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Spatial clustering is thought to favour the evolution of cooperation because it

puts cooperators in a position to help each other. However, clustering also

increases competition. The fate of cooperation may depend on how much

cooperators cluster relative to defectors, but these clustering differences

have not been the focus of previous models and experiments. By competing

siderophore-producing cooperator and defector strains of the opportunistic

pathogen Pseudomonas aeruginosa in experimental microhabitats, we found

that at the spatial scale of individual interactions, cooperator clustering lowers

cooperation, but defector clustering favours cooperation. A theoretical model

and individual-based simulations show these counterintuitive effects can

arise when competition and cooperation occur at a single resource-determined

scale, with population dynamics crucially allowing cooperators and defectors to

cluster differently. The results suggest that cooperation relies on the regulation

of sufficient defector clustering relative to cooperator clustering, which may be

important in bacteria, social amoeba and cancer inhibition.
1. Introduction
The spatial clustering of cooperators is generally thought to favour the evolution of

cooperation in the presence of defectors [1–3]. By being close together, cooperators

help each other more than potential defectors. At the same time, clustering also

increases competition between cooperators [4,5], potentially halting the evolution

of cooperation. A variety of mechanisms make clustering generally favourable to

cooperation in theory despite increased competition. When the scale of cooperation

is smaller than the scale of competition, clustering at the small scale benefits coop-

erators without a proportional increase in local competition [6]. However, in

systems where cooperation and competition is mediated by a single common-

pool resource through production and consumption there is no spatial scale

separation, prompting us to look for other, more general explanations for how

cooperation can evolve with competition. Population dynamics can sometimes

render clustering favourable to cooperation, as the availability of unoccupied habi-

tat can allow cooperator clusters to expand [7]. These theoretical studies focused on

the effects of life-history parameters rather than clustering itself, but implied that

cooperator and defector clustering can develop without perfect correlation to

each other when the habitat is not saturated [5,7–9]. It is currently unknown

how cooperator clustering and defector clustering affect cooperation separately,

and how they interact to determine the evolution of cooperation.

Microbial experiments on the evolution of cooperation are increasingly

prominent because they are medically relevant, experimentally tractable and eco-

logically important. In these experiments, clustering is consistently observed to

favour cooperation, but most studies manipulated clustering through various

degrees of random mixing [6,10] so that cooperators and defectors clustering

are not distinguished. Other studies of cooperation allowed spatial patterns to

emerge [11,12], but individual-level locations were not tracked. Individual-level
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Figure 1. Cooperator (green/light) and defector (red/dark), overlaid with grey spot detections, in a patchy habitat (T ¼ 10 h). The three experimental microhabitats
are illustrated in the lower left, and the device housing the microhabitats is pictured in the upper left.
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resolution is important, because without exogenous mixing it

is unknown at which scale clustering should be measured

a priori. The diffusivity of the common-pool resource in fresh

media only partly determines the appropriate clustering scale

because bacterial biomass and activity (such as production of

extracellular polymeric substances (EPS) and resource with-

holding) can lead to bioclotting and reduced diffusion [13].

Microbial experiments with emergent spatial and population

dynamics can be coupled with theory to show whether coop-

erators and defectors clustering are always correlated, at

what spatial scales cooperation and defection occur, and

what aspects of clustering favour or impede the evolution

of cooperation.

Previously [14], we used a microfluidic device to test

whether spatial features that are hundreds of times bigger

than a bacterium can affect the relative success of Pseudomonas
aeruginosa cooperator and defector phenotypes. By increasing

habitat patchiness, or the edge-to-area ratio, clustering is gener-

ally expected to be higher, and thus cooperation more

favourable. While patchiness was demonstrated to stabilize

the coexistence of cooperators and defectors, it did not signifi-

cantly affect cooperator frequency. However, large variations

in cooperator frequency occurred, ranging from defector

dominance to cooperator dominance, prompting further inves-

tigations into the role of spatial heterogeneities at scales finer

than the habitat features.

