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Predation often deviates from the law of mass action: many micro- and meso-scale 
experiments have shown that consumption saturates with resource abundance, and 
decreases due to interference between consumers. But does this observation hold at 
macro-ecological scales, spanning many species and orders of magnitude in biomass? If 
so, what are its consequences for large-scale ecological patterns and dynamics?

We perform a meta-analysis of predator–prey pairs of mammals, birds and reptiles, 
and show that total predation rates appear to increase, not as the product of predator 
and prey densities following the Lotka–Volterra (mass action) model, but rather as the 
square root of that product. This suggests a phenomenological power-law expression 
of the effective cross-ecosystem predation rate. We discuss whether the same power-
law may hold dynamically within an ecosystem, and assuming that it does, we explore 
its consequences in a simple food chain model. The empirical exponents fall close to 
the boundary between regimes of donor and consumer limitation. Exponents on this 
boundary are singular in multiple ways. First, they maximize predator abundance and 
some stability metrics. Second, they create proportionality relations between biomass 
and productivity, both within and between trophic levels. These intuitive relations do 
not hold in general in mass action models, yet they are widely observed empirically.

These results provide evidence of mechanisms limiting predation across multiple 
ecological scales. Some of this evidence was previously associated with donor control, 
but we show that it supports a wider range of possibilities, including forms of con-
sumer control. As limiting consumption counter-intuitively allows larger populations, 
it is worthwhile to reconsider whether the observed predation rates arise from micro-
scopic mechanisms, or could hint at selective pressure at the population level.

Keywords: functional response, macroecology, predation, scaling laws,  
trophic ecology

Introduction

Many dynamical food web models attempt to represent population-level dynamics 
by zooming out from the microscopic complexity of individual predator and prey 
behavior, physiology and ecology. Since Lindeman (1942), these models have shared 
the same fundamental structure, i.e. a balance of energy gains and losses from preda-
tion and from non-trophic processes. The hidden complexity and specificity of a given 
ecosystem is generally summarized in a simple function which describes how predation 
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and energy fluxes between trophic levels depend on stocks at 
each level (predator and prey abundances). The most basic 
assumption is mass action: encounter probability increases as 
the product of predator and prey density. But natural settings 
often deviate from this baseline (Holling 1965). The expres-
sion of this function has been the topic of extensive empirical 
and theoretical inquiries, and even major debates (Arditi and 
Ginzburg 1989, Abrams 2015).

When we aim at large-scale prediction, the functional 
form in our equations does not represent the concrete mech-
anisms of predation – instead, its purpose is to express the 
cumulative effect of many predation events, aggregated over 
time and space, on the dynamics of large populations. For 
instance, we may hope to predict whether an entire regional 
population will show a strong response to invasions or exploi-
tation, such as a trophic cascade or collapse (Pauly et al. 2000). 
Yet, modelling studies often simply resort to functional forms 
observed at a microscopic scale, such as the saturating func-
tional response of a single predator. But there is no reason to 
expect that a single mathematical expression, whether mecha-
nistic or phenomenological, will be appropriate to model all 
ecological processes (Aljetlawi et al. 2004, Barraquand 2014). 
We may have to derive different expressions for different 
questions and scales, from short-term laboratory experiments 
(Vucic-Pestic  et  al. 2010), through multi-generation preda-
tor–prey cycles (Turchin 2003), to macro-scale food web 
properties such as biomass pyramids and stability (Barbier 
and Loreau 2019).

Here we propose a new, empirically-motivated and phe-
nomenological formulation for predation rates at large 
spatio–temporal scales. At these scales, the classic predator-
oriented notion of functional response (Holling 1965) (how 
often a single predator will feed, depending on prey density) 
must be replaced by a more symmetrical notion: the total 
predation rate, or flux of biomass between predator and prey 
species, and how it is controlled by the two species’ densi-
ties. This formulation acknowledges both predator and prey 
densities as potentially limiting, through a variety of mecha-
nisms such as consumer interference, prey saturation, refuges, 
spatial structure, etc. By contrast with mechanistic theories 
(DeLong and Vasseur 2012, Pawar et al. 2012, DeLong et al. 
2015, Portalier et al. 2019), our aim is not to ascertain the 
most realistic expression of predation rates, but to find a sim-
ple expression that can mimick observed rates across multiple 
scales, and then to understand its consequences for other 
food chain properties.

We first perform a meta-analysis of predation rates 
observed for higher vertebrates in the field, covering a 
range of species, study durations and areas. In the exist-
ing literature, most measurements of the predation rate as 
a function of predator and prey density come from feed-
ing experiments, restricted to time scales far shorter than 
the predator’s generation time (Skalski and Gilliam 2001, 
Pawar et al. 2012). While these experimental measurements 
are valuable for mechanistic models of specific populations, 
they may be misleading when extrapolating to macro-scale 
dynamics (Aljetlawi  et  al. 2004). For the latter, we need a 

phenomenological expression that exhibits some form of 
scale invariance, so that it may hold across different levels of 
aggregation. We propose a power-law expression similar to 
the Cobb–Douglas production function in economics (Cobb 
and Douglas 1928). We then find best-fit exponents suggest-
ing a square root dependence of predation on both preda-
tor and prey density. These exponents are starkly lower than 
those expected from the simple mass action (Lotka–Volterra) 
model, suggesting that hidden mechanisms strongly limit 
predation.

This empirical trend can only be interpreted as a meaning-
ful mathematical expression if it can be used to predict large-
scale dynamics. This raises multiple questions. Knowing that 
local populations undergo many complex processes on short 
time scales, is it possible to write an effective model that 
approximates the dynamics of abundances aggregated over 
years and over whole landscapes? What kind of equations and 
nonlinearities should be used in this effective model? These 
questions have been raised in prior studies, mainly within 
the theoretical literature (Law and Dieckmann 1999, Pascual 
and Levin 1999, Barraquand and Murrell 2013, Hatton et al. 
2015), which have shown that effective models can indeed be 
constructed in some cases, and may be quite different from 
the dynamics known at small scales. Being phenomenologi-
cal, such models often cannot easily be interpreted in terms of 
concrete mechanisms or instantaneous demographic events. 
They generally do not exhibit the intuitive properties of clas-
sical functional responses (Morozov and Petrovskii 2013). 
But when successful, they can provide useful predictions. The 
present study should be viewed as exploratory, investigating 
one hypothetical way of describing large-scale, long-term 
dynamics by a simple set of effective differential equations.

An important question remains: how can we parameterize 
our effective model from observational data, collected within 
or across ecosystems? Indeed, the empirical relations between 
predation rates and densities of predators and prey do not 
necessarily translate directly to a true dynamical dependence 
between these three quantities. Other latent factors could be 
varying between measurements, and creating spurious rela-
tions. Nevertheless, we find hints that such confounding 
variation is weaker than the dependence that we wish to cap-
ture. We therefore assume that the observed scaling law can 
be inserted directly into a simple dynamical model, in order 
to explore its potential ecological consequences.

The empirical scaling exponents occupy a special posi-
tion in our model, as they correspond to a maximum in 
predator abundance and some metrics of stability. While our 
sublinear model suggests that predation frequency is much 
lower than in a classic Lotka–Volterra model, it also leads to 
larger standing predator populations. This apparent paradox 
is closely related to the ‘hydra effect’, a term that originally 
applies to situations where increasing individual predator 
mortality leads to larger predator populations (Abrams 2009, 
Schröder et al. 2014), but can be extended to any situation, 
such as ours, where consumers that seem individually less fit 
(e.g. consume less prey than their competitors) may become 
more abundant in the long term (Abrams 2019).
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A second unexpected consequence is the emergence of 
consistent scaling relationships between predator and prey 
densities, and between production and biomass within 
each trophic level. Such scaling laws are widely found in 
data and postulated in ecosystem models (Loreau 2010, 
Hatton et al. 2015). They are notably used in contexts of 
ecosystem management, such as fisheries (Borgmann 1987, 
Christensen and Walters 2004). But these relationships do 
not emerge spontaneously from arbitrary dynamical mod-
els, and only prevail under particular ecological conditions 
(Barbier and Loreau 2019). Our fitted exponents recover 
simple proportionality rules that are usually associated with 
donor control.

