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1  | INTRODUC TION

Temperature is a major abiotic factor driving many ecological pro-
cesses, from physiological rates to species geographic distribution 
and community dynamics (Arrhenius,  1889; Brown et  al.,  2004; 
Legagneux et al., 2014). It can alter the strength of trophic inter-
actions (Sentis et  al.,  2014) and modify the distribution of bio-
mass across trophic levels (Gilbert et al., 2014; Sentis et al., 2019). 
Empirical and theoretical studies have reported contrasting results 
regarding temperature effects on both the structural (i.e., biomass 
distribution across trophic levels) and dynamical (i.e., trophic con-
trol; bottom-up vs. top-down) properties of ecological commu-
nities (Marino et al., 2018; Figure 1a). For instance, warming can 
magnify trophic cascades as shown by the positive indirect effects 

of spiders on plant biomass (Barton et al., 2009), fishes on phyto-
plankton density (Kratina et al., 2012; Shurin et al., 2002) and mos-
quito larvae on protozoa density (Hoekman,  2010). Conversely, 
warming can also decrease (Barton,  2010; Rall et  al.,  2010) or 
have no effect (Van De Velde et  al.,  2017) on long-term trophic 
interaction strength in terrestrial arthropods. Empirical stud-
ies also reported that warming can lead to the reorganization 
of biomass structure in food webs (de Sassi & Tylianakis,  2012; 
Shurin et  al.,  2012), resulting in top-heavier biomass distribu-
tion (i.e., inverted biomass pyramids; Morán et  al.,  2010; Müren 
et  al.,  2005; O'Connor et  al.,  2009; Romero et  al.,  2016; Shurin 
et al., 2012; Yvon-Durocher et al., 2011), or have no effect on pop-
ulation biomass (McKee et al., 2003; Moss et al., 2003; O'Connor 
et al., 2011; Özen et al., 2013; Tabi et al., 2019). Different expla-
nations have been proposed to explain this diversity of thermal 
effects (Amarasekare,  2015; Marino et  al.,  2018). Notably, the 
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ing on trophic dynamics.
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effect of temperature on interacting species could vary due to 
the identity of the species (Marino et  al.,  2018), and, as shown 
by theoretical studies, to the relative temperature sensitivity of 
their biological rates (Bideault et  al.,  2019; Gilbert et  al.,  2014; 
Gounand et  al.,  2016; Sentis, Gémard, et  al.,  2017; Sentis 
et al., 2015). Species from different habitats (e.g., marine vs. ter-
restrial; Pinsky et al., 2019; Shurin et al., 2002), geographic origin 
(Rodríguez-Castañeda, 2013), metabolic type (Grady et al., 2019), 
or taxonomic groups (Dell et al., 2011) may thus react differently 
to increasing temperatures. Here, we argue that a mechanistic 
framework based on the thermal dependences of key biological 
rates could help to better understand how thermal effects at the 
individual and population levels translate into altered biomass dis-
tribution and trophic control.

Biological rates of ectotherm species typically increase ex-
ponentially with warming, up to an optimal temperature, above 
which they decrease due possibly to the denaturation of enzymes 
and lipid membranes (Boukal et al., 2019; Pörtner & Farrell, 2008). 
This relationship between temperature and biological rates, the 
so-called thermal performance curve, strongly influences the 

physiology and behavior of individuals (Dell et al., 2011; Gillooly 
et al., 2001). There are however considerable differences in ther-
mal sensitivities of biological rates within and between organisms 
(Dell et al., 2014; Réveillon et al., 2019), which induce mismatches 
in the response of biological rates to temperature changes (Dell 
et  al., 2014). Intra-level mismatches arise when, for a given indi-
vidual, biological rates exhibit different thermal sensitivities, 
whereas inter-level mismatches arise when the biological rates of a 
consumer and its resource exhibit different thermal sensitivities. 
Such mismatches in thermal curves of interacting species have 
been widely reported (Dell et  al.,  2011) and shown to strongly 
influence species interactions under warming (Archer et al., 2019; 
Betini et al., 2019; Bideault et al., 2019; Dell et al., 2014; Laws & 
Joern,  2013; Sentis, Binzer, et  al.,  2017). For instance, autotro-
phic and heterotrophic biological processes have been shown 
to exhibit different thermal sensitivities which can lead to in-
creased grazing pressure and reduced primary producers stand-
ing biomass in aquatic systems (O'Connor et al., 2009). There is 
hence some evidence that thermal mismatches in biological rates 
drive changes in consumer–resource systems but we still lack a 

F I G U R E  1   Conceptual figure describing: (a) How biomass distribution and trophic control may change with an increase in temperature. 
Red arrows highlight the hypotheses most supported by empirical studies of experimental warming. Trophic chains may vary between top-
heaviness or bottom-heaviness while trophic control may vary between bottom-up or top-down. (b) A graphical summary of the framework 
developed by Barbier and Loreau (2019), to which we add temperature dependence. The two synthetic parameters defining the structural 
properties and the dynamical features of the food chain (i.e., λ and κ) are temperature-dependent. Along the x-axis, λ defines the regions 
of bottom-up control with pyramids and of top-down control with alternating cascades and along the y-axis, κ defines the top-heaviness 
of the biomass distribution. Warming is expected to influence the values of λ and κ toward more top-down control (i.e., right side of the 
two-dimensional space) and top-heaviness biomass distribution (i.e., upper side of the two-dimensional space). (c) Graphical representation 
of the dynamical model. λ represents the strength of top-down control in the interaction. It is given by �=
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by the Arrhenius equation, commonly used to define the temperature dependence of biological rates below the optimal temperature (we 
also consider a hump-shaped thermal curve in Section 3.1.2 that includes above optimal temperatures) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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mechanistic understanding of how they affect both biomass 
structure and trophic control.

