequence, there are different ways to incorporate
demographic stochasiticity into model (1), leading to different
stochastic population models.

To illustrate this, we consider two possible choices for the
transition rates q+(N) and q�(N). As a first choice, take

qþ ðNÞ ¼ rþNþm,

q�ðNÞ ¼ r�Nþ
r

K
N2, ð6Þ

with r¼r+�r� . Transition rates (6) attributes density dependence
entirely to death events: the per capita death rate r�þðr=KÞN

increases as population size increases, whereas the per capita birth
rate r+ is constant. We call this the density-dependent mortality
version of the model. Rates (6) satisfy condition (4), so that the
corresponding stochastic model has deterministic part given by (1).
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A second choice attributes density dependence entirely to birth
events,

quþ ðNÞ ¼ ruþN�
r

K
N2þm,

qu�ðNÞ ¼ ru�N, ð7Þ

with r¼ ruþ�ru�. The per capita birth rate ruþ�ðr=KÞN decreases as
population size increases, whereas the per capita death rate ru� is
constant. We call this the density-dependent natality version.
Again, transition rates (7) satisfy condition (4), and lead to a
deterministic part given by (1). Note that to avoid negative
transition rates, there should be a maximal population size for
the density-dependent natality case (7).

The choice between (6) or (7) depends on the nature of the
density dependence, whether it affects birth or death rate. One
could also consider intermediary cases, in which density
dependence is present in both rates q+(N) and q�(N), which
would also be compatible with condition (4). Because the
density-dependent mortality (6) and natality (7) versions can be
considered as two limiting cases, we focus on these two versions to
study the sensitivity of our model to q+(N) and q�(N).

2.2. Stationary distribution

We have constructed two stochastic versions of our population
model given by (6) and (7), both adding demographic stochasticity
to the deterministic model (1). We compute and compare the
stationary distribution for the population size N for both versions.

The stationary distribution of population abundance can be
computed explicitly, for any combination of transition rates q+(N)
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Fig. 1. Comparison of stationary population size distribution for different stochastic mod

dependent mortality (6); in green: density-dependent natality (7); in blue: linear approx

right: r�¼100. Other parameters are K¼100, m¼ 0:1, r¼1.0, r+¼r+r� , ru� ¼ rþ , ruþ ¼ rþ

referred to the web version of this article.)
and q�(N), see Appendix C. Fig. 1A shows the stationary distribution
for different parameter combinations, and for the density-
dependent mortality (6) and natality (7) versions. Recall that, by
construction, the two forms of density dependence have the same
deterministic behaviour (3), but the intensity of their stochastic
fluctuations (5) is different. Parameters were chosen such that at
carrying capacity K �N� the variance of population fluctuations is
the same (this condition is satisfied by taking rþ ¼ ru�). Note that
the density-dependent mortality version (6) has larger fluctuations
for population size N4K , while the density-dependent natality
version (7) has larger fluctuations for population size NoK.

We compute the stationary distribution for different values of r� ,
which can be considered as a proxy for the intensity of demographic
stochasticity. The stationary distributions for the density-dependent
mortality version (6) (red curve) and for the density-dependent
natality version (7) (green curve) almost coincide for all values of r� .
For small values of r� (left panel), the distribution is concentrated at
the equilibrium population size N* of the deterministic model. When
increasing the value of r� , the intensity of demographic stochasticity
increases, and the stationary distribution gets wider. The main mode
of the distribution is still located at N¼N*, but a second, smaller
mode appears at N¼0 (middle panel). For even more intense
demographic stochasticity, the mode at N¼N* decreases and
ultimately disappears, while the probability of a small population
further increases (right panel).

Fig. 1A also shows the stationary distribution of a linear
approximation that is often used in population ecology
(Renshaw, 1991; Matis and Kiffe, 2000; Lande et al., 2003). The
approximation consists in linearizing the non-linear population
model (1), and replacing the discrete randomness of demographic
stochasticity by continuous Gaussian random variables, see
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Appendix B. A first variant of the linear approximation (blue curve)
is based on a linearization in terms of the population size N, see
Eq. (B.4) in Appendix B; a second variant (magenta curve) is based
on a linearization in terms of the logarithmic population size ln N,
see Eq. (B.5). The two versions of our model have the same linear
approximations because they correspond to the same determini-
stic population model (1), and they have the same fluctuation
variance at carrying capacity. Both approximations are excellent for
small demographic stochasticity, i.e., for small r� , but deteriorate
rapidly for larger values of r� . In particular, the approximations
describe poorly populations for which the probability of extinction
is not negligible.

Population size can vary over orders of magnitude, and is
therefore more conveniently represented on a logarithmic scale.
Fig. 1B shows the same stationary distributions as Fig. 1A, but now
as probability densities for the logarithmic population size log2 N.
We use a base-two logarithm, as is customary in Preston plots. The
transformation is given by

P½log2N� � lnð2ÞNP½N�, ð8Þ

where we assumed that the population size can be considered as a
continuous variable. Note that the population size N¼0 is not
representable on a logarithmic scale, so that the population size
distribution is conditioned on N40. For small demographic
stochasticity, the distribution is log-normal, i.e., normal on a
logarithmic scale. For larger demographic stochasticity, the
logarithmic population size distribution is left-skewed. Note
that, although the mode at N¼N* disappears in the linear size
distribution, it remains in the logarithmic size distribution.
2.3. Population properties

We have compared the stationary population size distributions
of the density-dependent mortality and the density-dependent
natality versions of our model. We have shown that the two
versions lead to very similar distributions over a wide range of
parameter values. We now perform a more systematic study for the
density-dependent mortality case (6).

Rather than computing the entire stationary distribution for all
parameter combinations, we consider here a limited number of
population properties:
�

Fig
num

1 (g
the mean population size E½N�;

�
 the variability of population size, measured by the coefficient of

variation CV[N];

�
 the probability that the population is extinct, P½N¼ 0�.
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reen), 10 (cyan), 100 (blue). (For interpretation of the references to color in this fig
To facilitate comparison with the community model in the next
section, however, we will consider the mean number of species
E½S� ¼ 1�P½N¼ 0� instead of the extinction probability. Note that
for the population model the statements S¼1 and N40 are
equivalent. Note also that extinction is not fatal in our model,
because immigration can initiate the population again.

Fig. 2 plots the three population properties as functions of the
intensity of demographic stochasticity r� and the immigration ratem.
For small demographic stochasticity, the population size has a sharp
distribution (CV½N� � 0:1) centered at the equilibrium N*. In this
parameter region, the stochastic model is close to its deterministic
counterpart. The correspondence between the deterministic and
stochastic models gets even better for larger immigration rates. For
larger demographic stochasticity, mean population size decreases
below the equilibrium N*, and population size variability increases
rapidly. For small immigration rate, there is a sharp transition to
population extinction (E½S� � 0).

It is interesting to compare the exact results of Fig. 2 with the
commonly used linear approximations, see Appendix B. Fig. S1, in
Appendix G shows the same population properties as in Fig. 2 but
computed using approximation (B.4). The results for approximation
(B.5) are very similar (not shown). In the linear approximation,
mean population size and mean number of species are independent
of demographic stochasticity, and identical to the exact values for
small demographic stochasticity. The approximate variability CV[N]
coincides with the exact values when demographic stochasticity is
weak, but is too small for strong demographic stochasticity. Again,
we find that the linear approximation is accurate for small values of
r� , but deteriorates rapidly for larger values of r� .
3. Community model

In the previous section we added demographic stochasticity to a
minimal population model. Here we generalize this approach to a
multi-species community model. We start from the Lotka–Volterra
model, which can be considered as a minimal community model
with species interactions. Analogously with the population model,
we propose an individual-based, stochastic community model, and
compute its stationary distribution.