We hypothesize that cooperators and defectors cluster

differently when spatial patterns emerge in an unsaturated

habitat, and that cooperator clustering by itself impedes the

evolution of cooperation because of increased competition

between cooperators. We consider the following cooperative

phenomenon in P. aerugionsa. Wild-type cooperators produce

siderophores called pyoverdines, which are high affinity

iron chelators that diffuse in the extracellular environment.

Pyoverdine binds to iron (Fe(III)), is transported into bacteria

where iron disassociates and becomes available for bacterial

growth and function and then is recycled back into the

environment [15]. On the one hand, pyoverdines have

traditionally been considered public goods when iron is

withheld by other iron chelators [16], such as human apo-

transferrin, because secreted (or extracellular) pyoverdines

are non-excludable, or freely shared and recycled. On the
other hand, pyoverdines are common-pool resources,

because once uptaken by a bacterium, they are temporarily

unavailable to neighbours [17], resulting in a concurrent com-

petitive effect. We thus consider bioavailable iron, mediated

by pyoverdines, as the common-pool resource that forces

cooperation and competition to operate at one spatial scale.

Pyoverdine production is indiscriminate [18] (no kin recog-

nition) so it is expected that spatial factors predominantly

drive its evolution. Loss-of-function mutations leading to

defection appears common for the within-host evolution of

P. aeruginosa in cystic fibrosis (CF) patients [19], so the exper-

imental evolution between cooperators and defectors has

potential medical implications [20].

We competed cooperators and defectors in a microfluidic

device, which contains three microhabitat types with spatial

features at the 100 mm scale (figure 1). We measured over a

range of spatial scales the clustering among cooperators,

among defectors, and between cooperators and defectors,

and determined their effects on cooperator frequency and

population density. We expected to find the strongest cluster-

ing effects at scales much smaller than 100 mm despite known

spatial features at that scale [14]. These experimental analyses

then motivated analytical and simulation models that tease

apart the potential causality of clustering scale on the evol-

ution of cooperation. We link our results to existing

theoretical frameworks. We end by discussing the contrasting

roles of cooperator and defector clustering in bacteria, social

amoeba and cancer evolution.
2. Experimental set-up
(a) Device
Our experimental platform is a microhabitat device that uses

microfluidics, an emerging technology that has led to impor-

tant discoveries on microbial growth, interactions and spatial

behaviour [21]. The microhabitat device is built from a silicon

mould using photolithography, on which poly(dimethyl)silox-

ane (PDMS) was poured to 5 mm in thickness. Details on the

design and fabrication of the microhabitat device can be

found in [14]. The elastomer layer contains the three habitats

shown in figure 1, which are 10 mm deep and 0.42 mm2 in
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area without corridors. For habitat 3, the addition of corridors

brings the total area to 0.45 mm2. The diameters of habitat 1, 2

and 3 are 915, 1165 and 1405 mm, respectively. The microhabi-

tat dimensions make it feasible to acquire the locations of all

individual bacteria growing in two-dimensional space.

The microhabitat chip was filled with culture medium low

in bioavailable iron [22] to mimic the iron-limiting conditions

of a human host. The iron-limited environment rendered

pyoverdine an effective common-pool resource [6]. The

media consisted of casamino acids (CAA, 5 g l21 with

0.005 M K2HPO4 and 0.001 M MgSO4), 50 mM NaHCO3 and

1 mg ml21 human apo-transferrin (added 1 day prior to use).

We tracked Pseudomonas aeruginosa cooperators, wild-type

siderophore producers and defectors, mutants defective in pro-

ducing the primary siderophore pyoverdine. The P. aeruginosa
cooperators were the wild-type laboratory strain PAO1, and

defectors were isogenic pvdA mutants [23] defective in pyover-

dine production. Both strains were transformed with plasmids

that constitutively expressed either green fluorescent protein

GFP (pMRP9-1 [24]) or the red mCherry (pMKB1 [25]),

which were alternated in each successive experiment to control

for potential plasmid side effects (GFP cooperators versus

mCherry defectors, GFP defectors versus mCherry coopera-

tors). Starting from equal proportions, cooperators and

defectors grew to equilibrium after 10–12 h.