Furthermore, it is currently difficult to draw general con-
clusions on the effects of temperature on ecological interac-
tions because most studies investigate one process at a time 
(Hoekman, 2010; O'Connor et al., 2009, 2011), studying biomass 
structure or trophic control in isolation. We argue that a mechanis-
tic understanding of the integrated effects of temperature on both 
the structural and dynamical properties of ecological communities 
is crucial to identify generalities in the way temperature impacts 
communities. A recent study (Barbier & Loreau, 2019) showed that 
the structural and dynamical features of a trophic chain are con-
trolled by the same key physiological and ecological variables. In 
particular, two synthetic parameters can be derived: κ, capturing 
biomass distribution in a chain, and, λ, denoting the strength of 
top-down control (Figure 1b,c). These two parameters are derived 
from three biological rates: attack rate, biomass conversion effi-
ciency and self-regulation. Self-regulation is defined by a direct 
effect of a species on itself such that its growth rate decreases 
with its own density by, for example, direct interference or can-
nibalism. Importantly, these biological rates all exhibit rate- and 
species-specific thermal sensitivities (Figure 1d; Dell et al., 2011; 
Gillooly et al., 2001), suggesting that trophic control and biomass 
distribution are temperature sensitive. Note that these three 
rates are characteristic of interactions between and within tro-
phic levels (consumption and competition). There are also intrinsic 
rates, such as predator mortality and primary productivity, that 
can affect trophic structure in a temperature-sensitive way, as 
studied by Gilbert et al.  (2014). These intrinsic rates can be the-
oretically encapsulated into a third synthetic parameter (Barbier 
& Loreau,  2019). Galiana et  al.  (2020) recently showed that this 
parameter is important but not sufficient by itself to predict tro-
phic phenomena. Hence, we focus here on the interaction-related 
parameters κ and λ, as their role is both crucial and not currently 
understood. The theory of Barbier and Loreau (2019) thus opens 
a promising avenue to tackle unsolved questions about the influ-
ence of temperature on the distribution of biomass across trophic 
levels and the likelihood of trophic cascades.

Our objective is to investigate how the thermal dependences of 
biological rates affect biomass distribution and trophic control in 
consumer–resource systems. We first present the modeling frame-
work and derive a theory based on key biological rates and their 
thermal mismatches underlying the thermal dependences of the 
synthetic parameters κ and λ, that govern biomass distribution and 
trophic control. Using a dataset of thermal sensitivities (i.e., activa-
tion energy values) for different biological rates, we then demon-
strate how thermal mismatches can drive the changes in biomass 
distribution and trophic control with warming in consumer–re-
source systems. Additionally, we use two case studies to, first, il-
lustrate the applicability of our framework for predicting warming 
impacts across terrestrial and marine herbivores at the global scale, 
and second, to validate the accuracy and limits of our predictions 
using experimental data on stream organisms. Our study provides 

a mechanistic understanding of how food chain structural and dy-
namical properties depend on temperature and offers new per-
spectives to better anticipate the functioning of communities under 
climate warming.

2  | THEORY

2.1 | Model

We follow the approach of Barbier and Loreau (2019) to represent 
a consumer–resource system and analyze its macroscopic features. 
We start from the classic Lindeman representation of trophic dy-
namics (Lindeman, 1942),

where Bi is the biomass of trophic level i. Production P is externally 
driven for primary producers, and determined by consumption C for 
consumers,

where g1 represents the intrinsic biomass growth, ε is the conversion 
efficiency of consumed biomass into population growth (which can be 
notably lower than the immediate assimilation efficiency, for example, 
estimates in models parameterized from experiments can range from 
0.004 to 0.010; Daugaard et al., 2019).

We define non-trophic losses (internal to one trophic level) as

where qi is the individual (metabolic) mortality and Di is the self- 
regulation (density-dependent mortality, e.g., direct competition). 
Note that we include self-regulation at all trophic levels.

We consider a Type I Lotka–Volterra functional response,

with Ai+1,i being the attack rate.
From this system of consumer–resource at equilibrium, two syn-

thetic parameters, κ and λ, summarize the structure (i.e., biomass 
distribution across trophic levels) and the dynamics (i.e., trophic con-
trol), respectively (see Figure 1b,c). κ is the ratio of the non-trophic 
interactions (self-regulation) of trophic level i + 1 over the one for 
trophic level i and λ is the ratio of the between-trophic levels inter-
actions (attack rate) over the within-level non-trophic interactions. 
More formally, they are defined as
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κ denotes how much biomass is gained by consumers per unit 
biomass lost by resources; large κ indicating top-heavy distribu-
tions. λ describes the feedback of a trophic level on itself through 
its predators, and therefore it indicates the strength of top-down 
control (Figure  1b,c). These parameters are derived from attack 
rate, self-regulation and biomass conversion efficiency, which may 
be temperature-dependent. The temperature dependence of κ and 
λ can thus be directly obtained by incorporating the temperature 
dependence of these biological rates.