We build up from a deterministic community model, including
(competitive or mutualistic) species interactions and immigration. The
internal community dynamics are governed by the Lotka–Volterra
equations:

dNi

dt
¼ rNi 1�

Niþa
P

ja iNj

K u

� �
¼ rNi 1�

ð1�aÞNiþa
P

jNj

K u

� �
, i¼ 1,2, . . . ,ST, ð9Þ
00 102

stochasticity r−

 [N]
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size E½N�. Middle: coefficient of variation of population size CV[N]. Right: expected

is; the curves are parametrized by the immigration rate m: 0.01 (magenta), 0.1 (red),

ure legend, the reader is referred to the web version of this article.)
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with Ni the abundance of species i, r the intrinsic per capita growth
rate, K u the species-level carrying capacity, a the interaction
coefficient, and ST the total number of species.

Species interactions are competitive for a40, and mutualistic
for ao0. When species interactions are competitive, if the abun-
dance of a species is increased bydN, then its own per capita growth
rate is decreased by ðr=K uÞdN, while the per capita growth rate of
another species is decreased by aðr=K uÞdN. Using the change in
growth rate as a measure of interaction strength, the interaction
coefficient a can be interpreted as the ratio between inter- and
intraspecific interaction strength. When species interactions are
mutualistic, a similar interpretation holds, but in this case an
increase in the abundance of one species causes an increase in the
growth rate of the other species. Note that the factor 1�a is
proportional to the difference between intra- and interspecific
interaction strengths.

The parameter K u appearing in model (9) is called the species-
level carrying capacity, because it is equal to the equilibrium
population size in the absence of other species. It should be
contrasted with the community-level carrying capacity K,
defined as the equilibrium community size,

K ¼
X

i

N�i ¼
STK u

1þaðST�1Þ
, ð10Þ

with Ni* the equilibrium abundance of species i,

N�i ¼N� ¼
K u

1þaðST�1Þ
:

When 0oao1, the species-level carrying capacity K u is smaller
than the community-level carrying capacity K. Because the
interaction between heterospecifics is weaker than between
conspecifics, the carrying capacity K u as perceived by an isolated
species is smaller than the carrying capacity K of the entire
community. When a¼ 1, all individuals interact with the same
strength irrespective of their species identity, and both carrying
capacities K and K u are equal. When a¼ 0, the niches of the various
species do not overlap, their dynamics are independent, and the
community-level carrying capacity is the sum of the species-level
carrying capacities, K ¼ STK u. For competitive interactions, we have
a40 and KoSTK u due to niche overlap; for mutualistic inter-
actions, we have ao0 and K4STK u. Note that for fixed K, the
species-level carrying capacity K u goes to zero for a-�1=ðST�1Þ;
for fixed K u, the community-level carrying capacity K diverges for
a-�1=ðST�1Þ.

The parameters r and K u are the same for all species, and the
interaction coefficient a is the same for all species pairs. This implies
that the community model (9) has a symmetry: permutating the
species does not change the model equations.

Next, we add immigration to the internal dynamics (9). We
assume that individuals can immigrate into the community from a
much larger species pool. All ST species are present in the species pool,
and have the same abundance. Although different from Hubbell’s
model, this assumption is natural for neutral community models
(Bell, 2000). As a result, the immigration ratem from the species pool
is the same for all species. This leads to the following equations:

dNi

dt
¼ rNi 1�

ð1�aÞNiþa
P

jNj

K u

� �
þm i¼ 1,2, . . . ,ST: ð11Þ

Again, all species have the same parameters, so that this model has
species permutation symmetry. Model (11) has a single equilibrium

N�i ¼N� ¼
K

2ST
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4

STm
Kr

r !
, ð12Þ
which is globally stable for m40 and ar1. For weak immigration
(mST5rK), the equilibrium species abundance N * is close to the
species carrying capacity K=ST. For stronger immigration, the species
populations and the community as a whole are externally pushed
above their carrying capacities.
3.1. Construction of the stochastic model

To introduce demographic stochasticity into the deterministic
model (11), we first replace the continuous species abundances Ni

by discrete variables that can only take values 0,1,2,y. The
community composition is described by the abundance vector
~N ¼ ðN1,N2, . . . ,NST

Þ, a vector of ST integers.
The dynamics occur in the form of a series of stochastic events.

During each event, one of the species increases its abundance by
one individual due to a birth or immigration event, or decreases its
abundance by one individual due to a death event. We have to
specify the transition rates. Given community composition ~N , we
denote the rate of increase for species i by qiþ ð

~NÞ, and the rate of
decrease for species i by qi�ð

~NÞ.
We look for a stochastic model the expected, i.e., deterministic,

behaviour of which is given by (11). In Appendix D we show that the
deterministic part of the stochastic community model is

E½dNi�

dt
¼ qiþ ð

~NÞ�qi�ð
~NÞ,

where E½dNi� is the expected change of species abundance Ni in a
small time interval dt, see (D.2). Hence, the transition rates qiþ ð

~NÞ

and qi�ð
~NÞ have to satisfy

qiþ ð
~NÞ�qi�ð

~NÞ ¼ rNi 1�
ð1�aÞNiþa

P
jNj

K u

� �
þm:

Analogously with the population model, different choices are
possible for the rates qiþ ð

~NÞ and qi�ð
~NÞ. Here we use a generaliza-

tion of the density-dependent mortality version of our population
model (6),

qiþ ð
~NÞ ¼ rþNiþm,

qi�ð
~NÞ ¼ r�NiþrNi

ð1�aÞNiþa
P

jNj

K u
, ð13Þ

with r¼r+�r�. Both species-level density dependence (first term
in nominator of qi�ð

~NÞ) and community-level density dependence
(second term in nominator of qi�ð

~NÞ) are incorporated into the
death rate. Transition rates (13) are only valid for aZ0, because
qi�ð

~NÞ can become negative for ao0. For ar0 we take

qiþ ð
~NÞ ¼ rþNiþrNi

ð�aÞ
P

jNj

K u
þm,

qi�ð
~NÞ ¼ r�NiþrNi

ð1�aÞNi

K u
ð14Þ

again with r¼r+�r�. Now species-level density dependence is part
of the death rate, and community-level density dependence is
part of the birth rate. Note that definitions (13) and (14) coincide
for a¼ 0.

Transition rates (13) and (14) define the stochastic community
model that we study in this paper. Table 1 summarizes all model
parameters. Putting r¼1 corresponds to fixing time units, which
can be done without loss of generality. Once r is fixed, the
parameter r� can be interpreted as a measure of the intensity of
demographic stochasticity. Indeed, increasing r� does not affect
the deterministic part of the community model, but augments
the variance of stochastic fluctuations, as we show in Appendix D,
see (D.3).



Table 1
Parameters of the stochastic community model.

Symbol Meaning Value

ST Total number of species (some species can be absent

from the community)

ST¼20

r Per capita intrinsic rate of population increase r¼1

K Carrying capacity of community K¼400a

a Interaction coefficient (competitive for a40,

mutualistic for ao0)

aA ½�0:05,1�

r� Per capita intrinsic death rate (measure for intensity

of demographic stochasticity)

r�A ½0:1,100�

m Immigration rate of a species mA ½0:001,100�

r+ Per capita intrinsic birth rate r+¼r+r�
K u Species-level carrying capacity See (10)a

Three parameters (ST,r,K) are unchanged in all figures (except in Fig. 5B); three

parameters (a,r� ,m) are varied over the ranges indicated; two parameters (rþ ,K u) are

simple functions of the previous ones.

a In Fig. 5B the species-level carrying capacity K u is constant, K u¼ 100, and the

community-level carrying capacity K is computed from (10).
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Fig. 3. Comparison between simulated and computed stationary species abundance

distribution. The histograms give the species abundance distribution of a simulated

trajectory. The model was simulated during 2.104 time units. The first half was used

to eliminate the transient dynamics; the second half was used to sample the

population size every 10 time units (1000 samples in total). The red curves

correspond to the approximation (E6). Parameters are r_¼1, a¼0.5, K¼400. Left

panel: m¼10. Right panel: m¼0.01.
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3.2. Stationary distribution

We study the stationary species abundance distribution of the
stochastic community model defined by transition rates (13) and
(14). A full derivation can be found in Appendix E; here we give an
outline of the computations.