Our work raises the possibility that consumptive satura-
tion and interference may happen at all scales, not only the 
classic scale of individual predator behavior (Holling 1965), 
and that this prevalence is tied to the empirical robustness 
of various allometric relationships, and the maximization of 
predator abundance and persistence.

Material and methods

Dataset

We compiled data from 32 observational studies (details 
in the Supporting information) that reported kill rates k12 
(number of prey killed per predator per year) in the field, 
as well as prey density N1 and predator density N2. For each 
species, we also collected typical body mass measurements w 
(in kg) and mass-specific metabolic rate measurements m (in 
W kg−1) from the AnAge database (De Magalhaes and Costa 
2009) and two studies by White and Seymour (2003) and 
Makarieva et al. (2008), as these traits were rarely reported 
for the populations studied in the field (Brose et al. 2019). 
Whenever multiple values were found, we used the average 
values for each species.

The final dataset comprises 46 predator–prey pairs includ-
ing 26 predator species and 32 prey species. Predator species 
belong to classes Mammalia, Aves and Reptilia, while prey 
species belong to classes Mammalia, Actinopterygii, Aves and 
Malacostraca.

For each predator–prey pair, we computed the rate of bio-
mass loss in the prey population due to predation (in kg km−2 
year−1) as

C k w N= 12 1 2   (1)

and population biomass densities B1 = w1N1 and B2 = w2N2 
in kg km−2.

Food chain model

We investigate a simple food chain model of arbitrary length, 
where we follow the biomass density Bi of trophic level i as it 
changes through time,

dB t
dt

L t P t C ti
i i i

( )
( ) ( ) ( )= - + -

internal losses production preda
 

ttion losses


 (2)

where Li and Pi represent internal losses and biomass pro-
duction at level i, while Ci represents losses from pre-
dation by level i + 1. Production at level 1 arises from  
autotrophic growth

P t g B t1 1 1( ) = ( )   (3)

while at higher levels, we assume

P t C ti i+1( ) = ( )e   (4)

where ε (taken here to be constant for simplicity (The conver-
sion rate ε is known to vary, but its range is limited compared to 
other quantities which can span orders of magnitude (Barbier 
and Loreau 2019). We choose to ignore ecological contexts in 
which predator production may be density-dependent even 
for a fixed amount of consumption, e.g. a reduced offspring 
number in denser groups, which could be represented by a 
function ε(Bi+1).)) is the conversion rate between the biomass 
lost through predation at level i and produced at level i + 1. 
Internal losses can arise from individual metabolic costs and 
mortality, µi, and from self-regulation or density-dependent 
processes such as competition and pathogens, Di,

L t B t D B ti i i i i( ) = ( ) ( )2m +   (5)

Alternatively, we later consider the possibility of a power-law 
expression L t D B ti i i( ) = ( )d  which can interpolate between 
these two types of losses.

In the following, we only consider stationary properties 
of the dynamics (Eq. 2), and thus drop the time-dependence 
of all quantities, which are assumed to take their equilibrium 
values.

Density-dependence

Throughout this study, we consider phenomenological math-
ematical expressions, emerging at the landscape level from 
unknown, potentially complex, underlying spatio–temporal 
dynamics (Barraquand and Murrell 2013). Consequently, 
these functions may not follow traditional expectations and 
intuitions derived from mechanistic functional responses 
(Morozov and Petrovskii 2013) – for instance, they might 
not scale additively with the number of prey or predator indi-
viduals or species.

While our data is always measured over large spatial scales 
compared to individual organism sizes, it still covers multiple 
orders of magnitude in spatial extension and biomass den-
sity. This can inform our choice of mathematical expression 
for the predation rate. Indeed, when considering phenom-
ena that range over multiple scales, there are two common 
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possibilities: either there is a scale beyond which the phenom-
enon vanishes (for instance prey-dependence simply saturates 
past a critical density), or the phenomenon remains impor-
tant at all scales. The second possibility drives us to search for 
a ‘scale-free’ mathematical expression, such as a power-law, 
which does not truly saturate but exhibits significant varia-
tion at all possible scales (Barenblatt 1996).

Following this argument, we choose here to focus on a 
‘scale-free’ power-law dependence of predation losses (discus-
sion in Box 1)

C C B B AB Bi i i i iº + +( , ) =1 1
b g   (6)

with β,γ ∈ [0,1], and A a constant which contains the attack 
rate, i.e. the basic frequency of encounters for a pair of 

predator and prey individuals. This attack rate may in prin-
ciple be specific to each pair of species, while we assume that 
exponents β and γ are system-independent.

In this expression, β = γ = 1 recovers the classic mass 
action (Lotka–Volterra) model. An exponent β < 1 is our 
counterpart to the well-studied phenomenon of prey satura-
tion: predation does not truly saturate here (as the expression 
is scale-free), but it increases sublinearly with prey density, 
meaning that the ability of predators to catch or use each prey 
decreases with their availability (Holling 1965). On the other 
hand, γ < 1 indicates predator interference: larger predator 
densities lead to less consumption per capita (Skalski and 
Gilliam 2001). In the following, we will consider various 
arguments suggesting that empirical exponents may instead 
approximately satisfy the relationship β + γ ≈ 1, which would 
imply a simpler ratio-dependent form

Box 1. Dimensional analysis

The difficulty of building a phenomenological cross-scale expression for predation rate is that it should account for both:

 • between-systems parameter differences (e.g. different study areas, spatial structures, species traits),
 • the within-system range of dynamical variables Bi that can lead to saturation and interference if they cross system-dependent 

thresholds.

We first appeal to dimensional analysis (Legendre and Legendre 2012). From Eq. 1 we see that predation losses Ci have the dimen-
sions of biomass density over time, e.g. kg km−2 year−1. A classic nondimensionalization choice (Yodzis and Innes 1992) is to express 
these losses using predator density and mass-specific metabolic rate (below for other options)

f
C

m Bi
i

i i

=
1 1+ +

  (20)

where fi is the normalized functional response (consumption per predator), incorporating all biological mechanisms. Since fi has no 
dimension, it can only depend on dimensionless quantities. If we assume that all variation in predation is determined solely by species 
densities and metabolic rates, we can only construct two dimensionless ratios π1 and π2 and fi must take the form

f f
m

m
B

Bi
i

i

i

i

= = , =1
1

2
1

p p
+ +

æ

è
ç

ö

ø
÷   (21)

with some arbitrary function f. The choice f(π1,π2) = 1 leads to consumer dependence (Ci = mi+1Bi+1), while f(π1,π2) = π1,π2 leads to 
donor dependence (Ci = miBi). More generally, the Eq. 21 is strongly reminiscent of ratio-dependent functional response (Arditi and 
Ginzburg 2012), but it does not posit a specific functional form.

To deviate from this ratio-dependent expression, we must use additional parameters to construct other dimensionless quantities. 
Setting aside metabolic scaling for now, the Eq. 6 and 8 in the main text involve Bi and Bi+1 separately, suggesting the form

f f
B

B
B

Bi
i

i

i

i

= ,
,

1

1,min min

+

+

æ

è
çç

ö

ø
÷÷   (22)

Indeed, it is plausible for nonlinear density-dependence in f to involve system-specific thresholds Bi,min (discussion in the Supporting 
information). These thresholds can be derived from other parameters that characterize each system, such as movement range or body 
mass. A further possibility, not investigated here, is that other biological rates may also intervene if metabolic rate cannot be used as a 
universal ‘clock’ for trophic processes (Glazier 2015).

Dimensionless ratios can capture important differences between systems, and a number of heuristics and mathematical theories 
exist to guide their choice (Barenblatt 1996): for instance, it is often useful to find ratios that are significantly larger than 1 in some 
systems and smaller than 1 in others, as this can indicate qualitatively different regimes. Thresholds such as Bi,min are commonly found 
in saturating functional responses (Holling 1965), where the density-dependence vanishes above a certain scale. If instead we expect a 
density-dependence that persists over a wide range of scales, we can use a ‘scale-free’ expression for the function f, such as a power-law 
(Barenblatt 1996).
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This relationship requires a strong effect of either or both 
interference and saturation.