2.2 | Temperature dependence of the synthetic 
parameters κ and λ

The temperature dependence of biological rates is typically de-
scribed by the exponential Arrhenius equation (Arrhenius,  1889; 
Brown et al., 2004; Gillooly et al., 2001; Savage et al., 2004; at least 
for temperatures below the optimal temperature, Figure 1d):

where X stands for a biological rate (e.g., ε, Di or Ai+1,i), X(T0) is a rate-de-
pendent normalization constant, EX [eV] is the rate's activation en-
ergy, k [8.617 10−5 eVK−1] is the Boltzmann constant and T [K] is the 
temperature.

The activation energy, which is rate- and organism-specific, is 
the slope of the relationship between the biological rate and tem-
perature on a log–log scale and it represents how fast the biological 
rate increases with temperature. Because κ and λ are products and 
ratios of biological rates (Equation 5), their activation energies are 
sums and differences of the activation energies of these biological 
rates. Hence, substituting the equations for the different biological 
rates (Equation 6) into Equation  (5), the activation energies of the 
synthetic parameters are defined as

where we define the intra-level mismatch between predator attack rate 
and self-regulation (i.e., trophic and non-trophic processes) as

and the inter-level mismatch as

Thermal mismatches arise when activation energies differ among 
biological rates or between species. Mismatches are key drivers in 
the way temperature influences κ and λ (Figure 2). The inter-level mis-
match, ΔEinter=ED2

−ED1
, is defined as the difference between the 

activation energies of the consumer and the resource self-regula-
tions. It mainly controls the direction of the thermal response of κ 
(Figure 2a) and hence of biomass distribution. When the activation 
energies of the consumer and the resource self-regulations are equal, 
only Eε drives the impact of temperature on κ (i.e., when ΔEinter = 0, 
Eκ = Eε, Equation 7). In that case, if Eε > 0, warming increases κ and 
thus triggers top-heavier biomass distribution. When the activation 
energy of self-regulation is higher for the resource than for the con-
sumer (ΔEinter < 0), Eκ is larger and κ increases faster with tempera-
ture (i.e., leading to top-heavier biomass distribution), while when 
the activation energy of self-regulation is smaller for the resource 
than for the consumer (ΔEinter > 0), Eκ < 0 which yields a decrease in 
κ with temperature leading to bottom-heavier biomass distribution.

The intra-level mismatch, ΔEintra=EA−ED2
, is defined as the dif-

ference between the activation energies of the consumer attack 
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F I G U R E  2   Effect of theintra-levelmismatch, ΔEintra, and theinter-levelmismatch, ΔEinter, on the thermal responses of the synthetic 
parameters κ (panel a) and λ (panel b). The activation energies of self-regulation and attack rate are varied (ED1

, ED2
 and EA ∈{0.5, 1}) to represent 

mismatches. The activation energy of conversion efficiency Eε is fixed at 0.3 as the thermal dependence of Eε is often reported as weak. Eκ 
and Eλ are computed following Equations  (7) and (8) for every possible combination of ED1

, ED2
 and EA.κ and λ follow an exponential Arrhenius 

function (Equation 6) and are set at 1 at a temperature of reference of 25°C. When the mismatches are equal to 0 or when they cancel each 
other, it is Eε that drives the variation in κ andλ with temperature changes [Colour figure can be viewed at wileyonlinelibrary.com]
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rate and of its self-regulation. The inter-level and the intra-level mis-
matches both determine the response of λ (i.e., trophic control) to 
temperature changes (Figure 2b). As for κ, Eλ = Eε when the acti-
vation energies of attack rate and self-regulation (of both trophic 
levels) are equal (ΔEintra=ΔEinter=0, see Equation  8). Generally, 
the sign of ΔEintra defines whether λ increases or decreases with 
temperature. When the activation energy of the consumer attack 
rate is greater than the one of its self-regulation (ΔEintra > 0), λ in-
creases with temperature leading to stronger top-down control. 
On the contrary, when ΔEintra  <  0, top-down control decreases 
with temperature. When the activation energies of attack rate and 
self-regulation are equal (ΔEintra > 0), the sign of ΔEinter determines 
the direction of the thermal response of λ (e.g., when ΔEintra > 0, λ, 
and hence top-down control, increases with warming). Therefore, 
the effect of temperature on biomass distribution and trophic con-
trol can be system-dependent if activation energies of biological 
rates differ among species as reported in previous studies (Dell 
et al., 2011). We subsequently illustrate this variation with empiri-
cal applications.

3  | EMPIRIC AL APPLIC ATIONS

3.1 | Methods

3.1.1 | Database of activation energies

We collected the values of activation energies from previous meta-
analyses with the objective of depicting a general overview of the 
temperature sensitivity of biomass distribution and trophic control 
in food chains for various consumer–resource systems. We used 
the meta-analyses from Dell et al. (2011), Burnside et al. (2014) and 
Fussmann et  al.  (2014), reporting activation energies for different 
biological rates and types of organisms. In these studies, activation 
energies are estimated by fitting the linearized Arrhenius equation 
(Equation  6) to the log-transformed biological rates. We included 
activation energy values only when the linear coefficient (i.e., the 
activation energy) of the linear model was statistically significant 
(p < .05) to get reliable estimates of activation energies.