The stationary distribution can be solved exactly for two special
cases. When a¼ 0, the interaction between individuals is purely
intraspecific, and the ST species have independent dynamics. The
stationary distribution of the community model is the product of
the stationary distributions of the various species, see (E.2). When
a¼ 1, the interaction between individuals is completely sym-
metrical, i.e., individuals interact with each other independently
of the species they belong to. In that case, the model belongs to a
class of community models with community-level density depen-
dence (Haegeman and Etienne, 2008), for which the stationary
distribution is known explicitly, see (E.4).

For other values of the interaction coefficient a, �1=ðST�1Þo
ao0 and 0oao1, we were unable to obtain an explicit expression
for the stationary distribution. In Appendix E we present an
approximation that matches closely the stationary distribution
obtained from stochastic simulations, see Fig. 3. Moreover, by
taking the limits a-0 and a-1 of our approximation, we recover
(exactly, or with very good accuracy) the solutions for a¼ 0 and
a¼ 1. We also compared the results obtained in Fig. 5A from
simulating the stochastic process with our approximation: the
results were almost identical. Therefore, we confidently use our
approximation to investigate the stationary distribution of the
community model.

We also derive a linear approximation for the community model
and compute the corresponding stationary distribution in Appendix
D. The linear approximation is useful to study the general behaviour
of the community model. But the approximate stationary distribu-
tion can differ significantly from the exact solution, in particular
when demographic stochasticity is important, as in the population
model (Fig. 1).

3.2.1. Stationary distribution as a function of a and m
Fig. 4 shows the stationary probability distribution for a population

size Ni (left panel) and for the community size J (right panel),

J¼
XST

i ¼ 1

Ni:

Note that due to the species permutation symmetry of model (13)
and (14), all species have the same population size distribution.
We varied the immigration rate m in each panel, and the interaction
coefficient a between panels. We kept the community carrying
capacity K constant, so that the species-level carrying capacity K u

changes when varying a, see (10). The demographic stochasticity
coefficient r� was kept constant. Population and community sizes are
represented on a logarithmic scale, using transformation (8).

For large immigration rates m, the community and population
size distributions are peaked; the center of these distributions
coincides with the equilibrium value (12) of the deterministic
model. The peak of community size is located at ST times that of
population size. Hence, the distributions exhibit almost no
randomness, and are well described by the deterministic model.
The community composition is a somewhat blurred image of the
species pool. This deterministic behaviour is present for all values
of a.

When the immigration rate m decreases, the population size
distribution gets wider, and its mode shifts towards smaller
population size. In this case, some species become extinct due to
demographic fluctuations. Note that their extinction is temporary,
as immigration can reintroduce them from the species pool in the
community. The dynamical balance between immigration and
demographic stochasticity leads to a left-skewed population
size distribution, which we also encountered in the population
model (Fig. 1). For any interaction coefficient a, there is a range of
parameterm for which immigration and demographic stochasticity
are balanced.

When the immigration rate m decreases further, we have to
distinguish the cases of positive and negative a. When ao0, the
community size distribution shifts to smaller values, becomes
wider, and community disappearance becomes probable. When
a40, the community size distribution keeps a constant peaked
shape down to very small values of m. In this case, community size
regulation prevents community extinction. Simultaneously, the
population size distribution shifts to larger values, becomes more
peaked, and closely resembles the community size distribution.
The community is then dominated by a few species that have
stochastically excluded the other species.

3.3. Community properties

Here we perform a more systematic study of the stationary
properties of model (13) and (14), in particular:
�
 the mean community size E½ J�;

�
 the variability of the community size, measured by its coeffi-

cient of variation CV[ J];
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Fig. 4. Species abundance and community size distributions as functions of

interaction coefficient a and immigration rate m. The immigration rate m takes

values 0.001 (magenta), 0.01 (red), 0.1 (yellow), 1 (green), 10 (cyan), and 100 (blue).

The demographic stochasticity coefficient r� is the same for all distributions,

r�¼10. The interaction coefficient a takes four different values: (A) a¼�0:02;

(B) a¼ 0; (C) a¼ 0:5; (D) a¼ 1. The community carrying capacity K is constant,

K¼400. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)
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�
 the mean population size E½Ni�; however, this property does
not contain new information compared to E½ J� because
E½ J� ¼ STE½Ni�;
�
 the variability of the population size, measured by its coefficient
of variation CV[Ni]; note that this property does contain new
information compared to CV[ J];

�
 the mean number of species E½S� in the community; note that

E½S� ¼ STð1�P½Ni ¼ 0�Þ;

�
 the mean Simpson diversity index E½D� in the community,

defined as the probability that two randomly sampled indivi-
duals from the community belong to different species.

Other properties can easily be derived from these properties. For
example, community synchrony as defined by Loreau and de
Mazancourt (2008) equals the ratio of CV[J] and CV[Ni]. Community
evenness can be defined by comparing the Simpson diversity index
E½D� and the mean species richness E½S�. Most of these properties are
readily obtained from the approximate stationary distribution of the
community model. Those for which the computation is not straight-
forward are considered in Appendix F.
3.3.1. Community properties as functions of a and m
Fig. 5 plots the above community properties as functions of the

interaction coefficient a (on x-axis) and the immigration rate m
(different colors). Demographic stochasticity r� is kept constant.
Both negative and positive values of a are plotted; we use a finer
scale for the mutualistic case (the scale for ao0 is ten times finer
than the scale for a40). To help interpret the results, we plot the
same community properties obtained from the linear approxi-
mation in Fig. S2, in Appendix G.

In Fig. 5A we keep the community carrying capacity K constant
when varying a, as in Fig. 4. In this case, there is no direct effect of
the interaction coefficienta on the mean community size. Note that
to keep K constant, the species-level carrying capacity K u has to
decrease for decreasing a.

The mean community size E½ J� increases with the immigra-
tion rate m, as expected. More surprisingly, the mean community
size also increases with the interaction coefficient a. As we keep the
community carrying capacity K constant, the mean community size
is independent of a in the linear approximation, see Fig. S2A in
Appendix G. The dependence on a in the full model is due to
demographic stochasticity, which can drive the community to
extinction when m and a are small. When a� 1, community-level
density dependence prevents community extinction.

The variability of community size CV[J] decreases with m, and
decreases with a, reaching a minimum at a¼ 1. Community-level
density dependence at a¼ 1 regulates the community size,
decreasing its variability. For smaller and negative a, community
extinction is increasingly probable, and variability increases
steeply. The variability of population size CV[Ni] decreases with
m, decreases with a for ao0, and increases with a for a40,
reaching a minimum at a¼ 0. Species-level density dependence
at a¼ 0 regulates the population sizes. For negative a, there
is again a steep increase in variability due to demographic
stochasticity.

The expected number of species E½S� increases with m, and is
maximal for a¼ 0. The latter result is due to density dependence
regulating the size of each population, so that population extinction
is less probable. The number of species decreases for negative a
because the entire community can disappear; the number of
species decreases for positive a because the community is increas-
ingly dominated by a few species, and eventually (for small m and
a� 1) by a single species. The Simpson diversity index E½D� has a
similar behaviour.

In Fig. 5B we keep the species-level carrying capacity K u constant
when varyinga. As a consequence, the interaction coefficienta directly
affects the mean community size. Increasing competition decreases
community size, and increasing mutualism increases community size.
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Note that to keep K u constant, the community carrying capacity K has to
increase steeply for smaller a, especially when ao0.

When a decreases, the mean community size E½ J� increases, and
the variabilities CV[J] and CV[N] decrease. Mutualistic (or less
competitive) interactions lead to large population sizes, eliminating
entirely the effect of demographic stochastic observed in Fig. 5A.
When a is negative, the number of species E½S� and the Simpson
diversity index E½D� reach their maximal value. Community
extinction is extremely improbable and all populations have the
same size because demographic stochasticity does not affect large
populations.
3.3.2. Community properties as functions of r� and m
Fig. 6 plots the community variables as functions of parameters

r� (on x-axis) and m (different colors) for either positive (Fig. 6A,
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a¼ 0:5) or negative (Fig. 6B, a¼�0:02) values of a. The same
community properties obtained from the linear approximation are
plotted in Fig. S3 in Appendix G for comparison.