These two predation-limiting phenomena are commonly 
reported and have been studied with various mathematical 
models. But classic functional responses generally go against 
our expectation of a ‘scale-free’ expression: they often assume 
that some density-dependence vanishes when density exceeds 
a particular scale or threshold. This may be realistic when 
depicting a given small-scale experimental system, but it is 
not adequate for data such as ours, compiled from different 
systems and scales. For instance, we can consider the standard 
saturating (Michaelis–Menten or Holling type 2) response 
(Holling 1965) and its extension, the DeAngelis–Beddington 
model (Beddington 1975, DeAngelis et al. 1975) with both 
saturation H and interference I

C B B
AB B
HB IBi i

i i

i i

( , ) =
11

1

1
+

+

++ +
  (8)

where H/A is traditionally defined as the handling time. This 
expression is applicable to short-term feeding experiments, 
where consumption is observed for a particular predator–
prey species pair whose densities are imposed. The parameters 
H and I are contextual: they are expected to depend on spe-
cies traits (Pawar et al. 2012), but also on the spatial structure 
and area of each study site. We discuss in Results and the 
Supporting information the difficulties associated with using 
this expression in a cross-ecosystem context.

Links between statistical and dynamical laws

We seek to identify the dynamical relationship C(B1,B2) 
between predation losses and the biomasses of predator and 
prey in empirical data. In our theoretical analysis, we also 
discuss model predictions for another important observation, 
the scaling relations between production P and biomass B 
within and between trophic levels (Hatton et al. 2015).

Yet, the problem of relating cross-ecosystem statistical laws 
to underlying dynamical models is subtle, due to the poten-
tial covariance between variables and parameters. As a sim-
ple example, consider the scaling between production and 
biomass in one trophic level, assuming that the underlying 
dynamical law is P(B) = rB with r a fixed growth rate. When 
we consider many ecosystems at equilibrium, each with a dif-
ferent growth rate, their values of r and B will likely be cor-
related. If they covary perfectly, the apparent trend will be  
P ~ B2 and will not be representative of the true dynamical law.

This issue can be made mathematically explicit in the sim-
ple case of an ‘ecosystem’ made of a single species following 
logistic growth:

dB
dt

rB B
K

rB DB
P L

= 1 = 2-æ
è
ç

ö
ø
÷ -

(production) (internal losses)

� ���� ��   (9)

When multiple ecosystems follow the same equation with 
different parameters, they will reach different equilibria. 
To avoid confusing the variation within one ecosystem and 
between different ecosystems, we denote here the equilibrium 
values in each ecosystem k by B(k), P(k) and L(k) (which satisfy 
P(k) − L(k) = 0). We can imagine two scenarios that lead to dif-
ferent scalings across systems:

 • If systems have the same r(k) = r but different D(k) (and 
hence different equilibria B(k)), the relationship P(B) = rB 
within each system imposes the linear relationship P(k) ~ 
B(k) across systems,

 • If r(k) changes across systems while D(k) = D is constant, 
the relation L(B) = DB2 and the equilibrium condition 
P(k) = L(k) within each system impose the quadratic rela-
tionship P(k) ~ (B(k))2 (in other words, we have a perfect 
colinearity B(k) ~ r(k) across systems).

This example highlights the importance of knowing which 
parameter (here r or D) is most system-dependent to pre-
dict the empirical cross-ecosystem scaling law, and to identify 
how it differs from the true within-ecosystem dynamical rela-
tionship P(B) = rB.

The same issues occur for all observational scalings, 
including the scaling of predation losses with prey and preda-
tor densities: if we try to fit the relationship C AB B12 1 2= b g  in 
Eq. 6, we may encounter the problem of correlations between 
attack rates and population densities. We now discuss how to 
address this problem in the context of an empirical estima-
tion of β and γ.

Empirical analysis

The empirical identification of a relationship between preda-
tion losses and species densities such as

C B B12 1 2

b g   

can be affected by two sources of error: the colinearity between 
the two variables B1 and B2, and the colinearity of either of 
these variables with other factors that may appear in the full 
expression of C12 (e.g. the attack rate A defined above).

The first problem is that the colinearity between B1 and 
B2 (Fig. 1d) may obscure their respective contributions to 
C12 = C(B1,B2). We can overcome this difficulty by perform-
ing a commonality analysis, which is a statistical test based on 
variance partitioning. We use the function regr of the R pack-
age yhat to check the existence of suppression i.e. the distor-
sion of regression coefficients due to the colinearity between 
predictors (Ray-Mukherjee et al. 2014). This test shows the 
absence of suppression, allowing us to directly interpret the 
respective contributions of B1 and B2 to C(B1,B2) below.

A more important difficulty stems from correlations with 
other parameters, as suggested in the previous section. If we 
suppose that, in each ecosystem k, predation losses follow

C B B A B Bk k( )
1 2

( )
1 2( , ) = b g   (10)
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where we are given no information on the species-dependent 
parameter A(k), we can only estimate β and γ from a simple 
empirical fit if A(k) is weakly correlated with the observed 
values of B1 and B2. This could be the case if A(k) varies less 
between systems, or has less impact, than other factors that 
control B1 and B2, such as primary production or mortality 
(or factors ignored in our model, such as spatial fluxes, out-
of-equilibrium dynamics and additional interactions).

We employ two distinct methods to identify the expo-
nents β and γ in our proposed power-law scaling relationship.

The first approach is a direct fit, with the aim of minimiz-
ing residual variance: given that C, B1 and B2 span multiple 
orders of magnitude, any combination of these variables that 
exhibits much less spread suggests an interesting regular-
ity, even though the precise values of the exponents may be 
incorrectly identified due to colinearities and should be inter-
preted with care.

The second approach is an attempt to account for at least 
some unknown factors that may undermine a naive param-
eter estimation. We focus on the dynamical food chain model 
(Eq. 2) and the power-law predation rate (Eq. 6). We then 
simulate this model for many random combinations of 
parameter values (including exponents, but also attack rate, 
growth rate, mortality, etc.). We only retain model realiza-
tions that give triplets (B1,B2,C) sufficiently close to those 
found in our empirical data, giving us a distribution of expo-
nents compatible with this evidence, as well as an estimation 
of how other parameters may affect observed species densities 
and predation rates.

Direct fit
We note that the factor A(k) is not unitless. This may be 
problematic when fitting data collected at different scales. 
Following the discussion in Box 1, we propose to expand A(k) 
in a way that accounts for metabolic scaling and nonlinearity 
thresholds, i.e.

C B B a m B
m
m

B
B

B
B

k k( )
1 2

( )
2 2

1

2

1

1,

2

2,

( , ) =
æ

è
ç

ö

ø
÷
æ

è
çç

ö

ø
÷÷
æ

è

n b

min min
ççç

ö

ø
÷÷

-g 1

  (11)

where m2B2 sets the dimensions of C and all other factors are 
dimensionless. In particular, a(k) is an ecosystem-dependent 
parameter that can be interpreted as a random effect. We will 
see in the Results section that many terms in this complex 
equation appear to have a negligible contribution, leading 
back to our simple theoretical expression (Eq. 6).

We have no direct measurement of the reference densi-
ties Bi,min, which are necessary to construct dimensionless 
ratios, and which we interpret as thresholds for nonlinearity 
(saturation or interference). Therefore, we must make some 
assumptions on these values, guided by biological intuitions. 
The simplest possible assumption is that these thresholds 
vary independently of other parameters, and can be included 
into the random effect a(k). As a second option, if these den-
sity thresholds were proportional to individual body masses,  
Bi,min ~ wi, the relevant variables for our fit would be popu-
lation densities Ni rather than biomass densities. A third 
option, Bi,min ~ 1/mi, would instead suggest focusing on  

Figure 1. Empirical and simulated scaling relationships betwen biomass densities B1 and B2 and predation losses C12 in logarithmic scale. 
We show two panels for each pair among (a) C12 and B1, (b) C12 and B2, (c) C12 and BB1 2  and (d) B2 and B1. Left panels: each point cor-
responds to one study in our meta-analysis, and the dashed line represents the 1:1 relationship. The background color indicates the density 
of simulated realizations of our dynamical model, retaining only realizations that approximate the empirical distribution (‘Dynamical 
model estimation’ section). Right panels: histogram of ratio between the two quantities in our simulated ecosystems.
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Ei =miBi which has commonly been interpreted as an ‘energy’ 
density (Damuth 1987). For each of these choices, the expo-
nents ν, β and γ may then be identified by a least-squares lin-
ear regression in log space. To identify the correct definition 
of Bi,min, we test all three possibilities, and ask which one leads 
to the best predictions, i.e. the lowest amount of residual 
variation in a(k).