We could not find values of activation energy for self-regula-
tion since this parameter is seldom measured empirically and, to our 
knowledge, its activation energy has never been reported. Indeed, 
even though growth rate and abundance usually exhibit a negative 
relationship, the causes of such a relationship are difficult to disen-
tangle. In Barbier and Loreau (2019), biological rates (e.g., self-reg-
ulation and attack rate) are assumed to depend on metabolic rates. 
However, interacting species from different taxonomic groups may 
exhibit different physiologies. Species' biological rates may thus be 
related to different ecological processes and might not follow the 
same scaling. For instance, if self-regulation is driven by predator 
interference or cannibalism, it could scale with attack rate. A re-
cent study analyzing a large dataset on eukaryotes organisms also 
indicates that self-regulation should scale strongly with growth 

rates (Hatton et al., 2019). Hence, given this limited knowledge on 
self-regulation, we explore here three options for the scaling of 
self-regulation in our analyses: growth rate, metabolic rate, or at-
tack rate.

We hence gathered values of activation energies for conversion 
efficiency, growth, metabolic and attack rates for various ectotherm 
species (ranging from bacteria to arthropods and fish) and classified 
them by habitat (aquatic vs. terrestrial), diet (primary producers, her-
bivores and carnivores) and taxonomic groups (class or phylum). In 
the analyses for which we consider groups of species (e.g., taxonomic 
groups), we only account for the groups for which we have a signifi-
cant number of species (i.e., minimum seven species), to avoid biases 
in the distributions of activation energies due to low sample size.

From this database and for the different scaling assumptions of 
self-regulation, we compute activation energies of κ and λ (Equations 7 
and 8) for each combination of prey and predator (pairwise inter-
actions) within the different taxonomic groups and habitat types 
(terrestrial vs. aquatic). Activation energies for attack rates were orig-
inally defined for each pair of interacting species in the meta-analyses 
considered. When we have multiple values of activation energies for 
the other rates (i.e., growth rate or metabolic rate) for a given species, 
we compute all possible combinations to derive Eκ and Eλ.

We illustrate the temperature sensitivity of κ and λ for differ-
ent taxonomic groups and describe more specifically the intra- and 
inter-level mismatches of two taxonomic groups from marine and 
terrestrial environments to clarify the origin of the variation in Eκ 
and Eλ. As the different groups (i.e., taxonomic groups or habitat) are 
not equally represented in the database, we compute the weighted 
means when necessary.

3.1.2 | Case studies

The normalization constant (i.e., the intercept of the Arrhenius equa-
tion) is also needed to document the effect of temperature on a spe-
cific system. This information is essential to calculate the absolute 
values of κ and λ and thus place a specific system in the λ-κ space 
(Figure 1b). Unfortunately, our database does not include enough in-
formation on the values of normalization constants to compute the 
values of κ and λ across all systems and species pairs. We therefore 
use two specific ecological systems for which we have sufficient in-
formation on biological rates to compute the values of κ and λ at a 
given temperature and predict how their values should shift with 
temperature changes. In the first case study, we generate large-scale 
predictions for marine and terrestrial herbivory. In the second case 
study, we use an experiment on stream organisms (Kishi et al., 2005) 
to validate the accuracy of our predictions by comparing the pre-
dicted effects of temperature derived from κ and λ with the empiri-
cally measured effects.

Large-scale predictions for terrestrial and marine herbivory
In a recent meta-analysis, Bar-On et al. (2018) estimated biomasses 
in carbon mass for the major taxonomic groups on Earth. We take 
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advantage of their study to investigate the biomass distribution and 
trophic control of herbivores and primary producers at the global 
scale. We use their estimates of global distributions of biomasses to 
compute κ and λ for marine and terrestrial herbivory and predict how 
they shift with temperature changes.

Bar-On et al.'s (2018) estimates of biomass (in petagrams of car-
bon [Pg C]) for herbivores and primary producers are B1 = 450 and 
B2 = 20 for terrestrial systems, and B1 = 1 and B2 = 5 for marine 
systems, which yield a regular pyramid in terrestrial systems and an 
inverted one in marine systems. From the consumer–resource sys-
tem at equilibrium (Section 2.1) we obtain,

Following the above theory, we use the relationships between 
biomass ratios, metabolic ratios and κ and λ to compute the synthetic 
parameters for terrestrial and marine herbivory (See Supporting 
Information for detailed calculations). This leads us to the following 
estimates of κ and λ:

and

We then predict how κ and λ would shift with warming using the 
corresponding activation energies for marine and terrestrial herbi-
vores from our database (Equations  7 and 8), and considering dif-
ferent scalings for self-regulation. We assume that κ and λ increase 
exponentially with temperature following the Arrhenius model 
(Equation 6). We present the variation of κ and λ with temperature, 
which is similar between the different scaling scenarios, and provide 
a more specific example for the case where self-regulation scales 
with growth rate.

Validation of the theory with a stream grazer experiment
With the second case study, we aim to validate the accuracy of 
our predictions by focusing on an experiment carried out by Kishi 
et al. (2005) on a food chain of stream organisms. Kishi et al. (2005) 
investigated the effects of water temperature on the community 
structure of fish, grazing caddisfly larvae and periphyton. They 
performed top-down control experiments (assessment of resource 
biomass in the absence and the presence of consumers) at three dif-
ferent temperatures (3, 12 and 21°C) and experimentally measured 
consumer feeding activities (i.e., scar area grazed by larvae) and pe-
riphyton production at seven temperatures ranging from 3 to 21°C.