We diluted 16-h overnight cultures of the cooperator and

defector strains (LB medium, 378C shaker incubator) to an opti-

cal density (600 nm) of 0.005 in the iron-limited CAA media;

0.7 ml of the mixed (1 : 1) or monoculture was pipetted directly

onto each habitat, then the PDMS device was sealed onto a

glass coverslip (24 � 60 mm #1.5H, Schott Nexterion). We

focus on the 1 : 1 cooperator–defector ratio, which is theoreti-

cally an important population state from which to observe

selection (see electronic supplementary material). The ratio

also ensures that each strain does not stochastically go extinct

given the small initial populations (approx. 500 individuals)

required for about five generations to unfold in the device.

The device was placed in a 308C heated chamber (Chamlide

TC, Live Cell Instrument) on the inverted robotic stage of a

laser scanning confocal microscope (LSM 700, Zeiss) and was

imaged every 57 min and 18 s, up to 20 h.

The position of each bacterium was analysed using the

Imaris spot detection software. Corrections of biases for indi-

vidual counts due to slight differences between GFP and

mCherry fluorescences were implemented following Tekwa

et al. [14], by comparing mono-fluorescent monocultures

(either cooperators or defectors only, seven replicates) run

simultaneously in pairs (GFP cooperators and mCherry

cooperators; GFP defectors and mCherry defectors).
(b) Computing clustering
Consider a system with two morphs—cooperators and defec-

tors with global densities (abundances divided by area) Xc

and Xd. We introduce a set of clustering coefficients: Ccc, Ccd

and Cdd with the subscripts describing the pairing (c for coop-

erator, d for defector). Given a spatial interaction scale that

specifies the radius within which neighbours interact with

the focal individual (and otherwise do not interact), the pro-

duct CijXj gives the local densities Xij [26] of morph j around

morph i—that is, the average number of j individuals that an

i individual interacts with in its neighbourhood (figure 1).

Local density is the demographically explicit and continuous-
space version of pair-density (qj/i in [3,5,8,9,27,28]) or

conditional probability of identity [29,30] and CccXc, the local

density of cooperators, is approximately equal to relatedness

if we assume rare invading cooperators [2,31]. However, relat-

edness is not the only important spatial factor due to other

spatial effects through competition [7], so it is important to

measure cooperator and defector clustering independently.

See the electronic supplementary material for derivations

of clustering coefficients and their relationships to relatedness

in inclusive fitness theory. Cij . 1 indicates that the morphs

cluster more than in a well-mixed, non-spatial, case such as

an agitated liquid culture of bacteria. We use clustering coeffi-

cients Cij rather than local densities Xij as candidate predictors

of cooperator frequency and population density because Xij are

correlated with Xj even without spatial heterogeneity. In par-

ticular, Xcc would a priori correlate positively with Xc, and

can thus falsely identify among-cooperator local density as

benefiting cooperators. Clustering coefficients are normalized

local densities and do not depend a priori on global densities

(as local densities Xij or qj/i would be proportional to global

densities Xj in the null case of no spatial patterns). Relatedness

in inclusive fitness theory is also effectively a normalized

metric that expresses clustering without a priori dependence

on global densities, but focuses on the spatial relationship

among cooperators (electronic supplementary material).

Because of Imaris’ spot detection limitations, bacteria of

the same fluorescent colour cannot be reliably distinguished

if they are closer than 4 mm. Thus, raw clustering estimates

are biased. The correction procedure, involving comparisons

of mono-fluorescent monocultures with mixed-fluorescent

‘monocultures’ (either cooperators or defectors only) is

described in the electronic supplementary material.