Dynamical model estimation
Using our dynamical model (Eq. 2) with Eq. 5 and 6, we 
generate predator–prey pairs with different parameter values 
drawn from a broad prior distribution, and compute their 
equilibrium biomass densities B1 and B2 and predation losses 
C12. We then retain only model realizations for which the 
three values (B1,B2,C12) are close to those observed in our 
data. We repeat this process until we have retained 2500 
model realizations, and use the parameter values of these real-
izations to compute a joint posterior distribution for all our 
parameters, in particular the exponents β and γ that we wish 
to identify.

For two species, our model has eight parameters, which 
we draw independently in each model realization. The expo-
nents β and γ are drawn uniformly in the range [0,1.5] in 
order to confirm that they are expected to be less than 1 (the 
Lotka–Volterra or mass action limit). Other parameters are 
drawn uniformly on a log scale, over a span of 10 orders of 
magnitude: the attack rate A ∈ [10−5,105], prey productivity 
g1 ∈ [10−4,106], predator mortality µ2 ∈ [10−8,102] and prey 
and predator self-regulation D1,D2 ∈ [10−5,105]. Finally, the 
biomass conversion efficiency is drawn in the realistic interval 
ε ∈ [10−2,1].

We retain only model realizations in which both species 
survive, and filter the remaining according to their similarity 
to empirical data. To do so, we train a Kernel density estima-
tor (KDE, from the Python library scikit-learn using classes 
GridSearchCV and KernelDensity) on triplets (log10B1, log10B2, 
log10C12) in the empirical data. We then compute the same 
triplet in model realizations, and its score s given by the KDE. 
We retain each model realization with probability e s sq -( )max , 
given smax the highest score given among empirical triplets. 
We choose θ = 2 as we find empirically that it gives the best 
agreement between simulations and data for the variance and 
range of B1, B2, C12 and their ratios.

Finally, we compute the posterior distribution of param-
eters, i.e. histograms of the parameter values found in 
accepted model realizations, and study their correlations with 
each other and with dynamical variables B1, B2 and C12. For 
additional tests in Fig. 5 we ran the same procedure while 

restricting which parameters vary (sampling only g1 and 
exponents β and γ, or keeping Di or A12 constant) in order to 
demonstrate the relationship between scaling laws, discussed 
in the ‘Links between statistical and dynamical laws’ section.

Results

Meta-analysis of kill rates

Results from direct fit
The full expression to be fitted (Eq. 11) breaks down preda-
tion losses C12 into three different contributions: the observed 
species densities Bi raised to the exponents β and γ; the meta-
bolic rates mi, which are often assumed to define the time 
scale for predation processes; and the unknown typical den-
sity scales Bi,min, which we interpret as thresholds for nonlin-
earity (e.g. the scale for interference or saturation).

Our first result is that there does not seem to be a system-
atic effect due to typical density scales Bi,min. As explained in 
‘Direct fit’ section, our main three choices for these param-
eters correspond to using biomass densities Bi, number densi-
ties Ni or ‘energy’ densities Ei = miBi as our fitting variables. 
To showcase these different options, we detail in Table 1 the 
residual standard deviation for various examples of power-
laws involving these variables. These examples are only a few 
representative points in our systematic exploration of Eq. 11, 
but they illustrate our finding that number densities give the 
poorest results, while biomass or energy densities give compa-
rable results. For simplicity, we then focus on biomass densi-
ties Bi, corresponding to the assumption that the reference 
density Bi,min is independent of body size or metabolism (This 
is consistent with assuming that the thresholds B1,min and B2,min 
are equal or proportional to the minimal sustainable popula-
tion densities for prey and predators. Cross-species data from 
Hatton et al. (2015) and Stephens et al. (2019) suggest that 
the minimal numeric density is roughly inversely propor-
tional to body mass, Ni,min ~ 1/wi. Therefore, Bi,min = wiNi,min is 
expected to be size-independent, and exhibits no known link 
to metabolism.).

Our second result is the limited impact of metabolic rates 
on predation losses. From dimensional analysis (Box 1), we 
expected a baseline scaling C12 < m1 or m2. But we find that 
including mi as a prefactor has no significant impact on any 
of our parameter estimates. Furthermore, irrespective of our 
choice of variable, our estimates for exponent ν in Eq. 11 
are all of order ν ≈ 0.1, suggesting a weak and perhaps spuri-
ous dependence in metabolic rates. We therefore eliminate mi 

Table 1. Residual standard deviation for ratios of predation losses and biomass density Bi, population density Ni or ‘energy’ density Ei = miBi. 
Figure 2 for a visualization of the residual variation with B1/B2 for the first three expressions. For the rightmost expression, we use the best-fit 
exponents β = 0.47, γ = 0.30, and see that this contributes only a small reduction of residual variation compared with the square root expres-
sion (second column). The three lowest residual variations are shown in bold.

Expression y C
B1

C

BB1 2

C
B2

C
N1

C

NN1 2

C
N2

C
E1

C

E E1 2

C
E2

C
B B1 2
b g

std(log10y) 0.90 0.77 0.97 1.6 1.5 1.5 0.93 0.77 0.9 0.74
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from our Eq. 11. We performed a similar analysis (not shown 
here) using body masses wi, with comparable results.

Given these two simplifications, we are left with the sim-
pler relationship (Eq. 6) i.e.

C AB B12 1 2

b g   

to be fitted. We find the best-fit exponents β = 0.47 ± 0.17 
and γ = 0.30 ± 0.19. The limited extent of our dataset implies 
large uncertainty on the exact exponents, but they are starkly 
sublinear.

We notice that these exponents lay close to the line β + γ = 1, 
i.e. a simpler ratio-dependent model C12 ~ B2(B1/B2)β which 
we could have assumed for dimensional reasons (Box 1). If 
we impose this relationship by setting γ = 1 − β, we find a 
similar best-fit value β = 0.51 ± 0.12. Due to the colinear-
ity between B1 and B2 (R = 0.56, Fig. 1d), we might expect 
any model of this form to provide a comparable fit, rang-
ing from β = 1 (donor dependent, Box 2) to β = 0 (consumer 
dependent). Nevertheless, our colinearity analysis strongly 
indicates b » 1

2
 as the most likely value. This is visualized 

by the fact that C/B1 and C/B2 both exhibit a residual varia-
tion in B1/B2 (p < 10−6, R = 0.61 and R = −0.52 respectively, 
Fig. 2) whereas our best fit exhibits no residual variation 
(p = 0.4, R = −0.08), suggesting that neither strict donor nor 
consumer dependence prevails in our data.

Results from dynamical model estimation
We show in Fig. 3 the results of our second method of param-
eter estimation, described in ‘Dynamical model estimation’ 
section, which consists in simulating our dynamical model 
with random parameter combinations, and retaining those 
that produce densities and predation losses comparable to 
those of the data.

This second approach also supports the idea that β + γ 
(whose distribution is centered close to 1) is significantly 
reduced compared to the mass action expectation β + γ = 2. 
However, we notice a stark asymmetry in the posterior 

Figure 2. Residual variation with log10B1/B2 when assuming strict 
donor dependence (C ~ B1), a symmetric square-root law  
(C BB 1 2 ), or strict consumer dependence (C ~ B2). Residues 
around the square-root law show no trend (p = 0.4, R = 0.08), and 
have minimal variance (Table 1).