Using the data of their top-down experiment, we first compute 
κ and λ for this system at a given temperature (12°C) for which we 
are able to obtain all the parameter values needed. We then es-
timate the variation in κ and λ with temperature changes relative 
to their values at 12°C. To do so, we assume that biomass conver-
sion efficiency increases exponentially with temperature with an 

activation energy of 0.3 obtained from our database. We also as-
sume that self-regulation of the bottom level (periphyton) scales 
with their production and that attack rate and self-regulation of the 
consumers (caddisfly larvae) scale with their grazed scar area, as pe-
riphyton production and grazed scar area were both experimentally 
measured in Kishi et al. (2005). We hence obtain estimates of κ and 
λ at the seven different temperatures from the data. Moreover, we 
fit an Arrhenius function and a quadratic Arrhenius function to the 
thermal performance curves of production and grazed scar area to 
describe the relationship between biological rates and temperature 
(for more details, see Englund et al., 2011; Gillooly et al., 2001). We 
obtain estimates of κ and λ at the seven temperatures from the fit-
ted data, using the same reasoning as above. Finally, we compute 
the biomass ratios at three different temperatures from our esti-
mates of κ and λ using Equation  (10) to compare the data of bio-
mass ratios measured in Kishi et  al.  (2005). with our predictions. 
See Supporting Information for details on the calculations for this 
section.

3.2 | Results

3.2.1 | Thermal dependence of κ and λ across 
habitats and taxonomic groups

Marine and terrestrial consumer–resource systems show different 
temperature dependences in κ and λ (Figure 3a), due to the varia-
tion in biological rates' activation energies across taxonomic groups 
(Figure 3b). When averaging across the six scaling assumptions for 
self-regulation, Eκ is positive for terrestrial environments. Warming 
should thus increase κ, and hence shift biomass distribution toward 
more top-heaviness. Eλ is on average approximately zero, implying 
that temperature does not alter top-down control. In aquatic envi-
ronments, λ exhibits a strong temperature dependence (Eλ > 1 on 
average) so that warming increases top-down control and induces 
cascade patterns. κ is less sensitive to temperature changes, but 
Eκ > 0 shows that food chains become moderately more top-heavy 
with warming. Although the dissociation between marine and ter-
restrial environments is consistent across the different scaling as-
sumptions of self-regulation, the variation around this general trend 
highlights the importance of finding the temperature dependence of 
this key parameter.

We detail the temperature dependence of κ and λ for spe-
cies from different taxonomic groups for a given scaling scenario 
for self-regulation, namely when D1 (resource self-regulation) 
scales with growth rate and D2 (consumer self-regulation) with at-
tack rate (Figure  3b), as supported by previous studies (Barbier & 
Loreau,  2019; Hatton et  al.,  2019). We recover the general trend, 
with κ being more sensitive to temperature changes for terrestrial 
organisms, whereas λ is more sensitive to temperature changes for 
aquatic organisms but also find that there is variation between the 
different taxonomic groups. For instance, for the taxonomic groups 
Insecta–Arachnida, warming leads to more top-heaviness but less 

(11)
B2

B1
=
�A21

D2

=
√

��.

(12)�∼2.5, �∼10, for marine organisms,

(13)�=0.02, �=0.1, for terrestrial organisms.
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top-down control while, for Nematoda–Insecta, warming does not 
influence biomass distribution but leads to stronger top-down con-
trol. This observed variation between taxonomic groups arises from 
the fact that species exhibit different thermal sensitivities in their bi-
ological rates, that are thus altered at different rates by temperature 
changes, which causes mismatches (Figure 3c).

Mismatches between biological rates drive the variation in κ and 
λ. Specifically, the inter-level mismatch (Equation 10) governs varia-
tion in κ (biomass distribution), while both mismatches, the inter- and 
the intra-level mismatch (Equation  9), are important in determin-
ing variation in λ, and hence in trophic control with temperature 
changes. We underline this point by showing both mismatches for 
two pairs of taxonomic groups that have the most extreme values 
in Eκ or Eλ: predators from the class Insecta and prey from the class 

Arachnida for terrestrial environments and predators and prey from 
the class Actinopterygii for marine environments. Due to the scaling 
of self-regulation used here (D2 ~ A21), the intra-level mismatch (be-
tween trophic and non-trophic processes), ΔEintra, is centered around 
0. It is then the inter-level mismatch, ΔEinter, that governs Eκ and Eλ, 
along with its difference with Eε (see Equations 7 and 8). ΔEinter dif-
fers between the two pairs of taxonomic groups considered here. 
For instance, for the pair Insecta–Arachnida, ΔEinter  <  0, meaning 
that the prey's self-regulation increases faster with warming than 
the predator's one. Because Eε > 0 we see from Equation  (7) that 
Eκ is positive too, indicating that warming would trigger top-heavier 
food chains. On the contrary, Eλ is negative because E

𝜀
+ΔEinter<0 

as |
|

E
𝜀
|

|

< |

|

ΔEinter
|

|

 (Equation 8), showing that, in that case, top-down 
control would decrease with temperature.