Clustering coefficients are computed for 12 spatial scales,

ranging from 4 mm (near individual scale) to 1280 mm (nearly

covering the entire habitat, figure 3a).
(c) Experimental analyses
Control experiments were previously performed in [14] and

are reviewed here. Monocultures and mixed cultures of

cooperators and defectors were run in parallel eight times,

and the strain count time series were each fitted (with least-

squares maximum likelihood) to logistic growth curves dXi/

Xidt ¼ ri(1 2 Xi/Ki), where Ki is the equilibrium density

estimate of strain i. Monoculture experiments show no differ-

ences in initial growth (ri) but elevated densities (Ki) for

cooperators when compared with defectors in all habitats

(ANOVA F1,44 ¼ 22, p ¼ 2.9 � 1025). This establishes pyover-

dine production as a beneficial cooperative trait in the long

run. Patchiness (F1,44¼ 0.06, p ¼ 0.81) and the interaction

between patchiness and strain (F1,44¼ 3.2, p ¼ 0.081) did not

have significant effects on densities. Mixed culture experiments

(n ¼ 24) showed no differences in initial growth (ri) but

decreased densities (Ki) for cooperators when compared with

defectors in all habitats (ANOVA F1,43¼ 8.3, p ¼ 0.0063).

Thus, in later analyses of clustering effects, we focus on the

equilibrium state, defined as values averaged over T ¼
10–12 h. Cooperation is costly and on average selected against

in the microhabitats. Patchiness (F1,43 ¼ 0.0024, p ¼ 0.96) and

the interaction between patchiness and strain (F1,43¼ 0.047,

p ¼ 0.83) were found to have no direct effects (figure 2).

Clustering effects are quantified as the ordinary least-

squares linear regression slopes (effects) of standardized

http://rspb.royalsocietypublishing.org/
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cooperator frequency (Z/s.d.(Z) where s.d. is standard devi-

ation) on standardized clustering coefficients (Cij/s.d.(Cij))

measured at different spatial scales. Using all data, the fit of

the regression model at each scale is quantified as R2, or the

portions of variations explained in cooperator frequency and

population density, and as AIC score that accounts for both

cooperator frequency and population density [32]. The lowest

AIC indicates the interaction scale that best describes clustering

effects on cooperator frequency and population density. For

reference, a null model uses initial cooperator and defector

densities as predictors of final cooperator frequency and popu-

lation density. Clustering effect models with AIC greater than

the reference AIC should be considered inadequate.

To obtain spreads of estimates for the clustering effects at

each spatial scale, bootstrap least-squares linear regressions

are performed over 10 000 resamples (with replacement) of the

data, with each sample being 24 sets of clustering coefficients

and corresponding cooperator frequency and population den-

sity drawn from the original 24 experimental replicates (see

electronic supplementary material). Bootstrapping was used

because effect sizes may not be normally distributed, and they

were not in both the experiment and simulations (figures 3c
and figure 4). As a non-parametric method, bootstrapping pro-

vides both a more accurate spread of effect size estimates and

more precise confidence interval estimates [33]. The spreads

are illustrated as violin plots, which are kernel densities for

the effect estimates (figures 3c and figure 4). The 95% CIs and

25th/75th percentiles are reported in the electronic supplemen-

tary material. The one-sided p-value of each clustering effect is

computed as the per cent of bootstrap regression coefficients

in the opposite direction of the theoretical prediction. For

example, the p-value of Ccc effect on cooperator frequency is

the number of bootstrap regression estimates that are positive,

divided by 10 000. The same bootstrap procedure is used to

analyse clustering effects for the simulations.

(d) Experimental results
In mixed cultures of cooperators and defectors, the mean initial

density was 0.0013 (s.e.¼ 3.2 � 1024) mm22, and the mean

initial cooperator frequency was 0.46 (s.e. ¼ 0.036), which was
not significantly different from 0.5 as desired (95% CI¼ (0.39,

0.53), t1,23¼ 21.1, p ¼ 0.26). The final cooperator frequency

was 0.42 (s.e.¼ 0.026) and was significantly different from 0.5

(95% CI¼ (0.37,0.47), t1,23¼ 23.2, p ¼ 0.0043). Final coopera-

tor frequency and population density exhibit a strong positive

relationship (figure 2), showing that siderophore production

is beneficial to the population in the mixed cultures. In the fol-

lowing, we investigate the effects of fine-scale spatial clustering

on cooperator frequency and population density.