Box 2. Definitions

We introduce two sets of terms to distinguish:

 • what sort of dependence is assumed for predation losses C, e.g. in our model (Eq. 6)

donor-dependent predation A model where C(B1,B2) = C(B1), e.g. γ = 0
consumer-dependent predation A model where C(B1,B2) = C(B2), e.g. β = 0
ratio-dependent predation A model where C(B1,B2) = B2C(B1/B2), e.g. β + γ = 1

 • what are the dynamical outcomes of the balance between predation and internal losses

regulated regime A solution of our model where each trophic level is mainly limited by self-regulation, as in logistic growth. If we 
increase the predators’ individual consumption (attack rate A and exponents β and γ), more predators coexist at equilibrium.

feedback regime A solution of our model with strong feedbacks between the two trophic levels (each level limits the other). From the 
predators’ viewpoint, prey stocks are depleted, leading to competition for prey production. If we increase individual consump-
tion, each predator uses up more of that flux, and fewer predators coexist at equilibrium.

These definitions attempt to avoid confusions surrounding the notions of bottom–up and top–down control, which often merge 
mechanisms (density-dependence) and dynamical outcomes. Intuitively, bottom–up control increases with β, top–down control 
increases with γ, and the feedback regime requires both types of control to be strong, creating ‘antagonistic control’ (Barbier and 
Loreau 2019). Such mutual limitation is shown in predator–prey cycles, or resource and apparent competition (Holt and Bonsall 
2017).
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distributions of β and γ: the distribution of β has a mode 
below but close to 1, while the distribution of γ is strictly 
decreasing from 0. This might lend some credence to purely 
donor-dependent trophic fluxes, a hypothesis which lacked 
support in our direct fit approach above (Fig. 2).

We must note that this model exploration is still missing 
many other factors that may affect B1 and B2 and their rela-
tionship to C12, such as non-equilibrium dynamics or inter-
actions with other prey and predator species, among others. 
These factors may have a greater impact on predators, whose 
populations are typically smaller, slower to attain equilibrium 
and more easily perturbed. We could thus expect that mea-
sured predator abundances are less strictly related to C12. This 
decorrelation may be sufficient to explain the apparent bias 
toward small γ. We discuss below the hypothesis that our 
results are mainly driven by an artificial donor-dependence 
imposed by the scale of observation in the data.

Comparison with a classic functional response
We recall that the functional response designates the preda-
tion rate per predator (either per individual or per unit bio-
mass, depending on studies), and thus corresponds here to 
C12/B2. The DeAngelis–Beddington (DAB) model (8), or 
Holling type 2 with predator interference, can be fitted to 
our data, but while it may be useful as a mechanistic model 
for a single system (Barraquand 2014), it is unsatisfactory in 
our macro-ecological approach.

This expression faces the following problem: the thresh-
olds for prey saturation H and predator interference I are not 
only particular to each pair of species (e.g. via their body sizes 
(Pawar et al. 2012)), but they also depend on the spatio–tem-
poral structure and scale of each system. For instance, a day-
long experiment in a closed arena may reveal saturation with 
prey density due to predator handling and satiety. But over a 
month in an open landscape, a different saturating effect could 
appear due to prey refuges. If we measure multiple systems at 
different scales, each may have a different saturation constant, 
and we cannot fit them all using the same saturating function 
with fixed, or even independently varying, values of H and I. 

We tried to construct some plausible expressions for system-
dependent H and I using other known parameters for each 
system (e.g. body sizes, metabolic rates and spatial extension), 
but could not find a successful approach. Assuming H and I 
to be constant instead, we perform a fit and find (Supporting 
information) that almost all predator–prey pairs are in the 
saturated part of the function, i.e. HB1 + IB2 ≫ 1. This sug-
gests that the DAB model best approximates the data in the 
limit where it becomes linear in either B1 or B2, which is also 
a special case of our power-law model.

Furthermore, we show in the Supporting information 
that the colinearity B1 ~ B2 can make it difficult to differen-
tiate between an additive law, HB1 + IB2 and a multiplica-
tive law with exponents adding up to one, B B1

1
2

-b b , in the 
denominator of the functional response. This has been put 
forward as an important criticism of the Cobb–Douglas pro-
duction function (Felipe and Fisher 2003) which resembles 
our power-law model (Eq. 6). But we find here that prey 
and predator appear to be both limiting. This requires a fine-
tuning of the ratio of handling time to interference, H/I, 
so that HB1 and IB2 are comparable in magnitude. This is 
found in our best fit of the DAB model (Eq. 8) but is difficult 
to justify mechanisticially, whereas the same reality may be 
more clearly and simply encapsulated by our ratio-dependent  
(β + γ ≈ 1) expression with β < 1.

Theoretical properties and consequences of 
empirical exponents

Population sizes
We consider two trophic levels, and investigate equilibrium 
predator density B2

*  in Fig. 4a as a function of both expo-
nents β and γ. We observe two distinct regimes: there is only 
one stable equilibrium throughout the parameter space, but 
it is dominated either by species self-regulation, or by trophic 
regulation.

These regimes can be understood by first assuming that 
self-regulation can be neglected at both levels. In that case, our 
dynamical model (Eq. 2) with the power-law expression (Eq. 
6) has the equilibrium solution (Supporting information)

Figure 3. Posterior distributions of exponents β and γ in power-law predation rate (Eq. 6) for simulations selected to reproduce the empiri-
cal distribution of densities B1 and B2 and predation losses C12 (Fig. 1). The prior distribution was uniform over the interval [0,1.5]. The 
posterior distributions remain broad, showing that exponents are only weakly constrained by our empirical evidence (with almost no cor-
relation between exponents, R = 0.11). The most likely values are β ≈ 0.9, γ ≈ 0 which approximate the classic model of linear donor-
dependence (Box 2), while the median values are more symmetrical, β ≈ 0.8, γ ≈ 0.5 and hence β + γ ≈ 1.3. Both show significant departure 
from the mass action (Lotka–Volterra) hypothesis β = γ = 1 (dashed lines).
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Figure 4. Predator abundance and persistence in our dynamical model (Di = 10−3 at both levels, g1 = 1, µ2 = 2, ε = 0.8, setting the extinction 
threshold at Bi=1). (a) Predator biomass density B2

*  (in log scale) varies with exponents β and γ in the power-law predation rate (Eq. 6). It 
is maximized on a boundary separating two different regimes (b and c). This boundary is close to the dashed line β + γ = 1, but deviates due 
to self-regulation Di. (b) For β + γ > 1, the resource is depleted by predation (feedback regime in Box 2), and predator population decreases 
with attack rate, going extinct at Amax. (c) For β + γ < 1, predator biomass (solid line) increases with attack rate, since the resource is mainly 
limited by its own self-regulation. The predator may survive if A > Amin, but an unstable equilibrium (dashed line) emerges at A > Amax, 
under which populations can go extinct. (f ) For the predator to persist in both regimes and for all initial conditions, we must have Amin < 
A < Amax (shaded region). This interval expands with higher β (less saturation) and prey growth g1. (d–e) Predator invariability (1/coefficient 
of variation, Supporting information) in response to (d) demographic fluctuations and (e) environmental perturbations on the predator. For 
large γ and β < 1, the equilibrum can be unstable and replaced by limit cycles. This area is left blank, but invariability remains well-defined 
in simulations. (a, d, e) The red dot shows the exponents from direct regression β ≈ 0.5, γ ≈ 0.3, and the purple dot shows median values 
from our dynamical model fit, β ≈ 0.8, γ ≈ 0.5.
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where we see that β + γ = 1 leads to a singularity, meaning that 
self-regulation cannot be neglected for these exponents.

The first regime is found when β + γ > 1, and we call it the 
feedback regime (Box 2 and Fig. 4b). In this case, the solution 
(Eq. 12) is a good approximation at low self-regulation (small 
Di). We notice that this solution has two counter-intuitive 
properties: predator biomass B2 decreases with attack rate A12 
and exponents β and γ, and increases with predator mortality 
µ2 (if there is saturation, β < 1). This is because prey stocks 
are brought to low levels, so predators simply divide between 
themselves the flux of prey production: the more each preda-
tor consumes per capita, the fewer predators can coexist. As 
we discuss below, this inverse relationship between individual 
fitness (high attack rate, low mortality) and population abun-
dance has been demonstrated in various models and called 
the ‘hydra effect’ (Abrams 2009, Schröder et al. 2014).