The mean community size decreases with demographic sto-
chasticity r� , especially for small immigration rates m, both for
positive and negative a. This is due to the increased probability of
species extinction. The variability of community and population
size increases with r� , both for positive and negative a. Increasing
demographic stochasticity increases the probability that either
individual populations (a40) or the community as a whole (ao0)
disappear, which further increases the variability of population and
community sizes. Similarly, the mean number of species and the
Simpson diversity index decrease with r� due to demographic
stochasticity. This decrease is gradual for a40, as species
disappear one by one, and more abrupt for ao0, as the entire
community can disappear at once.
4. Discussion

We have proposed a minimal community model that combines
the basic ingredients of niche-based and neutral community
models. Our model can be interpreted as Hubbell’s local commu-
nity model in which we have replaced the condition of invariant
community size with a dynamical regulation of population and
community sizes by intra- and interspecific interactions. Alterna-
tively, it can be interpreted as a classical Lotka–Volterra model to
which we have added demographic stochasticity and immigration
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from an external species pool. The model is minimal in the sense
that we exploited species symmetry as much as possible: all
species have the same birth rate, death rate, carrying capacity
and immigration rate, and all species pairs have the same inter-
action coefficient.

We have presented a detailed analysis of the properties of the
stationary state as functions of three model parameters: the
immigration rate m, the demographic stochasticity intensity r�
and the interaction coefficient a, defined as the ratio of inter- and
intraspecific interaction strength. The general conclusions of this
analysis can be summarized as follows:
�
 For strong immigration and weak demographic stochasticity,
community structure is deterministic, i.e., predictable. The local
community is a faithful representation of the species pool. The
noise in this representation increases by lowering the immigration
rate m or raising the strength of demographic stochasticity r�.
�
 Increasing noise when species interactions are competitive
(positive and not too small interaction coefficient a) yields a
community in which some species start to dominate others. As
all species are equally abundant in the species pool, these
fluctuations cannot be predicted. Community size remains
approximately constant. Further increasing noise eventually
leads to a community in which one species (stochastically)
excludes all others.
�
 Increasing noise when species interactions are mutualistic or
weakly competitive (negative, or positive but small interaction
coefficient a) yields a community in which not only populations
but also the community as a whole are subject to random
fluctuations. This effect is stronger when interactions are
mutualistic, as species abundances are positively correlated.
Further increasing noise (again, by decreasing m or increasing
r�) eventually leads to the collapse of the entire community.

Mutualistic interactions result in unstable communities, in
which even a small amount of noise can induce high variability.
However, this finding is strongly dependent on the assumption that
the community-level carrying capacity K is kept constant when
reducing the interaction coefficient a. If, alternatively, we keep the
species-level carrying capacity K u constant, we obtain very different
results. In the latter case, mutualistic interactions lead to large and
stable communities, because demographic stochasticity has a
relatively small impact on large populations, see Fig. 5B. It
should be noted that the deterministic Lotka–Volterra model for
mutualistic interactions also predicts rapidly increasing population
sizes. This somewhat pathological behaviour has generally been
considered as an indication that the Lotka–Volterra model is too
simplistic to give a realistic description of mutualism (Wolin and
Lawlor, 1984; Ringel et al., 1996).

Our model does not exactly recover Hubbell’s local community
model as a limiting case. The assumption of invariant community
size in Hubbell’s model imposes a strict regulation of the commu-
nity size, which cannot be reproduced exactly by our more flexible
model. However, strict community size regulation can be approxi-
mated well by community-level density dependence. Indeed,
Fig. 4D shows that the distribution of the community size J is
sharply peaked for a¼ 1. Moreover, the stationary distribution of
our model with a¼ 1 conditional on a given community size J is
identical to the stationary distribution of Hubbell’s model, as can be
seen explicitly from solution (E.5) in Appendix E. Hence, the
community structure predicted by our model with a¼ 1 is close
to Hubbell’s model predictions. For example, the population size
distributions in Fig. 4D coincide with Hubbell’s.

It has been observed previously that Hubbell’s model is robust to
the introduction of niche features. Volkov et al. (2005) noticed that
the immigration process in neutral models can be reinterpreted as a
particular form of species-level density dependence. Note that
Hubbell’s neutral model includes an implicit but strong form of
community-level density dependence, as community size is kept
constant over time. Surprisingly, Etienne et al. (2007) showed that
dropping the invariant community size condition does not affect
the stationary species abundance distribution (conditional on
community size), so that Hubbell’s model can be interpreted as a
neutral model without any density-dependence. Other papers
introduced a class of neutral-like models with community-level
density dependence (Haegeman and Etienne, 2008; Allouche and
Kadmon, 2009), for which the stationary distribution (conditional on
community size) is identical to Hubbell’s. In fact, our model with
a¼ 1 belongs to this class of models.

Since Hubbell’s neutral model is embedded in our neutral-niche
model as a limiting case whena¼ 1, we can ask how the community
structure predicted by neutral theory changes when taking into
account niche processes, i.e., when going from a¼ 1 to ao1. Our
model shows that the change in community structure is relatively
limited. For example, the community properties in Fig. 5A have a
rather smooth transition from a¼ 1 to ao1. Only the Simpson
diversity index E½D� changes more abruptly, because the stochastic
exclusion of species is prevented by a limited amount of niche
differentiation. Although the set of abundance distributions is larger
forao1 than for a¼ 1, community structure whenao1 is typically
well approximated by community structure for a¼ 1, possibly with
different parametersm and r�. It seems therefore difficult to infer the
set of model parameters from species abundance data.

Volkov et al. (2009) studied a stochastic community model with
birth-death events and species interactions, which therefore has
some relationship to our model. They used their model to estimate
interaction coefficients based on empirical abundance data.
Specifically, they divided a large plot of tropical forest into a
myriad of small quadrats, and they argued that the resulting
replicated data sets suffice to reliably infer species interactions.
This approach might provide a connection between our model and
empirical data. Alternatively, parameter estimation could be based
on spatial and/or dynamical data, or data from different environ-
mental conditions (e.g., varying immigration rates). A rigorous
investigation of the parameter inference problem requires further
work and falls outside the scope of this paper.

Species interactions in our model have a particular structure, as
we assumed equal interaction strength between all species pairs. This
symmetry assumption for species interactions is a natural extension
of the neutrality assumption, in which birth, death and immigration
rates of all species are assumed to be equal. On the other hand, it is a
rather uncommon assumption in niche models. Symmetric interac-
tions correspond to a niche space with identical overlaps between all
species pairs, which is only possible in a high-dimensional niche
space (e.g., as many dimensions as there are species). The more
common interaction structure, in which species are sorted along a
one-dimensional niche axis, and which is often considered in neutral-
niche simulation models (Tilman, 2004; Schwilk and Ackerly, 2005;
Gravel et al., 2006; Zillio and Condit, 2007), is not compatible with
species symmetry. Note that symmetric interactions can also be
interpreted as an approximation in which individuals effectively
interact with all other species grouped together, analogous to the
mean field approximation in physics.

A description of species sorting along a niche axis requires
species-specific interaction coefficients, complicating model ana-
lysis. Species differences can be introduced more straightforwardly
as species-specific birth and/or death rates (Zhang and Lin, 1997;
Fuentes, 2004; Zhou and Zhang, 2008). Studies that have done so
showed that even small demographic differences can perturb neutral
community patterns, such as species abundance distributions.
It would be interesting to see how the relative fragility of neutral
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models with respect to species differences, as found in these
studies, interacts with the relative robustness of neutral model
predictions with respect to the addition of niche processes,
as we found in this work. Conceptual models suggest that the
effect of species differences will be mitigated by niche processes
(Chesson, 2000; Adler et al., 2007).

Our model analysis is restricted to the stationary structure of a
single local community. It would be interesting to look at spatial
and dynamical properties of our model, and see how niche
processes affect neutral community behaviour. Although a direct
analysis might be difficult, moment closure techniques might be
helpful (Bolker et al., 2000). These techniques have been used
successfully to study the stochastic logistic population model
(Nåsell, 2003), and are known to be exact for Hubbell’s neutral
community model (Vanpeteghem et al., 2008; Vanpeteghem and
Haegeman, 2010). Alternatively, the spatial and dynamical
behaviour can be studied using the linear approximation. We
have indicated the parameter region in which the linear approxi-
mation predicts the stationary distribution accurately. Note that
the linear approximation has been used to study the effect of
environmental stochasticity on community structure (Ives et al.,
1999; Loreau and de Mazancourt, 2008).