Clustering coefficients of cooperators and defectors

declined nonlinearly with spatial scale (figure 3a), reaching

values close to 1 at around 80 mm. This shows that clustering

decays rapidly away from the individual, with very little clus-

tering observed near the scale of habitat patchiness. We

detected no correlation between Ccc and Cdd at the 5 mm scale

(figure 3b), which supports the view that cooperator and defec-

tor clustering can develop separately, and enables their effects to

be statistically distinguished. The 5 mm scale was displayed

because according to AIC, clustering at this scale best predic-

ted cooperator frequency (R2 ¼ 0.79) and population density

(R2 ¼ 0.81; electronic supplementary material, figure S1). Strik-

ingly, bootstrap regression analysis showed that cooperator

clustering is negatively associated with cooperator frequency

( p ¼ 0.0013), while defector clustering is positively associated

with cooperator frequency ( p ¼ 0.0752), at the 5 mm scale

(figure 3c) and at all but the largest (and least predictive)

scales tested (electronic supplementary material, figure S2).

The fact that the best scale is not at the extremes tested (4 and

1280 mm), and that the same clustering effects were observed

across scales, suggest 5 mm is close to the true interaction

scale. These results support the hypothesis that cooperator clus-

tering is detrimental to cooperation and that defector clustering

is positively associated with cooperation.

3. Theory
(a) Model
Why has clustering often been found to favour the evolution

of cooperation, and why did cooperator clustering act in the

opposite direction in our experiment? We present a simple

model that incorporates both cooperation and competition

occurring at the same spatial scale, which is implied by the

production and consumption of a single growth-limiting

resource, the bioavailable iron.

Consider a dimorphic population of cooperators (c) and

defectors (d). Each individual has an intrinsic growth rate ri

according to its morph i. This rate is proportional to the

concentration of bioavailable irons when there are no neigh-

bours. All neighbours impose a competitive cost k to a focal

individual, resulting from the neighbours withholding a

number of bioavailable irons in the focal individual’s neigh-

bourhood. Cooperator neighbours indiscriminately bestow

an additional benefit a to the focal individual, through the

production of siderophores that add bioavailable iron to the

neighbourhood. We assume k . a, such that the population

is self-limiting. Let the cooperative character value of a

cooperator be z ¼ 1 and z ¼ 0 for a defector. The density-

dependent fitness ( per capita growth rate) w of individuals

with character z is given by

wðz ¼ 1Þ ¼ rc � ðk � aÞCccXc � kCcdXd

and wðz ¼ 0Þ ¼ rd � ðk � aÞCdcXc � kCddXd:

)
ð3:1Þ
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Xi is the global density of morph i, and Cij is the clustering

coefficient between morphs i and j. Note that the population

density is a function of a, because helping reduces competition.

For instance, the monomorphic cooperator population density

is rc/((k 2 a)Ccc), while the monomorphic defector population
density is rd/(kCdd). The effect of cooperation on population

density leads to a non-zero-sum game. See electronic sup-

plementary material for the mathematical foundations of the

dynamic system of equation (3.1).

We apply Price’s covariance equation [34] to equation

(3.1) and obtain an expression of how the population’s

mean cooperative character or cooperator frequency (Z )

changes with genetic variance var(z) and selection factors

(see electronic supplementary material, which also shows

the equivalent inclusive fitness formulation):

dZ
dt
¼ varðzÞððrc � rdÞ � ðk � aÞXcCcc þ kXdCdd

þ ððk � aÞXc � kXdÞCcdÞ: ð3:2Þ

From the above equation, we recover three scenarios that

parallel previous results. First, without clustering (all C’s¼ 1),

dZ/dt ¼ var(z)(rc 2 rd), so cooperation does not evolve

when cooperators pay a cost—a traditional expression of the

cooperation dilemma [1,35]. Second, we consider any value of

competition k but no demographic dynamics (habitat saturation).