If β + γ < 1, the solution without self-regulation (Eq. 12) 
becomes unstable. In the stable equilibrium, the biomass of 
prey will be mainly determined by their self-regulation i.e. 
B g D1

*
1 1/» , leading to what we call the regulated regime 

(Box 2 and Fig. 4c). In that case, predator biomass
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increases with attack rate and with exponents β and γ. The 
fact that the previous equilibrium (Eq. 12) is unstable reveals 
a type of Allee effect: if initial prey levels are below a threh-
sold, predators will consume all the prey (consumption will 
decrease too slowly to adjust to the falling resource level) then 
collapse.

We show in Fig. 4 that predator abundance is maximized 
at the boundary between these two regimes. This boundary 
lies close to the line β + γ = 1, where predation losses scale as

C B B B B( , )1 2 1 2
1



b b-   

which is close to the exponents suggested by our meta-anal-
ysis. We however note that the regime boundary moves away 
from this line as we decrease attack rates A12 and increase self-
regulation Di at both levels. For sufficiently high self-regula-
tion, even Lotka–Volterra dynamics can enter the regulated 
regime, which can be interpreted as classic bottom–up con-
trol (Barbier and Loreau 2019).

The overarching pattern is that the predator density first 
increases with attack rate A12 and exponents β and γ, when 
predation losses are still negligible for the prey, up to the 
regime boundary described above. Past this point, faster con-
sumption leads to significant resource depletion and a drop in 
predator population (Loreau 2010), as competition increases 
more than growth.

Dynamical stability
We also observe how predation rate exponents affect the sta-
bility of predator populations. Figure 4d–e represents the 
invariability (inverse of the coefficient of variation over time) 
of predator abundance, computed in two scenarios: demo-
graphic stochasticity, where fluctuations (arising from birth 
and death processes) are proportional to B2 , and envi-
ronmental perturbations which affect the predators propor-
tionally to their abundance B2 (Arnoldi et al. 2019). Other 
scenarios and more stability metrics (including asymptotic 
resilience) are represented in the Supporting information, 
and show qualitatively similar patterns.

We make three main observations. First, the optimal 
parameter values for stability depend on the perturbation 
scenario (e.g. demographic or environmental noise) and the 
choice of stability metric, as having a larger abundance leads 
to higher stability in some metrics (Arnoldi et al. 2019). It 
is therefore important to know which scenario and metric 
are relevant for empirical dynamics, and different ecosystems 
may possibly have different optima. Second, all the cases 
studied here display a ridge of increased predator stability 
at the maximum of its abundance, close to the transition 
line β + γ = 1, and a drop in stability right after this ridge. 
Third, while abundance depends almost symmetrically on 
β and γ, and is maximized close to the transition between 
regimes, stability favors systems closer to donor-dependence. 
Moving toward larger β along the line β + γ = 1 reduces the 
likelihood of cycles and widens the region of parameters 
with high stability both to demographic and environmental 
noise (Fig. 4d–e). More generally, stability to environmental 
perturbations can be improved by having lower γ than what 
would maximize abundance (i.e. going toward the bottom of 
Fig. 4e).

Scaling of biomass and production across levels

Previous literature has reported scaling laws between biomass 
and production within one trophic level,

P Bi i

d   (14)

and between biomasses at different trophic levels (Hatton et al. 
2015)

B Bi i+1 
a   (15)

As discussed in Barbier and Loreau (2019), neither of these 
laws can arise for more than two levels in a classic Lotka–
Volterra model without self-regulation (β = γ = 1, Di = 0).

In the following, we illustrate how such empirical scalings 
can emerge from underlying dynamical relationships, and 
how the measured exponents will depend on which param-
eters drive the cross-ecosystem variation in predator and prey 
density. There are only two ways in which scaling laws can 
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hold consistently across multiple trophic levels: either they 
are imposed by a narrow class of density-dependence for pre-
dation rates, or they originate from an equilibrium balance 
between trophic processes and other losses.

The first possibility requires internal losses to be negligible, 
i.e. Li = 0 in Eq. 2, and predation to be strictly donor-depen-
dent or consumer-dependent (γ = 0 or β = 0). The predation 
density-dependence then completely determines the scaling 
between production and biomass,

P B P Bi i i i 

b gor -1   (16)

and since Li = 0,

P P B Bi i i i+ +Þ1 1= e    (17)

which entails a strict proportionality between predator and 
prey biomass (exponent α = 1). This has been widely dis-
cussed by proponents of the ratio-dependent functional 
response (Arditi and Ginzburg 2012), and the existence of 
such proportionality laws was put forward as evidence of 
donor control. But since we find nonzero β and γ, this pos-
sibility is excluded by our data.

The second possibility arises in our model with a power-
law predation rate (Eq. 6). Following the Supporting infor-
mation, we illustrate our reasoning in the case where the 
scaling P Bi i

d  emerges from the density-dependence of 
internal losses. If we assume that all three terms Ci ~ Li ~ Pi 
in the dynamics (Eq. 2) remain of comparable magnitude at 
equilibrium (i.e. that a finite fraction of biomass is always 
lost to predation and to internal losses both), the expression 
of Li can indeed impose a scaling between production and 
biomass:

L D B L P P Bi i i i i i i= d dand  Þ   (18)

(this requires that the cross-ecosystem variation in densities Bi 
be mostly due to other parameters, with the exponent δ and 
coefficients Di varying little between systems, ‘Links between 
statistical and dynamical laws’ section, but a parallel argu-
ment can be made when other parameters are held constant). 
For instance, we have δ = 1 for individual mortality, and δ = 2 
when a self-regulating process, such as intra-specific competi-
tion or pathogens, is the main contributor to internal losses. 
We show in the Supporting information that a relationship 
then emerges between the exponents defined in Eq. 14 and 
15 and the predation rate exponents

Figure 5. Numerical test of the theoretical relation between scaling laws, α(δ − γ) = β in (Eq. 19), derived in the example of constant self-
regulation coefficients Di across ecosystems. We vary exponents β and γ in the power-law predation rate, and perform regressions to com-
pute the exponents of empirical scaling laws: α for the predator–prey density scaling, and δ for the prey’s production-density scaling. (a, d) 
Simulations that differ only through their prey productivity g1 and exponents β and γ. (b, e) Simulations where all parameters vary except 
self-regulation coefficients D1 and D2. (c, f ) Simulations where all parameters vary except attack rate A12. We see that the predicted scaling 
laws depend on which parameter is expected to vary most, so that different calculations may need to be performed depending on which 
features play the largest role in differentiating observed ecosystems.
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a d g b( ) =-   (19)

We illustrate this relationship numerically in Fig. 5, using the 
simulated runs discussed in ‘Dynamical model estimation’ 
section where some parameters are kept constant. We group 
simulation runs into bins, based on the value of their expo-
nents β and γ, then compute the scaling exponents α and δ 
within each bin, by running regressions for the scaling laws 
Eq. 14 and 15. We find that our prediction (Eq. 19) is suc-
cessful when self-regulation is constant, and especially when 
ecosystems differ only by their prey productivity. On the 
other hand, when self-regulation varies largely, colinearities 
between parameters and equilibrium densities confound the 
empirical scaling laws, as discussed in ‘Links between statisti-
cal and dynamical laws’ section, and lead to a violation of this 
prediction. Similar calculations can however be performed for 
any assumption about which parameter is mainly responsible 
for cross-ecosystem differences in predator and prey density.

Commonly assumed scaling exponents for biomass and 
production are α = δ = 1, i.e. simple proportionality between 
predator and prey biomass, and between production and bio-
mass at each level. These relations are used in various mass-
balanced models (Pauly  et  al. 2000) or theory on biomass 
pyramids (Borgmann 1987). They entail β = 1 − γ, meaning 
that the relationship between predation losses and biomasses 
would be the ratio-dependent expression C12 ~ B2(B1/B2)β 
which we have discussed in previous sections.