Finally, it is worthwhile to note that we have constructed our
stochastic community model using a mathematically natural construc-
tion. The only choice we had to make was how to distribute density
dependence over birth and death rates. Our study of the population
model, however, suggested that the details of this choice have little
effect on the model’s stationary properties. Apart from this peculiarity,
our model shares the genericity of the Lotka–Volterra model and of
Hubbell’s neutral model. Also, we exploited a number of analytical tools
(linear approximation, exact and approximate stationary distribution,
community properties) to obtain a rather complete picture of the
model behaviour. We hope that these tools and the model’s genericity
will be instrumental in narrowing the conceptual gap between niche
and neutral theories in community ecology.
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Appendix A. Random variables and stochastic models

Stochastic models require, compared to deterministic models,
some dedicated notation, which we define in this appendix. We use
a simplified notation in the main text, to keep it as readable as
possible; we use a more specialized notation in the appendices, to
clearly present the mathematical arguments.

We use bold capital letters to denote random variables. We
distinguish, for example, a particular value N for the population
size, and the corresponding random variable N. This distinction
allows us to write expressions as P½N ¼N�, which stands for the
probability that the random population size N takes the value N.
We use the simplified notation P½N� in the main text, or when
confusion is impossible.

The expectation (or average value) of the random variable N is
denoted by E½N�,

E½N� ¼
X1

N ¼ 0

NP½N�:

Similarly, we use Var½N� for the variance,

Var½N� ¼ E½ðN�E½N�Þ2�
and CV½N� for the coefficient of variation,

CV½N� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½N�

p
E½N�

:

The covariance between, for example, the abundance N i of species i

and the abundance N j of species j is denoted by Cov½Ni,Nj�,

Cov½Ni,Nj� ¼ E½ðNi�E½Ni�ÞðNj�E½Nj�Þ�:

We use standard notation to denote the conditioning of one
random variable on the value of another random variable. For
example, the probability that the abundance N i of species i takes
the value Ni given that the community size J equals J is denoted by
P½N i ¼NijJ ¼ J�, or simply P½Nij J�. Similarly, we use the notation
E½N ijJ ¼ J� orE½Nij J� for the conditional expectation, and Var½N ijJ ¼ J�

or Var½Nij J� for the conditional variance.
The dynamical variables of stochastic models are random

variables. Different formalisms exist to describe the dynamics of
(continuous-time Markovian) stochastic models (Van Kampen, 1997;
Gardiner, 2004). The one we mainly use, the master equation
formalism, is based on a dynamical equation (called the master
equation) for the probability distribution of the random dynamical
variables. For example, a stochastic model for the population size N is
described by a system of differential equations for P½N ¼N� (one
equation for each value N). Examples of the master equation
formalism are (C.1) and (E.1).

Alternatively, one can use the formalism of stochastic differential
equations, which are dynamical equations for the random variables
directly (and not for their probability distribution). To get an intuitive
idea of these equation, consider a small time interval dt, during which
the random dynamical variable N changes by an amount dN. The
stochastic differential equation describes the dependence of dN on
the current value of the dynamical variable N, together with new
randomness appearing in the time interval dt. Examples of stochastic
differential equations are (B.3) and (D.5).

Appendix B. Linear approximation of population model

We decompose the population model of Section 2 into a
deterministic part and a purely stochastic part. We use this
decomposition to derive a linear approximation, which allows us
to quantify the impact of stochasticity on the deterministic
population model (1).

To define the transition rates of the population model, consider
the change dN of population size in a small time interval dt. The
probability of making a transition in this time interval is propor-
tional to dt, and the transition rates are the constants of propor-
tionality. More precisely,

P½dN ¼ þ1jN ¼N� ¼ qþ ðNÞdt,

P½dN ¼�1jN ¼N� ¼ q�ðNÞdt,

P½dN ¼ 0jN ¼N� ¼ 1�ðqþ ðNÞþq�ðNÞÞdt:

We compute the mean of dN conditioned on N ¼N,

E½dNjN ¼N� ¼ ðþ1Þqþ ðNÞdtþð�1Þq�ðNÞdt

¼ ðqþ ðNÞ�q�ðNÞÞdt, ðB:1Þ

and the variance of dN conditioned on N ¼N,

Var½dNjN ¼N� ¼ E½ðdNÞ2jN ¼N��E½dNjN ¼N�2

� E½ðdNÞ2jN ¼N�

¼ ðþ1Þ2qþ ðNÞdtþð�1Þ2q�ðNÞdt

¼ ðqþ ðNÞþq�ðNÞÞdt, ðB:2Þ

where we dropped terms in ðdtÞ2.
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Hence, in the small time interval dt, the population size N
undergoes a deterministic change given by (B.1) with a stochastic
fluctuation superposed on it. The mean of this stochastic
fluctuation equals zero, and its variance is given by (B.2).
Formally, this decomposition can be written as

dN ¼ E½dN�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½dN�

p
E

¼ ðqþ ðNÞ�q�ðNÞÞdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ ðNÞþq�ðNÞ

p ffiffiffiffiffi
dt
p

E, ðB:3Þ

with E an appropriate random variable, with mean zero and
variance one. Neglecting the purely stochastic second term, we
get the corresponding deterministic dynamical system, given by
the differential equation

dN

dt
¼ qþ ðNÞ�q�ðNÞ:

The stochastic differential equation (B.3) is difficult to analyze in
general. A useful approximation consists in (a) linearizing the
deterministic part around a stable equilibrium point N*, and (b)
replacing the stochastic part by a Gaussian random variable with
mean zero and constant variance, equal to the variance of the full
equation at the equilibrium point N*. We get

dN ¼
dqþ
dN
ðN�Þ�

dq�
dN
ðN�Þ

� �
ðN�N�Þdtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ ðN�Þþq�ðN�Þ

p ffiffiffiffiffi
dt
p

G

¼ lðN�N�Þdtþs
ffiffiffiffiffi
dt
p

G, ðB:4Þ

with G a Gaussian random variable with mean zero and variance
one, l the slope of the deterministic equation at N* (lo0 for a
stable equilibrium point), and s2 the variance of the full stochastic
equation at N*. The linear stochastic differential equation (B.4) is
known as an auto-regressive model (in discrete time), or a
Ornstein–Uhlenbeck process (in continuous time). The stationary
distribution for the population size N is Gaussian with mean N* and
variance s2=2jlj (Gardiner, 2004).

Another approximation for (B.3) is based on the same
linearization ideas, but uses the logarithmic population size
L¼ lnN as model variable. We have

dL¼ lnðNþdNÞ�lnðNÞ ¼ ln 1þ
dN

N

� �
�

dN

N

for small changes dN, which is satisfied in a continuum
approximation. The linearized stochastic differential equation reads

dL¼
dqþ
dN
ðN�Þ�

dq�
dN
ðN�Þ

� �
ðL�L�Þdtþ

1

N�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ ðN�Þþq�ðN�Þ

p ffiffiffiffiffi
dt
p

G,

ðB:5Þ

with equilibrium logarithmic population size L*¼ ln N*. The
linearizations (B.4) and (B.5) are similar, with one notable
difference. Whereas Eq. (B.4) has a Gaussian stationary distribution
for the population size N, Eq. (B.5) has a Gaussian stationary
distribution for the logarithmic population size L, and thus a
lognormal stationary distribution for the population size N.
Appendix C. Stationary distribution of population model

We consider the population model of Section 2, and derive the
stationary distribution of the population size N using the master
equation formalism. The master equation is a differential equation
for the distribution P½N ¼N� ¼P½N� of the population size N, see
Van Kampen (1997). It reads

d

dt
P½N� ¼ qþ ðN�1ÞP½N�1�þq�ðNþ1ÞP½Nþ1��ðqþ ðNÞþq�ðNÞÞP½N�

ðC:1Þ
and expresses how the probability P½N� changes as a function of
time: P½N� increases by transitions N�1-N (first term in right-
hand side) and Nþ1-N (second term in right-hand side); P½N�
decreases by transitions N-Nþ1 and N-N�1 (last term in right-
hand side).