The latter forces cooperator and defector clusterings to be per-

fectly correlated (Ccc ¼ Cdd¼ Cii) [3,36]. The rationale here is

that any defector displaced from a cooperator’s neighbourhood

that increases Ccc must go to a defector’s neighbourhood in the

absence of an empty site, causing the same increase in defector

clustering (and vice versa). Further, in the case of weak selection

http://rspb.royalsocietypublishing.org/
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and sufficiently large populations (greater than 2000 as in our

experiment), evolutionary dynamics are sufficiently described

by what happens when Xc¼ Xd¼ Xi (see electronic supplemen-

tary material). Then, dZ/dt¼ var(z)((rc 2 rd) þ aXi(Ccc 2 Ccd).

Thus, within-morph clustering (or cooperator clustering) in this

case is expected to favour cooperation.

Finally, with demographic dynamics, Ccc and Cdd are

different, because a displaced neighbour does not have to

enter another individual’s neighbourhood. Equation (3.2) is

the general form that shows Ccc is negatively associated

with cooperation (dZ/dt), while Cdd is positively associated

with cooperation. Owing to the generality of Price’s equation

[37], these clustering results are independent of cooperator

frequency, population density and parameter values as long

as k . a. For within-morph clustering to have a positive

effect on cooperation under weak selection and sufficiently

large populations (when Xc ¼ Xd ¼ Xi), it is required that

(from equation (3.2)) 2(k 2 a)XcCcc þ kXdCdd . 0, or

Ccc � Cdd

Ccc
,

a
k
: ð3:3Þ

In other words, the relative difference between cooperator

and defector clustering must be sufficiently small (or nega-

tive) for within-morph clustering to favour cooperation. The

uncorrelated clustering in our model leads to a novel finding:

cooperator clustering lowers cooperation, while defector clus-

tering favours cooperation. These predictions concur with

our experimental results. The general result in equation

(3.2) is actually identical to the case where cooperation affects

survival in demographically explicit discrete-space models

[5,8,9], but here it is generalized for strong selection and

continuous-space, which is appropriate for our experiment.

We have also taken a different identification approach by iso-

lating clustering effects rather than life-history (r, a, k) effects

(see the electronic supplementary material). In the electro-

nic supplementary material, we also show that defector

clustering Cdd already appeared in previous works in a

competition term, but was not isolated as we have here.

We have chosen not to focus on the effect of between-morph

clustering (Ccd) on cooperation, which is (k 2 a)Xc 2 kXd from

equation (3.2), because it is frequency dependent (depends on

the state of Xc relative to Xd) and thus cannot be easily tested

using our current experimental set-up. When Xc � Xd, the

effect of Ccd is positive for cooperators; when Xc � Xd the

effect is negative, thus overall between-morph clustering

reinforces the prevailing cooperator frequency. With weak

selection (Xc ¼ Xd ¼ Xi), the effect of Ccd should be negative

(2aXc). In our experiment where strong selection occurs, we

observe a negative effect of Ccd, but insignificantly (figure 3d).

Between-morph clustering may destabilize the coexistence of

cooperators and defectors, and can be investigated in the

future using experiments with different initial frequencies.
(b) Simulations
We further conducted individual-based simulations to corro-

borate our findings (see electronic supplementary material

for detail and Dryad repository [38] for MATLAB code and

data). Cooperators and defectors occupy a 36 � 36 patch

space and follow the eco-evolutionary dynamics specified in

equation (3.1) within each patch. Cooperators and defectors

move to an adjacent patch probabilistically with no cost or

intrinsic difference between morphs. We again observed that
cooperator clustering lowers cooperation, while defector clus-

tering favours cooperation using the same bootstrap

regression procedure outlined for the experimental analyses

(figure 4). Variation in movement rate, which effectively

changes the scale of interaction without changing the measure-

ment scale (the patch), yielded the same conclusions with

respect to clustering effects (see electronic supplementary

material, figure S5–S7).

Interestingly, in all simulation cases, there is a very slight

but significant negative relationship between cooperator and

defector clustering (electronic supplementary material, figure

S5–S7), in contrast to the experimental result that showed no

relationships (figure 3b). With greater movement rate, the

relationship between Ccc and Cdd appears to weaken: the

slopes of Cdd/Ccc go from 20.086 ( p ¼ 0.0030) to 20.0095

( p ¼ 0.013) for the lowest to highest movement rates tested.