F I G U R E  3   Temperature sensitivity of biomass distribution and trophic control in consumer–resource systems from terrestrial (green) and 
aquatic (blue) environments. (a) Mean activation energies for κ and λ (Equations 7 and 8) for different assumptions regarding the temperature 
dependence of self-regulation for prey, D1, and predator, D2, which either scale with growth, metabolic or attack rates. Each assumption is 
represented by a different point type (see legend). Rhombuses correspond to the weighted mean per environment type, error bars show the 
SE. (b) Median values and SD of activation energies of κ and λ for different taxonomic groups, for the case where D1 scales with growth rates 
and D2 with attack rate (empty squares surrounded by red circles in panel a). Taxonomic groups for pairs of predator–prey are as follows: (1) 
Insecta–Arachnida, (2) Arachnida–Arachnida, (3) Insecta–Insecta, (4) Arachnida–Insecta, (5) Insecta–Tracheophyta, (6) Insecta–Hydropsyche, 
(7) Insecta–Culicidae, (8) Nematoda–Insecta, (9) Insecta–Insecta, (10) Insecta–Branchiopoda, (11) Actinopterygii–Insecta, (12) Mollusca–
Mollusca and (13) Actinopterygii–Actinopterygii. (c) Inter- and intra-level mismatches for two pairs of taxonomic groups: Insecta–Arachnida 
(1) and Actinopterygii–Actinopterygii (13). ΔEintra=EA−ED2

 is the intra-level mismatch between predator attack rate and self-regulation, 
which is centered around zero by construction as D2 ~ A, and ΔEinter=ED2

− ED1
 is the between-trophic level mismatch, driving the observed 

variation in Eκ and Eλ [Colour figure can be viewed at wileyonlinelibrary.com]
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Overall, our results show that warming affects food chains in 
terrestrial and aquatic environments in different ways. It mainly trig-
gers heavier biomass pyramids in terrestrial systems, while leading to 
stronger top-down control in aquatic systems. However, our findings 
also highlight substantial variations across taxonomic groups due to 
the relative temperature dependence of biological rates, which are 
key in determining food chain structure and dynamics.

3.2.2 | Case studies

In the previous results, we analyzed the variation in food chain pat-
terns with temperature changes. We now first describe a system for 
which we can estimate specific values of κ and λ and make large-
scale predictions on how they will shift with warming, and second, 
we evaluate the accuracy of our predictions using measurements of 
temperature effects on a stream grazer community.

Large-scale predictions for terrestrial and marine herbivory
Using the results from Bar-On et  al.  (2018), we estimate the val-
ues of κ and λ for global marine and terrestrial herbivory and then 
predict their shift with warming (Figure  4). The estimated values 
of κ and λ show that terrestrial herbivory stands in the region of 
bottom-up control with a regular biomass pyramid structure while 
marine herbivory is found in the region of top-down control with 
cascading patterns. According to our predictions, warming should 
shift food chain patterns toward more herbivore biomass (κ axis) in 
terrestrial environments and toward more top-down control (λ axis) 
in marine environments. This result holds regardless of the specific 
scaling assumptions for self-regulation. However, when considering 

the different scaling assumptions, λ varies in different directions and 
magnitude for terrestrial herbivory, as does κ for marine herbivory. 
Hence, we cannot accurately predict these shifts without knowing 
the temperature dependence of self-regulation. We thus provide 
a more specific example for the case where self-regulation scales 
with growth rate (see Figure S1 in Supporting Information for the 
other scaling scenarios) for a temperature increase of 4°C. Given 
this particular scaling, food chains from marine environments would 
exhibit top-heavier biomass distributions along with an increase in 
the strength of top-down control (Figure 4b, top panel). Food chains 
from terrestrial environments would become top-heavier too with 
stronger bottom-up control (Figure 4b, bottom panel).

Validation of the theory with a stream grazer experiment
Using data from a stream grazer experiment (Kishi et al., 2005), we 
estimate values of κ and λ along a temperature gradient and show 
that a change in temperature alters the dynamics of the food chain 
by (a) increasing top-down control at low temperature and decreas-
ing it at higher ones and (b) inducing cascade patterns (Figure 5a, 
data). The relationship between temperature and κ or λ estimated 
from the data follows a unimodal shape with 12°C being the shifting 
point. Our estimates of κ and λ, computed from the quadratic fits, 
accurately follow the estimates obtained from the data (Figure 5a, 
quadratic fit). Using an exponential function to estimate the pa-
rameters is a simpler, and widespread derivation of the tempera-
ture dependence of biological rates that effectively works at low 
temperatures (Figure 5a, exponential fit). However, it leads to in-
accurate estimates of temperature dependence at higher tempera-
tures, leading to an underestimation of κ and an overestimation of 
λ for temperatures above 12°C. Thermal performance curves of 

F I G U R E  4   Variation in λ and κ and biomass ratios with increasing temperatures for global terrestrial and marine herbivory. λ and κ are 
estimated from global distributions of biomass (Bar-On et al., 2018; see Section 3.1.2) and their shift due to temperature is predicted using 
our database of activation energies (Section 3.1.1). (a) General trend in the shift of λ and κ with increasing temperatures across the different 
scaling scenarios for self-regulation. The direction of change is consistent for λ in marine environments and κ in terrestrial environments 
across the six scaling scenarios of self-regulation but varies in the other axis (see Supporting Information for details). (b) Example for the 
case where self-regulation scales with growth rate. Median values for herbivore species along with the 25th and the 75th quantiles are 
represented. Left panels, the shifts in λ and κ are estimated using our database of activation energies for a 4°C increase. Right panels, 
biomass ratios are given by B2∕B1=

√

(��) [Colour figure can be viewed at wileyonlinelibrary.com]
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biological rates are thus prominent in determining how the com-
munity varies with warming.