We are looking for the stationary solution of (C.1), i.e., the
solution of the set of equations obtained by putting the right-hand
side to zero,

qþ ðN�1ÞP½N�1�þq�ðNþ1ÞP½Nþ1�

¼ ðqþ ðNÞþq�ðNÞÞP½N� for all N:

This equation says that in stationary regime, the transitions
arriving in state N (left-hand side) are compensated by the
transitions leaving state N (right-hand side). A stronger
condition, called detailed balance, is

qþ ðN�1ÞP½N�1� ¼ q�ðNÞP½N� for all N

stating that the transition N�1-N is directly compensated by the
transition N-N�1. If there exists a solution of the detailed-balance
condition, then this solution is necessarily the stationary
distribution (Van Kampen, 1997). For the population model, the
solution of the detailed-balance condition exists and can be
constructed explicitly. To do so, we express P½N� in terms of
P½N�1�, and by iterating we get P½N� in terms of P½0�,

P½N� ¼P½0�
YN

k ¼ 1

qþ ðk�1Þ

q�ðkÞ
: ðC:2Þ

We obtain P½0� by requiring that the distribution is normalized,

1¼
X1

N ¼ 0

P½N� ¼P½0� 1þ
X1

N ¼ 1

YN
k ¼ 1

qþ ðk�1Þ

q�ðkÞ

 !
: ðC:3Þ

Eqs. (C.2)–(C.3) determine the stationary population size
distribution P½N�.

Substituting transition rates (6) in the stationary distribution
(C.2), we get

P½N� ¼P½0�
ðaÞN
ðbÞN

cN

N!
,

where we introduced the dimensionless paramaters a, b and c,

a¼
m

rþ
, b¼

r�
r

Kþ1, c¼
rþ
r

K ,

and we used the Pochhammer notation,

ðaÞN ¼ aðaþ1Þ � � � ðaþN�1Þ:

The normalization condition (C.3) can be written in terms of the
hypergeometric function Fa,bðcÞ (sometimes called confluent
hypergeometric function, or also Kummer’s function),

Fa,bðcÞ ¼
X1

N ¼ 0

ðaÞN
ðbÞN

cN

N!
ðC:4Þ

so that the stationary distribution can be written as

P½N� ¼
1

Fa,bðcÞ

ðaÞN
ðbÞN

cN

N!
: ðC:5Þ

Analogously, the stationary distribution for the alternative
choice (7) can be obtained by substituting (7) in (C.2)–(C.3).
Appendix D. Linear approximation of community model

We decompose the community model of Section 3 into a
deterministic part and a purely stochastic part. We compute a
linear approximation, and quantify the impact of stochasticity on
the deterministic community model (11).
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First, we define the transition rates of the community model. In a
small time interval dt, one of the components of the abundance
vector ~N ¼ ðN1,N2, . . . ,NST

Þ can increase or decrease by one indivi-
dual. Hence, the vector of random abundance changes d~N ¼
ðdN1,dN2, . . . ,dNST

Þ can increase or decrease by the unit vector ~ei,

~ei ¼ ð0,0, . . . ,0,1,0, . . . ,0,0Þ ðD:1Þ

a vector with all components equal to zero, except component i

which is equal to one. The transition rates qiþ ð
~NÞ and qi�ð

~NÞ are
given by

P½d~N ¼ þ~eij
~N ¼ ~N � ¼ qiþ ð

~NÞdt,

P½d~N ¼�~eij
~N ¼ ~N � ¼ qi�ð

~NÞdt:

We compute the mean of dN i,

E½dN ij
~N ¼ ~N � ¼ ðqiþ ð

~NÞ�qi�ð
~NÞÞdt, ðD:2Þ

the variance of dN i,

Var½dN ij
~N ¼ ~N � � E½ðdN iÞ

2
j~N ¼ ~N � ¼ ðqiþ ð

~NÞþqi�ð
~NÞÞdt ðD:3Þ

and the covariance of dN i and dN j,

Cov½dN i,dN jj
~N ¼ ~N � � E½dN idN jj

~N ¼ ~N � ¼ 0, ðD:4Þ

where we dropped terms in ðdtÞ2. Note that the absence of
correlations is only valid instantaneously, i.e., for the abundance
changes during a single event, but it holds both in and out of the
stationary regime.

Eqs. (D.2)–(D.4) suggest a decomposition into a deterministic
part and a purely stochastic part. Stochastic fluctuations act on a
deterministic dynamical system given by

dNi

dt
¼ qiþ ð

~NÞ�qi�ð
~NÞ, i¼ 1,2, . . . ,ST:

The full stochastic model can be analyzed using a linear
approximation (Gardiner, 2004). We linearize the deterministic
equation at a stable equilibrium point ~N

�
, yielding the coefficient

matrix A,

Aij ¼
@

@Nj
ðqiþ ð

~NÞ�qi�ð
~NÞÞ

����
~N ¼ ~N

�

:

Stability means that all eigenvalues li of the matrix A have negative
real part. The stochastic fluctuations act additively on the
components dN i, with mean zero and variance s2

i , see (D.3),

s2
i ¼ qiþ ð

~N
�
Þþqi�ð

~N
�
Þ

and without correlation between different components dN i and
dN j, see (D.4). Hence, the linear stochastic differential equation is

d~N ¼ Að~N�~N
�
ÞdtþB

ffiffiffiffiffi
dt
p

~G , ðD:5Þ

with B a diagonal matrix with components si, and ~G a vector of
mutually independent Gaussian random variables with mean zero
and variance one.

The linear stochastic differential equation (D.5) is well known
(auto-regressive model or Ornstein–Uhlenbeck process). Its
stationary distribution for the abundance vector ~N is Gaussian
with mean ~N

�
and covariance matrix C, which is the solution of the

Lyapunov equation (Gardiner, 2004):

ACþCAT
þB2 ¼ 0, ðD:6Þ

where AT stands for the transpose of the matrix A.
For the community model with transition rates (13)–(14), the

Lyapunov equation (D.6) can be solved explicitly (Ives et al., 1999;
Loreau and de Mazancourt, 2008). The matrix A is given by

Aij ¼
a1 if i¼ j,

a2 if ia j,

(

with

a1 ¼ r 1�
2þaðST�1Þ

1þaðST�1Þ

ST N�

K

� �
,

a2 ¼�r
a

1þaðST�1Þ

ST N�

K
,

with equilibrium abundance N* given by (12). The matrix B is given by

Bij ¼
b1 if i¼ j,

0 if ia j,

(

with

b1 ¼

ðrþ þr�ÞN�þr
STN�

K
þm if aZ0,

ðrþ þr�ÞN�þr
1�aðSTþ1Þ

1þaðST�1Þ

STN�

K
þm if ar0:

8>><
>>:

Both matrices A and B have a special structure: all diagonal
components are equal, and all off-diagonal components are
equal. The correlation matrix C has the same structure, and is
explicitly given by

Cij ¼

�
ða1þðST�2Þa2Þb1

2ða1�a2Þða1þðST�1Þa2Þ
if i¼ j,

a2b1

2ða1�a2Þða1þðST�1Þa2Þ
if ia j:

8>>><
>>>:

Hence, in the linear approximation, the variance of a species
abundance N i is

Var½N i� ¼Var½N1� ¼ C11 ¼�
ða1þðST�2Þa2Þb1

2ða1�a2Þða1þðST�1Þa2Þ

and the variance of the community size J is

Var½J� ¼
X

ij

Cij ¼ STC11þSTðST�1ÞC12 ¼�
STb1

2ða1þðST�1Þa2Þ
:

Note that, although there are no correlations between the
components of d~N , see (D.4), the dynamics generate correlations
between the components of the stationary abundance vector ~N
(i.e., Cija0 for ia j).
Appendix E. Stationary distribution of community model

We consider the community model of Section 3, and derive the
stationary distribution of the species abundance vector ~N . As for
the population model, we use the master equation, which is a
differential equation for the probability distribution P½~N ¼ ~N � ¼
P½~N �, see Van Kampen (1997). It reads

d

dt
P½~N � ¼

X
i

qiþ ð
~N�~eiÞP½~N�~ei�þ

X
i

qi�ð
~Nþ~eiÞP½~Nþ~ei�

�
X

i

ðqiþ ð
~NÞþqi�ð

~NÞÞP½~N �, ðE:1Þ

with ~ei the i-th unit vector, see (D.1). Explicit expressions for the
transition rates qiþ ð

~NÞ and qi�ð
~NÞ are given in (13)–(14).