The negative relationship between the two among-morph

clustering may be due to the fact that stochastically higher

clustering for one morph limits its growth, leaving more habi-

tat for the other morph to spread into (thus reducing its

clustering). It may well be that we could see a slight negative

relationship in the experiment with more replicates; but so

long as Ccc and Cdd are not strongly correlated, they remain

identifiable and are expected to exhibit the predicted effects.

The observed clustering effects in both the simulations and

the experiment agree with this line of reasoning.
4. Discussion
Together our experiment and models show that cooperator clus-

tering is negatively associated with cooperation, contrary to

previous theoretical [1,3,36] and experimental results [6,11],

but defector clustering is positively associated with cooperation.

Two uncommon but desirable features of the microhabitat

chip contribute to our novel empirical findings. First, the

chip and image analysis make it possible to track every individ-

ual bacterium in space through morph-specific fluorescent

tags, allowing clustering patterns to be measured at various

scales. At an aggregate level, fluorescent bacteria have been

frequently tracked to study biofilm development and com-

munity interactions [39–41], as well as the evolution of

cooperation [12,42]. However, the scales of interest in these

studies were relatively large. Our individual-resolution analy-

sis (figure 3c) suggests that the interaction scale is 5 mm—close

to the individual size—consistent with recent spatial genetic

studies of another cooperative bacterium Myxococcus xanthus
[43] and the social amoeba Dictyostelium discoideum [44]. Even

though siderophores can diffuse in liquid medium at the

millimetre scale over periods similar to the duration of our

experiment [11], the effective interaction scale in the presence

of bacteria is much smaller. This small interaction scale also

explains why we did not see significant 100-mm scale habitat

patchiness effects on cooperator frequency. The proper identi-

fication of spatial interaction scale can be essential to infer

clustering effects.

Second, the chip provides an enclosed environment where

spatial patterns emerge. Other microbial experiments on

cooperation serially transfers bacteria through cycles of liquid

cultures [6,45], thereby preventing cooperators and defectors

from clustering differently, and imposing artificial interaction

scales. Our experiment shows that cooperator and defector clus-

tering are uncorrelated (figure 3b). This makes it statistically
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possible to distinguish what aspect of clustering favours or ham-

pers cooperation. It is important to recognize that our experiment

only provides a first description of the statistical association

between multiple clustering aspects and the evolution of

cooperation; control of cooperator and defector clustering (for

example through motility mutants [39]) in longer experiments

with other model organisms would be necessary to generalize

these findings. Nevertheless, the theoretical and simulation

models we developed merit further investigation.

Our models predict that cooperator clustering is detri-

mental to cooperation, but that defector clustering favours

cooperation. This agrees with our experiment and generalizes

previously known theoretical results by deriving their equival-

ences in continuous-space without assuming weak selection

(cf. equation (3.2) to [5,8,9]). Importantly, both our model

and experiment improve our understanding of kin compe-

tition. Kin competition is the potential for among-cooperator

competition to impede cooperation in space [3,4,7,28,46,47],

but it was previously only inferred from the overall decrease

in cooperation level due to spatial competition, not through

direct observation or theoretical isolation of the cooperator

clustering effect. This is a result of previous focus on isolating

life-history effects, in particular cost and benefit, leaving relat-

edness to be a compound metric that is mainly but not solely

driven by cooperator clustering (see [2,31]; electronic sup-

plementary material). Our model and clustering coefficients

highlight the causality of cooperator versus defector clustering

effects on cooperation in a demographically dynamic setting.

As in previous work, kin competition does not necessarily

preclude the evolution of cooperation, but here we identified

a novel factor, defector clustering, as a spatial aspect that

counters the detrimental effect of cooperator clustering on

cooperation (equation (3.3)).

The clustering effects on cooperator frequency are strik-

ingly similar in the experiment (figure 3c) and in the model

simulations (figure 4), even though the latter only qualitatively

corresponds to the experiment in that both exhibit demo-

graphic dynamics driven by cooperation and competition.