Regarding biomass distribution, periphyton biomass is larger 
than the one of their larvae consumers but warming decreases this 
bottom-heavy pattern (Figure  5b, data). Predicting biomass ratio 
B2/B1 from κ and λ indicates that the food chain becomes less bot-
tom-heavy with warming. Although the predicted values are lower 
than the observed data, our predictions are consistent with the ex-
perimental measurements (Figure 5b), demonstrating the reliability 
of our theoretical framework.

4  | DISCUSSION

Investigating how temperature affects the structure of communi-
ties and their dynamics is important for understanding how climate 
change may impact biodiversity and ecosystem functions (Boukal 
et al., 2019; Woodward et al., 2010). Here, we built on a recent the-
oretical study (Barbier & Loreau,  2019) to explore mechanistically 
how the structural and dynamical features of food chains are simul-
taneously affected by temperature.

We demonstrate that the discrepancies in the thermal response 
of consumer–resource systems arise through intra- and inter-in-
dividual variation in the temperature dependence of biological 
rates, which induce mismatches between interacting species (Voigt 
et al., 2003). Such mismatches, measured by differences in the ac-
tivation energies, have already been shown to strongly impact spe-
cies interactions (Bideault et al., 2019; Gilbert et al., 2014; O'Connor 
et al., 2011; Sentis, Binzer, et al., 2017). Here, we focus on three key 

parameters: attack rate, self-regulation and conversion efficiency. 
The intra-level mismatch (between the predator's attack rate and 
self-regulation), the inter-level mismatch (between the predator's 
and prey's self-regulation) and the activation energy of conversion 
efficiency together govern the thermal response of food chain pat-
terns. For instance, when the inter-level mismatch and the activation 
energy of conversion efficiency are positive, biomass distribution 
becomes top-heavier with warming.

We further explore how these thermal mismatches drive the 
biomass distribution and the trophic control in consumer–resource 
systems across taxonomic groups and habitats using a database 
of activation energies. Our theory coupled with the data predicts 
differences between aquatic and terrestrial communities. Warming 
is expected to trigger top-heavier food chains in both terrestrial 
and aquatic ecosystems, whereas it might induce stronger top-
down control only in aquatic ecosystems. Previous experimental 
studies have also demonstrated that warming increases consum-
ers biomass in terrestrial systems (de Sassi & Tylianakis,  2012) 
while enhancing top-down control (Kratina et al., 2012; O'Connor 
et al., 2009) and decreasing autotroph biomass relative to hetero-
troph biomass in aquatic systems (Müren et  al.,  2005; O'Connor 
et al., 2009; Shurin et al., 2002; Yvon-Durocher et al., 2011). Using 
the database of activation energies for ectotherm species, we show 
that there is a substantial variation around these general trends. 
Our findings could explain the variety of thermal responses in con-
sumer–resource systems previously observed (Marino et al., 2018) 
between, for example, habitats (terrestrial vs. aquatic) and taxo-
nomic groups, and help understanding how biological rates drive 
this context dependency. For instance, we do not find, on average, 

F I G U R E  5   Case study from Kishi et al. (2005) that investigated the effect of water temperature on the structure of a consumer–resource 
system with caddisfly larvae as consumer and periphyton as basal species. (a) Variation in λ and κ with temperature changes (color points 
are for 3, 6, 9, 12, 15, 18 and 21°C corresponding to the experimental temperature in Kishi et al. (2005). Color coding ranges from blue, that 
is, cold, to red, that is, warm. λ and κ are computed at 12°C as a starting point. Their variation with temperature is then estimated assuming 
that periphyton self-regulation D1 scales with their production and that grazers attack rate A12 and self-regulation D2 scale with their feeding 
rate. The solid line represents estimations of λ and κ from the parameters experimentally measured in Kishi et al. (2005). The dashed and the 
dotted lines represent estimations of λ and κ from, respectively, an exponential and a quadratic fit of the data. (b) Biomass ratios computed 
from the relationship B2∕B1=

√

�� for λ and κ derived from the data and the fitted functions. See Supporting Information for details on the 
difference between the estimates from data and λ and κ [Colour figure can be viewed at wileyonlinelibrary.com]
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that top-down control increases with warming in terrestrial sys-
tems but our model does predict an increase for the interaction 
between Arachnida and Insecta taxonomic groups, coherent with 
empirical findings from Barton et al. (2009). Our predictions should, 
however, be nuanced as our database of activation energies might 
be biased toward some taxonomic groups that are more commonly 
studied. In particular, we do not include data for the thermal sen-
sitivity of endotherm species while their inter-level mismatch with 
ectotherm species might be significant as shown in a recent study 
(Grady et al., 2019). Better characterizing mismatches between en-
dotherm and ectotherm species is thus an important next step to 
improve predictions of how warming affects community structure 
and dynamics.