Discussion

The dependence of predation rates on predator and prey 
densities is a crucial component of trophic ecology, that has 
a considerable impact on predator–prey dynamics (Holling 
1965). Long-standing debates have opposed advocates of 
various forms of functional response (predation rate per unit 
predator), such as prey-dependent or ratio-dependent expres-
sions (Arditi and Ginzburg 1989, Abrams 2015). The cur-
rent consensus seems to be that there is no correct universal 
expression; rather, different functional responses are appro-
priate in different settings, and they should be derived mech-
anistically for each studied ecosystem (Barraquand 2014, 
Abrams 2015).

From a macro-ecological point of view, however, what 
matters is how the predation rate scales up across several 
orders of magnitude in abundance, body size and area. 
Experiments typically measure predation rates for a given 
pair of species, and how they respond to varying the number 
of prey and predator individuals, on a short time scale and 
in an enclosed space. Here, we used kill rates recorded in the 
field to estimate how predation rates over long times (e.g. a 
year) vary between species (mainly terrestrial vertebrates) and 
across much larger spatial scales.

Our empirical analysis points to a phenomenological 
power-law, which differs from commonly-studied mathemat-
ical expressions. If this law does hold dynamically within each 

ecosystem, it may have striking theoretical implications. The 
empirical exponents fall close to the boundary between two 
qualitatively distinct dynamical regimes (approximately the 
line β + γ = 1). This boundary has two properties in our food 
chain model: predator abundance is maximized, and simple 
allometric scaling laws appear between different ecosystem 
functions and between trophic levels. We may then ask 
whether these two important macroscopic properties arise 
accidentally from a predation density-dependence shaped by 
other constraints, or whether this density-dependence is in 
fact selected for its dynamical consequences.

Is the empirical density-dependence an artefact of 
donor-dependence?

Our theoretical model suggests that both saturation and 
interference can lead to similar qualitative consequences for 
many ecosystem properties. Yet, two main empirical results 
suggest that reality is closer to classic donor-dependence, 
i.e. assuming that trophic fluxes are only determined by the 
amount of resource, and in turn determine the abundance of 
consumers, and not the reverse. The first clue is the fact that 
C12/B1 is largely below 1, and the second is that exponent γ is 
consistently lower than β. As discussed previously, the precise 
values of these exponents are weakly constrained empirically 
and could be confounded by unknown latent factors, disguis-
ing an underlying process where β = 1 and γ = 0.

To properly assess the value of these clues, it is impor-
tant to recognize that donor-dependence is not a necessity. 
Predation losses are in principle limited not by standing bio-
mass, but by production,

C Pi i   

which can be much larger than standing biomass. For 
instance, a Lotka–Volterra model with a classic biomass 
pyramid Bi+1 ~ Bi would predict the predation and produc-
tion of all consumers to scale quadratically with biomass, as 
B B Bi i i+1

2
 . In other words, more and more productive sys-

tems would exhibit more and more predation, but popula-
tions would only increase as the square root of these fluxes, 
and prey density B1 would not represent a bound on preda-
tion. A supralinear scaling of production and losses with bio-
mass is not implausible. Analogous relationships have been 
proposed in economic systems, with empirical exponents 
ranging from 1.16 (economic growth as a function of city 
size (Bettencourt et al. 2007)) to 1.6 (stock trading rate as a 
function of number of shares (Barbier and Lee 2017)). We 
could also invoke empirical facts that have been interpreted 
as evidence for the Allee effect (Kramer  et  al. 2009), since 
this effect assumes that per-capita growth rate increases with 
density, and hence, that production Pi is supralinear with bio-
mass Bi.

There is, however, an important reason for expect-
ing donor-dependence to prevail, especially at large spatial 
and temporal scales where many ecological processes are 
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aggregated: the possibility of a bottleneck in the dynamics. 
In various ecological contexts, only a fraction of possible prey 
(or predators) are available for predation events. This can 
include the existence of prey refuges in space (Poggiale et al. 
1998), or the specialization of predators on particular age 
classes. The rate at which prey become available can be the 
limiting factor in the overall predation intensity, which there-
fore becomes purely donor-dependent. For example, if preda-
tors target prey of age one and above, these prey must have 
appeared in the previous year’s census, imposing an insuper-
able bound Ci < Bi (with a year’s delay, ignored under equi-
librium assumptions).

The evidence for or against this possibility is unclear here. 
In most of the data that we study, C12 is sufficiently small 
compared with B1 that it could still plausibly increase with 
predator abundance, and there is no systematic preference for 
mature prey. On the other hand, our estimate of B1 might 
miss other factors (such as refuges) limiting prey availability, 
as we discuss next. While a broader analysis across taxonomic 
groups, timescales and life histories would be needed to test 
for possible artefacts such as those suggested above, our pro-
visional conclusion is that this empirical scaling of predation 
with densities is indeed meaningful, and goes beyond restat-
ing the classic donor-dependence hypothesis.

Is this density-dependence a consequence of 
biological constraints?

Nonlinear predation rates, with saturation and interference, 
are generally assumed to be imposed by a broad range of 
microscopic or mechanistic factors (physiology, behavior, 
spatial structure, individual tradeoffs between competition 
and consumption, etc). In various ways, these factors limit 
the space or time available for encounters, leading to less pre-
dation than under mass action.

The most immediate candidate mechanism to explain 
a pattern that holds across ecosystems and scales is spatial 
structure. For instance, local prey refuges have been proposed 
as a classic explanation for a donor-dependent (Poggiale et al. 
1998) or DeAngelis–Beddington response (Geritz and 
Gyllenberg 2012). More generally, spatial structure has been 
shown to lead to power-law-like density-dependence of pre-
dation in agent-based or spatially explicit simulations (Keitt 
and Johnson 1995, Barraquand 2014). But this seems to allow 
a wide range of possible exponents, and therefore, it does not 
provide an unequivocal explanation for our observations.

A predation rate C B B12 1 2  (b g, 1
2

» ), similar to our 

measurements, could be imposed by spatial structure in two 
dimensions, if prey and predators occupy almost mutually 
exclusive regions and only meet at the boundaries (given 
that the periphery of a region scales like the square root of 
its area). This could happen due to local prey depletion by 
predators, a plausible explanation although it requires very 
strong negative correlations in space (Sjödin et al. 2015), and 
would predict a different scaling in three-dimensional set-
tings (Pawar et al. 2012) which remains to be tested.

We cannot conclude, based on our data alone, that spatial 
heterogeneity is the main driver of our empirical predation 
density-dependence. Spatially explicit data may be necessary 
to test this hypothesis. If spatial structure does not impose 
an exponent, but allows a range of possibilities, it could 
provide the means through which predators and prey orga-
nize to achieve a certain density-dependence, that then has 
selective value for other processes (Pepper and Smuts 2001, 
Goodnight et al. 2008).

Can this density-dependence emerge from 
selection?

The mathematical expression and exponents found here are 
close to those which theoretically maximizes predator abun-
dance and some metrics of stability. Yet this comes at an 
apparent cost to the individual predator, which consumes 
less here than under a classic Lotka–Volterra (mass action) 
scenario. We recall the so-called hydra effect (Abrams 2009, 
Schröder et al. 2014), a counter-intuitive but common phe-
nomenon in resource-based dynamics: decreasing the fitness 
of individual consumers, e.g. increasing their mortality or 
reducing attack rates, can lead to larger populations in the 
long run, when this reduces competition more than it reduces 
growth. We showed that a similar effect applies here to con-
sumptive saturation and interference, as represented by the 
power-law exponents β and γ in the predation rate. Maximal 
predator abundance is reached for exponents close to the rela-
tionship β + γ = 1, which holds approximately in data (More 
precisely, predator abundance is maximized at the boundary 
between two dynamical regimes, which is given by β + γ = 1 
when species self-regulation is low, but moves toward higher 
exponents as we increase self-regulation and can be seen in 
Lotka–Volterra models (Barbier and Loreau 2019)).

This resonates with long-standing debates in ecology 
and evolution, in particular the group selection controversy 
(Wilson 1983) and its accounts of selection for population 
abundance (Wright 1945) or persistence (Wynne-Edwards 
1962). Should we conclude here that consumption rates are 
selected to optimize population-level properties? And would 
this optimization require population-level selection, or can it 
arise strictly at the individual level? We now show that these 
are valid possibilities in our setting.