The simulations also showed that no motility differences

between morphs are required for cooperators and defectors

to cluster differently. This absence of motility differences

matches what is previously known in our cooperator and

defector strains [48], although this is difficult to establish

within the microhabitats where movement and clustering are

confounded with growth and interaction dynamics. Motility

differences, in particular the increased motility of defectors, is

expected to differentiate cooperator and defector clustering

[49]; but even without motility differences, we showed that

cooperator and defector clustering effects can be distinct and

consequential to the evolution of cooperation.

These experimental and theoretical results suggest a new

research focus: defector clustering is important for the evolution

of indiscriminate cooperation. Defector clustering must be suf-

ficiently large relative to cooperator clustering for within-

morph clustering to favour cooperation (equation (3.3)). As a

corollary, whenever defector clustering is not perfectly corre-

lated to cooperator clustering (l.h.s. of equation (3.3) = 0), the

benefit from cooperation may not be great enough to compen-

sate for the elevated competition from clustering (quantified by

a/k in equation (3.3)). Indeed, the experiment shows that at low

cooperator clustering, defector clustering is similarly low

(figure 3b); but as cooperator clustering increases, defector clus-

tering does not increase, leading to a larger disparity that selects
against cooperation. In other words, our experiment exhibits a

lack of regulation on defector clustering, such that within-

morph clustering does not favour cooperation. This contrasts

with the fact that P. aeruginosa produces siderophores in

nature and hints at the importance of defector clustering

regulation for cooperation. We next discuss cases where

cooperation is impaired by a lack of regulation on defector clus-

tering, as well as examples where the regulation on defector

clustering appears to maintain cooperation.

The human lung is highly heterogeneous at a wide range

of scales, leading bacterial populations in chronic infections

to colonize and adapt to micrometre-scale features of the

lower respiratory tract [50], which potentially restrict move-

ment. In CF patients with chronic infection, P. aeruginosa
tends to exhibit impaired siderophore production and

other loss-of-function mutations, including lowered motility

[19,51]. In addition, CF patients exhibit abnormally thick

airway secretions that drastically impair bacterial motility

and clearance [51]. These features suggest a relatively static

environment and high clustering, which according to our

experiment can increase the differentiation between coopera-

tor and defector clustering (figure 3b). Some clustering is

required for siderophore cooperation to evolve, but very

high clustering, if associated with the deregulation of defector

clustering, is detrimental to cooperation (equation (3.3)). In

another experiment that manipulated P. aeruginosa clustering

without disturbing pattern formation (by varying agar con-

centration), very high clustering appears less conducive to

siderophore cooperation than intermediate clustering [11],

although clustering could not be directly measured. While

our experiment suggests that in stagnant, constrained space,

defector clustering is deregulated, it remains unknown

whether this is the case in vivo.

In another example of cooperator clustering acting against

the evolution of cooperation, the production of biofilm EPS

by Vibrio cholerae benefits neighbours but limits cooperator

dispersal [52]. Thus, cooperators experience higher clustering,

which was observed to prevent their evolution when success

depends on colonizing areas outside of biofilms [52].

Some examples exhibit relatively clear defector clustering

regulation resulting in a high degree of cooperation. In multi-

cellular organisms, cancerous defector cells are kept clustered

through the developmental regulations of cell adhesion and

repulsion, which usually prevents tumours from metastasis

and further spread [53]. For example, the naked mole rat pos-

sesses especially strong cell contact inhibition mechanisms,

which would regulate defector cell clustering [54] and has

resulted in the absence of cancer (in contrast with most other

mammals). In the social amoeba Dictyostelium discoideum,

defectors are less able to produce dispersal-facilitating stalks

[55], which increases defector clustering, in addition to

the overall clustering required to produce the cooperative

stalks. The hypothesis that defector clustering can be critical

to cooperation provides new interpretations of known

phenomena and merits further investigations.

In conclusion, although previous results on the generally

positive effect of clustering on cooperation might apply to

some systems, our work suggests that more intricate spatial

mechanisms may critically contribute to the evolution of

cooperation. With increased clustering, cooperators help each

other more, but compete even more. Thus, evolution of

indiscriminate cooperation may require mechanisms that

specifically increase defector clustering.
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