While our database of activation energies is nevertheless useful 
to determine the thermal sensitivities of κ and λ across taxonomic 
groups, it does not contain enough information to compute the val-
ues of κ and λ across all species pairs, which is limiting to generate 
quantitative predictions. To overcome this limitation, we compute 
values of κ and λ from estimates of herbivores to autotroph biomass 
ratios in marine and terrestrial environments (Bar-On et al., 2018). 
Our estimates of biomass ratios are in accordance with previous 
studies showing regular biomass pyramids in terrestrial environ-
ments and inverted pyramids in marine systems where the herbi-
vore to autotroph biomass ratio is greater (Cebrian et al., 2009; Rip & 
McCann, 2011). Our results thus suggest that herbivores experience 
bottom-up control in terrestrial environments and trigger top-down 
control in marine ones. The mechanisms and factors influencing the 
strength of trophic cascades are still debated (Borer et  al.,  2005; 
Schmitz et  al., 2000; Sentis et  al., 2020; Shurin et  al., 2002; Start 
& Gilbert, 2017), and our results support the claim that top-down 
control of plants by herbivores is weak in terrestrial systems. We 
show that warming would trigger less bottom-heavy food chains in 
terrestrial environments and stronger top-down control in marine 
environments, which is consistent with our more general predictions 
discussed above. However, we obtain variable results across the 
different scaling scenarios of self-regulation regarding the change 
in trophic control for terrestrial environments and in biomass dis-
tribution for aquatic environments, which suggests that we cannot 
reliably conclude on the direction of change for these other axes. 
Determining how self-regulation varies with temperature is thus cru-
cial to further explore how food chain structure and dynamics will be 
affected by temperature changes.

The temperature dependence of conversion efficiency also re-
mains poorly estimated and is still subject to debate (Daugaard 
et al., 2019), despite the importance of this parameter in determin-
ing energy flow between trophic levels (Lang et al., 2017). To over-
come this lack of knowledge, we consider different scaling scenarios 
regarding the temperature dependence of self-regulation and we 
assume that conversion efficiency increases with temperature fol-
lowing recent outcomes from experimental (Daugaard et al., 2019) 
and data-driven (Lang et al., 2017). Using existing data on the tem-
perature dependence of these key parameters is a first step in the 
effort to better understand community functioning under warming 

but conducting empirical studies would be essential to better char-
acterize their thermal dependences.

Self-regulation is indeed a key and poorly known parameter. 
It has often been neglected in theoretical and empirical studies 
(Amarasekare, 2015; Gilbert et al., 2014), despite its importance in 
determining network stability (Barabás et al., 2017). For instance, 
Gilbert et  al.  (2014) explored the effects of temperature on bio-
mass distribution and stability in consumer–resource systems in 
the absence of consumer self-regulation (corresponding to the 
case where λ tends to infinity). In contrast, we consider self-reg-
ulation both at the resource and consumer levels and show that 
the effects of temperature on biomass distribution across trophic 
levels strongly depend on the consumer self-regulation. Without 
self-regulation, the model predicts inverted biomass pyramids in 
most cases whereas, with self-regulation, the cases with non-in-
verted biomass pyramids are much more frequent. Our study is 
thus complementary to the work of Gilbert et al. (2014). It extends 
and generalizes previous works by adding another dimension (i.e., 
consumer self-regulation) and by testing general and specific ef-
fects of temperature using a large database of activation energies 
and two case studies.

To test specific predictions of our theoretical framework, we thus 
use experimental parameters on stream organisms (Kishi et al., 2005) 
to compute values of κ and λ along a temperature gradient and com-
pare our estimations with the observed empirical pattern. We find 
that the values of κ and λ computed directly from these experimental 
data and their estimated values are similar for the whole tempera-
ture range when the thermal performance curves of biological rates 
are described by quadratic functions. However, when the thermal 
performance curves are fitted with exponential Arrhenius functions, 
the computed values of κ and λ and their estimated values are similar 
only for the lowest temperatures. The divergence between the qua-
dratic and the exponential model at higher temperatures observed 
here emerges from the often unimodal relationship between biolog-
ical rate and temperature (Pörtner & Farrell, 2008). Unimodal ther-
mal responses have more recently been reported (Dell et al., 2014; 
Englund et al., 2011; Sentis et al., 2012) and shown to cascade up to 
the community level by inducing nonlinear responses in interaction 
strength (Betini et al., 2019; Bideault et al., 2019; Sentis, Gémard, 
et  al.,  2017; Uszko et  al.,  2017). A better characterization of the 
full thermal response of biological rates could thus help to better 
understand the effects of temperature on trophic interactions be-
yond optimal temperatures. Nevertheless, most species typically 
experience temperatures below their optimal temperatures (Martin 
& Huey,  2008; Pawar et  al.,  2016; Thomas et  al.,  2012) and we 
demonstrate that using an exponential function can be appropriate 
for these sub-optimal temperatures. The coherence between our es-
timates of biomass ratios and the data also highlights the reliability 
of our framework here. This promising example suggests that our 
theory may be able to predict changes in biomass distribution and 
trophic control in consumer–resource systems.

Our mechanistic framework allows drawing a comprehensive 
picture of thermal effects on both the structural and dynamical 
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properties of consumer–resource systems. We highlight major dif-
ferences between terrestrial and aquatic habitats and across tax-
onomic groups and point out the key role of thermal mismatches 
between biological rates. Although we do not consider some mech-
anisms that could modify the responses of communities to warming 
such as thermal adaptation (Kontopoulos et al., 2020), life history or 
differences in warming scenarios between temperate and tropical 
regions (Amarasekare, 2019), our study sheds light on the mecha-
nisms driving variations in food chains structure and dynamics with 
temperature changes, laying foundations to further explore how 
complex networks will change with warming.
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