We give an exact solution of the stationary distribution for the
cases a¼ 0 and a¼ 1. For the cases ao0 and 0oao1, we present
an approximation method that reproduces accurately simulation
results.
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E.1. Community model with a¼ 0

The community model with a¼ 0 corresponds to a community
in which species are mutually independent. There is species-level
density dependence: the growth rate of species i is limited by the
other individuals of species i, but not by the individuals of another
species ja i. Indeed, when a¼ 0, transition rates qiþ ð

~NÞ and qi�ð
~NÞ

only depend on ~N through Ni,

qiþ ð
~NÞ ¼ qiþ ðNiÞ and qi�ð

~NÞ ¼ qi�ðNiÞ

so that the master equation (E.1) decouples into ST master
equations for one-species abundance distributions. For species i,

d

dt
P½Ni� ¼ qiþ ðNi�1ÞP½Ni�1�þqi�ðNiþ1ÞP½Niþ1�

�ðqiþ ðNiÞþqi�ðNiÞÞP½Ni�,

which is identical to the master equation (C.1) for the population
model. The stationary distribution P½Ni� is given by (C.5),

P½Ni� ¼
1

Fa,bðcÞ

ðaÞNi

ðbÞNi

cNi

Ni!
,

with the dimensionless parameters

a¼
m

rþ
, b¼

K

ST

r�
r
þ1, c¼

K

ST

rþ
r
:

The stationary distribution for the full abundance vector ~N is a
product of one-species abundance distributions,

P½~N � ¼
1

Fa,bðcÞ
ST

YST

i ¼ 1

ðaÞNi

ðbÞNi

cNi

Ni!
: ðE:2Þ

E.2. Community model with a¼ 1

The community model with a¼ 1 corresponds to community-
level density dependence: the growth rate of species i is limited by
individuals of species i and species ja i alike. Mathematically,
when a¼ 1, transition rate qiþ ð

~NÞ depends only on Ni, and
transition rate qi�ð

~NÞ depends both on Ni and on J¼
P

iNi, with
linear dependence on Ni,

qiþ ð
~NÞ ¼ qiþ ðNiÞ and qi�ð

~NÞ ¼Niqi�ðJÞ:

We use detailed balance to compute the stationary distribution
(recall that a solution of the detailed-balance condition, if it exists,
is necessarily the stationary distribution, Van Kampen, 1997),

qiþ ð
~N�~eiÞP½~N�~ei� ¼ qi�ð

~NÞP½~N � ðE:3Þ

or,

qiþ ðNi�1ÞP½~N�~ei� ¼Niqi�ðJÞP½
~N �:

One can check that the detailed-balance condition is satisfied by

P½~N � ¼
qiþ ðNi�1Þ

Niqi�ðJÞ
P½~N�~ei�

¼
YST

i ¼ 1

1

Ni!

YNi�1

k ¼ 0

qiþ ðkÞ

 !" # YJ

k ¼ 1

1

qi�ðkÞ

" #
P½~0�,

with ~0 the abundance vector of a community without individuals.
Using the transition rates (13), normalization can be computed
explicitly using the hypergeometric function (C.4). The resulting
multi-species abundance distribution is

P½~N � ¼
1

FSTa,bðcÞ

YST

i ¼ 1

ðaÞNi

Ni!

" #
cJ

ðbÞJ
, ðE:4Þ

with the dimensionless parameters

a¼
m

rþ
, b¼ K

r�
r
þ1, c¼ K

rþ
r
:

The stationary multi-species abundance distribution conditioned
on the total number of individuals J is

P½~N j J� ¼
J!

ðSTaÞJ

YST

i ¼ 1

ðaÞNi

Ni!
: ðE:5Þ

The stationary distribution for the total number of individuals J is
given by

P½ J� ¼
1

FSTa,bðcÞ

ðSTaÞJc
J

J!ðbÞJ
:

E.3. Community model for general a

The community model for general a contains both species-level
and community-level density dependence. The detailed-balance
trick we used to solve the cases a¼ 0 and a¼ 1 does not work in the
general case: the detailed-balance equation (E.3) cannot be
satisfied simultaneously. As we are not able to solve the full set
of stationarity equations of (E.1), we introduce an approximation
method to obtain the stationary distribution, and show using
simulations that this approximation is accurate.

The approximation strategy consists in first, finding an approx-
imation Q ð~N j JÞ for the distribution P½~N j J�, the multi-species
abundance distribution conditioned on the total number of indi-
viduals J, and next, using this approximate distribution Q ð~N j JÞ to
compute an approximation R(J) for the distribution PðJÞ, the
stationary distribution for the total number of individuals J. By
combining the two, we get an approximate multi-species abun-
dance distribution,

P½~N � ¼P½~N j J�P½ J� �Q ð~N j JÞRðJÞ: ðE:6Þ

First, we consider the case a40 with transition rates (13).
Transition rate qiþ ð

~NÞ depends only on Ni, but transition rate qi�ð
~NÞ

depends both on Ni and on J¼
P

iNi. As we look for an
approximation of the distribution P½~N j J� conditioned on J ¼ J, we
expect to make a small error by assuming that the number of
individuals J appearing in transition rate qi�ð

~NÞ takes the fixed
value J. Thus, we consider a modified stochastic community model
with transition rates qiþ ð

~NÞ and ~qi�ð
~NÞ,

~qi�ð
~NÞ ¼ r�þr

ð1�aÞNiþaJ

K u

� �
Ni ¼ r�þ

raJ

K u

� �
Niþ

rð1�aÞ
K u

N2
i ðE:7Þ

in which J is no longer a variable but a parameter. Because
transition rates qiþ ð

~NÞ and ~qi�ð
~NÞ depend only on the abundance

Ni, we can apply detailed balance to compute the stationary multi-
species abundance distribution Q ð~NÞ for the modified transition
rate ~qi�ð

~NÞ. Conditioning this distribution on J ¼ J, we get the
approximation Q ð~N j JÞ for P½~N j J�.

The computation of the stationary distribution Q ð~NÞ for transi-
tion rates qiþ ð

~NÞ and ~qi�ð
~NÞ is analogous with the case a¼ 0. The

result is

Q ð~NÞ ¼
1

Fa,bðcÞ
ST

YST

i ¼ 1

ðaÞNi

ðbÞNi

cNi

Ni!
, ðE:8Þ

with dimensionless parameters

a¼
m

rþ
, b¼

r�K uþraJ

rð1�aÞ
þ1, c¼

rþK u

rð1�aÞ
:

Note the dependence of the parameter b on the parameter J.
To condition Q ð~NÞ on J ¼ J, we use the product structure of the

distribution Q ð~NÞ. The multi-species abundance distribution Q ð~NÞ

is the product of ST one-species abundance distributions Q1(Ni),

Q1ðNiÞ ¼
1

Fa,bðcÞ

ðaÞNi

ðbÞNi

cNi

Ni!
:
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Hence, the distribution Q(J) for J is given by the ST-fold convolution
product of one-species abundance distributions Q1,

Q ðJÞ ¼ ðQ1 � Q1 � � � � � Q1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ST times

ðJÞ ¼ Q�ST

1 ðJÞ:

As a result, we obtain the approximation

P½~N j J� �Q ð~N j JÞ ¼
Q ð~NÞ

Q ðJÞ
: ðE:9Þ

To compute the approximation R(J) for the distribution P½ J�, we
consider the transition rates for the total community size J,

qþ ð~NÞ ¼
XST

i ¼ 1

qiþ ð
~NÞ and q�ð~NÞ ¼

XST

i ¼ 1

qi�ð
~NÞ:

The transition rate qþ ð~NÞ from J to J+1 depends only on ~N through J,

qþ ð~NÞ ¼ qþ ðJÞ ¼ rþ JþmST:

The transition rate q�ð~NÞ from J to J�1 depends also on the Simpson
diversity of the community:

q�ð~NÞ ¼ r�Jþ
ra
K u

J2þ
rð1�aÞ

K u

XST

i ¼ 1

N2
i :

We use the approximate distribution Q ð~N j JÞ to compute an
approximation ~E½q�ð~NÞj J� for the expected transition rate
E½q�ð~NÞj J�,

E½q�ð~NÞj J� � ~E½q�ð~NÞj J� ¼ r�Jþ
ra
K u

J2þ
rð1�aÞ

K u
ST
~E½N2

i j J�: ðE:10Þ

The resulting transition rate ~E½q�ð~NÞj J� ¼ ~E½q�ðJÞ� depends only on J.
We use q+(J) and ~E½q�ðJÞ� to compute the approximation R(J) for
P½ J�. From detailed balance,

Rð JÞ ¼
qþ ðJ�1Þ
~E½q�ðJÞ�

RðJ�1Þ ¼
YJ

k ¼ 1

qþ ðk�1Þ
~E½q�ðkÞ�

" #
Rð0Þ ðE:11Þ

and R(0) can be obtained from normalization. Substituting (E.9) and
(E.11) into (E.6), we finally get the approximation for P½~N �.

The case ao0 with transition rate (14) can be dealt with in a
similar way. Transition rate qi�ð

~NÞ depends only on Ni, but
transition rate qiþ ð

~NÞ depends both on Ni and J¼
P

iNi. We
introduce the modified transition rate ~qiþ ð

~NÞ,

~qiþ ð
~NÞ ¼ rþ þ

rð�aÞJ
K u

� �
Niþm, ðE:12Þ

in which J is a parameter, not a variable, analogous with (E.7). The
stationary distribution Q ð~NÞ of the modified stochastic community
model is given by (E.8) with dimensionless parameters

a¼
mK u

rþK uþrð�aÞJ , b¼
r�K u

rð1�aÞ þ1, c¼
rþK uþrð�aÞJ

rð1�aÞ :

The approximation Q ð~N j JÞ follows as for the casea40. To obtain an
approximation R(J), we consider the transition rates for the total
community size J. The transition rate qþ ð~NÞ depends only on ~N

through J, but the transition rate q�ð~NÞ depends also on the
Simpson diversity. We use the same trick as for the case a40,
and use the approximate expected transition rate ~E½q�ð~NÞj J�,

~E½q�ð~NÞj J� ¼ r�Jþ
rð1�aÞ

K u
ST
~E½N2

i j J�

analogous with (E.10). The remaining computation is the same as
for the case a40.

Fig. 3 compares the species abundance distribution found from
the approximation (E.6) with the species abundance distribution
found from a stochastic simulation over a sufficiently long time (to
reach stationary regime). The correspondence is excellent. Also, we
recomputed part of Fig. 5A using stochastic simulations (the
original version of Fig. 5A was computed using our approxi-
mation). The results were almost identical to the results
obtained using the approximation.

An additional verification of the approximation (E.6) consists in
studying the limits a-0 and a-1, for which we have exact
solutions, (E.2) and (E.4). For a-0, one can verify that P½~N j J� ¼

Q ð~N j JÞ, i.e., approximation (E.9) is exact, and that approximation
(E.11), although not exact, is very accurate. For a-1, one can verify
that P½~N j J� ¼Q ð~N j JÞ, i.e., approximation (E.9) is exact, and that
P½ J� ¼ RðJÞ, i.e., approximation (E.11) is also exact.

Finally, we summarize the computations to evaluate the
approximation (E.6):
�
 Our goal is to compute an approximation for the stationary

probability P½~N � for a given abundance vector ~N , and a given set
of parameters. Denote the total community size by J¼

P
iNi.
�
 As a preliminary, we compute the functions Q1, Q�ðST�1Þ
1 and Q�ST

1 .

We do not have an analytical expression for the convolution
products, but they can be evaluated numerically using the fast
Fourier transform. Recall that the formulas for Q1 differ whether
a40 or ao0.

�
 We compute the approximation Q ð~N j JÞ for P½~N j J�. This approx-

imation is given by
Q

iQ1ðNiÞ=Q�ST

1 ðJÞ, see (E.9).

�
 Similarly, we compute the approximation Q ðnjkÞ for P½njk�, i.e.,

the probability that a species has abundance n given that the
community has size k. This approximation is given by
Q1ðnÞQ

�ðST�1Þ
1 ðk�nÞ=Q�ST

1 ðkÞ. We evaluate this formula for all n

and k with nrk.

�
 We compute ~E½n2jk� ¼

P
nn2Q ðnjkÞ for all k, i.e., the mean of n2

when n is distributed according to Q ðnjkÞ. We evaluate this
formula for all k.

�
 We compute the transition rates ~E½q�ðkÞ� and q+(k) for all k,

using ~E½n2jk�. Recall that the formulas for ~E½q�ðkÞ� and q+(k)
differ whether a40 or ao0. Q

�
 We compute the cumulative products cðmÞ ¼ m

k ¼ 1 qþ
ðk�1Þ= ~E½q�ðkÞ�. We evaluate this formula for all m.

�
 We compute the approximation R(J) for P½ J�. The formula is

given by RðJÞ ¼ cðJÞ=ð1þ
P

mcðmÞÞ, see (E.11).

�
 Finally, the approximation for P½~N � is given by Q ð~N j JÞRðJÞ,

see (E.6).

Appendix F. Computation of community properties

In this appendix we explain how the community properties
introduced in Section 3.3 can be computed using the approximate
stationary distribution of the community model (Appendix E). The
approximation method provides the community size distribution
P½ J�, and the population size distribution conditioned on
community size P½Nij J�. We express the community properties
in terms of these two probability distributions.

To compute the (unconditional) variance Var½N i�, we use the law
of total variance, or the conditional variance formula,

Var½N i� ¼ E½Var½N ijJ��þVar½E½N ijJ��: ðF:1Þ

The notation in the first term of the right-hand side should be read
as follows: first, the variance of Ni is taken conditional on J ¼ J for all
J; the result is then considered as a function of the random variable
J, of which the expectation is taken. The notation in the second term
of the right-hand side is defined similarly. From (F.1),

Var½N i� ¼ E½Var½N ijJ��þ
1

S2
T

Var½J�

a formula in terms of distributions P½ J� and P½Nij J�.
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For the Simpson diversity index, we use the definition

D¼ 1�
X

i

N iðN i�1Þ

JðJ�1Þ
:

Taking the expectation in two steps, we get

E½D� ¼ 1�STE
E½N iðN i�1ÞjJ�

JðJ�1Þ

� �
,

where we used a notation similar to (F.1). The inner expectation can
be computed using the distribution P½Nij J�; the outer expectation
can be computed using the distribution P½ J�.

The different steps for the computation of Var½N i� and E½D� are
(see end of Appendix E for more details):
�
 Compute the functions Q1, Q�ðST�1Þ
1 and Q�ST

1 .

�
 Compute the approximation Q ðNij JÞ for P½Nij J�, for all Ni and J

with Nir J.

�
 Compute ~E½N2

i j J�with respect to the distribution Q ðNij JÞ, for all J.

�
 Compute the approximations for Var½Nij J� and E½NiðNi�1Þj J�, for

all J.

�
 Compute the transition rates ~E½q�ðJÞ� and q+(J), for all J.

�
 Compute the cumulative products c(J), for all J.

�
 Compute the approximation R(J) for P½ J�, for all J.

�
 Compute the E½Var½Nij J��, Var[J] and E½E½NiðNi�1Þj J�=JðJ�1Þ�with

respect to the distribution R(J).

�
 Compute the approximations for Var[Ni] and E½D�.

Appendix G. Supplementary material

Supplementary data associated with this article can be found in
the online version, at doi:10.1016/j.jtbi.2010.10.006.
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