A first possibility is that our proposed density-dependence 
is outcompeted at the individual level, but selected at the 
population level, due to some positive consequences of hav-
ing larger abundances. Extending our model to include sim-
ple adaptive dynamics of attack rate and scaling exponents, 
we indeed find that this dependence is dominated by other 
strategies (Supporting information). We observe maladaptive 
evolution: mutants with ever faster consumption will out-
compete and replace residents, reaching ever lower equilib-
rium abundances, up until the point where the predators go 
extinct. A classic solution is to invoke competition between 
groups in a spatial setting (Wright 1945, Wilson 1983), as a 
larger group can send out more propagules and will often dis-
perse faster (Haond et al. 2018). These intuitions pervade a 
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large literature on the evolution of ‘prudent’ predation strate-
gies through group selection, also known as the milker–killer 
dilemma (Van Baalen and Sabelis 1995, Pepper and Smuts 
2001, Pels et al. 2002, Goodnight et al. 2008).

A less obvious possibility is that our predation density-
dependence is favored even at the individual level, as a result 
of direct competitive interactions. The dominance of faster 
consumers relies on the assumption that competition takes 
place only through resource consumption. In the pres-
ence of other competitive interactions that are not tied to 
resource levels, a larger standing population can resist inva-
sion both by mutants and by other species. We suggest in the 
Supporting information that, for the resident population to 
be evolutionarily stable, this non-consumptive competition 
must induce higher mortality in individuals that search for 
more resources, regardless of their success. This feature seems 
plausible for territorial behavior and aggression as widely dis-
played by higher vertebrates (as an illustration, lions are both 
outliers in our dataset, since they display lower consump-
tion rates than the general trend (Supporting information), 
and are a major cause of mortality among other carnivores 
(Hayward  et  al. 2007). These two features together may 
indicate a counter-intuitive predator strategy, which involves 
both consuming less prey and spending more time in non-
consumptive competition, leading to and benefitting from 
population maximization.), but could also be induced e.g. by 
allelopathy in other organisms. Under these conditions, slow 
consumers can avoid being overtaken by fast consumers, even 
within a single population.

As a further perspective, all our arguments so far have 
taken the viewpoint of the predator’s strategy and abun-
dance, despite the fact that our empirical results suggests a 
roughly equal role of predator and prey density in limiting 
predation. Our best-fit exponents situate real systems close to 
the limit between a regime where prey suffer from predation, 
and a regime where they are mainly self-regulated. It is thus 
possible that prey strategies, or a balance between prey and 
predator selective pressures, are at play.

We conclude that selection on the predation rate exponents 
to maximize population size can easily arise in variations of 
our model, provided that we include non-consumptive pro-
cesses (from dispersal to aggression). Some of these explana-
tions involve competition between populations, while others 
take place within a single population, but all favor strategies 
that maximize predator abundance.

Can this density-dependence explain other  
power-law relations between ecosystem functions?

Relations between production and biomass, and between 
predator and prey densities are widely assumed and observed 
to take linear or power-law forms (Borgmann 1987, 
Hatton et al. 2015). Yet, we have shown that such relations 
do not emerge universally from arbitrary dynamical models. 
They require particular ecological conditions, where internal 
losses Li within trophic level i are comparable to, or larger 
than, predation losses Ci (both in their magnitude and in 

their density-dependence). For instance, in a Lotka–Volterra 
model, strong density-dependent self-regulation within a tro-
phic level is required to observe linear (isometric) relations 
between different functions and between levels, creating clas-
sic biomass and energy pyramids (Barbier and Loreau 2019). 
Alternatively, exponents β + γ = 1 in our proposed expression 
recover the same linear relations and pyramids. When these 
conditions are not satisfied and predation losses are larger, the 
predator–prey dynamics can enter a feedback regime (Box 2) 
in which prey stocks are exhausted and may not follow any 
scaling relationship to either prey productivity or predator 
stocks, a property which has already been proposed as evi-
dence for top–down control of prey by predators (Ripple and 
Beschta 2012).

A recent meta-analysis by Hatton et al. (2015) found sub-
linear scalings of production with biomass (with exponent 
α) and of predator density with prey density (with exponent 
δ), following a d» »

3
4

, reminiscent of metabolic allometry. 
Assuming that this cross-ecosystem law also holds dynami-
cally within one system, so that our model results apply, this 
requires strong interference and saturation, β + γ < 1. The 
empirical evidence is too weak to decide whether β + γ ≈ 1 
(leading to isometry) or β + γ < 1 (leading to allometry), but 
both possibilities fall within the range of our estimates.

In summary, the existence of well-defined scaling laws 
across trophic levels, between ecosystem functions such as bio-
mass and production, is less self-evident than it may appear. 
We suggest here that some empirically-supported laws might 
be secondary consequences of the mechanisms that deter-
mine our phenomenological predation density-dependence.

Conclusions

We have shown that the intensity of predation across a range 
of spatial scales and species can be modeled as a power-
law function of both consumer and resource densities, that 
deviates strongly from the mass action (Lotka–Volterra) 
assumption. Density-dependence at these various scales may 
be driven by very different mechanisms, from individual 
behavior to population structure, all the way to spatial fluxes 
and landscape heterogeneity. Similar phenomena, such as 
prey saturation and predator interference, may nevertheless 
emerge from these different causes.

Amidst the vast literature on predation rates and func-
tional responses, our choice of a phenomenological power-
law model is motivated both empirically and by the fact 
that this law is scale-free. By contrast, many classic models 
contain a characteristic scale, such as a saturation threshold, 
and thus cannot retain the same parameters across multiple 
scales. When prey- and predator-dependence exponents sum 
to one, we recover a ratio-dependent functional response 
(Arditi and Ginzburg 2012), and classic donor control as a 
special case. Our empirical estimates are also compatible with 
a more symmetrical expression where predator and prey are 
roughly equally limiting, leading to an unusual square root 
expression. This model is reminiscent of the Cobb–Douglas 
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production function in economics (Cobb and Douglas 
1928), which similarly arises in a macroscopic context, and 
is also disputed as either a salient empirical fact or a sim-
ple consequence of colinearity and aggregation (Felipe and 
Fisher 2003). Nevertheless, the main observation in both 
fields is that two factors – labor and capital, or consumers 
and resources – are co-limiting, so that doubling the output 
(here, yearly consumption) requires doubling each of the two 
inputs.

Nevertheless, scaling laws measured across ecosystems 
do not always hold dynamically within a single ecosystem 
(Hatton  et  al. 2019): other latent variables could differ 
between ecosystems, altering the relationship between preda-
tion and abundances that we would observe locally. Further 
work should employ data on temporal change to test whether 
our proposed expression truly applies to the dynamics of 
an ecosystem. Our results are also limited by the fact that 
we consider only one interaction at a time, as we generally 
lack data for other prey and predators interacting with our 
focal species. Our empirical investigation should therefore 
be extended to other taxonomic groups, and confronted to 
experimental evidence, to pave the way for a deeper under-
standing of the emergent density-dependence of total preda-
tion rates at macro-ecological scales.

Speculations

Should our phenomenological cross-ecosystem law be veri-
fied dynamically within each ecosystem, we have shown 
theoretically that the estimated values of the exponents have 
important implications for trophic dynamics. In particu-
lar, these values are close to maximizing predator popula-
tion density and some measures of stability. Speculatively, 
this could reflect a cross-scale selection pressure acting upon 
consumption rates. While selection for abundance or stabil-
ity is far from a given, we noted that it could be supported 
by non-consumptive competition (e.g. territorial exclusion 
or allelopathy), which itself appears surprisingly ubiquitous 
across forms and scales of life. This type of competition 
can indeed prevent the dominance of smaller populations 
of faster consumers, and may open a path for the evolu-
tion of strategies that limit predation to maximize predator 
abundance.

The observed density-dependence could also arise from 
prey strategies and refuges. While the literature on functional 
response has generally focused on the predator’s viewpoint, 
we expect that a paradigm shift toward a more equal treat-
ment of predator and prey strategies (as in parasite–host 
systems), and toward a more inclusive view of consumption-
limiting mechanisms, including population and spatial struc-
ture, may be needed to truly understand trophic dynamics 
from the individual to the ecosystem scale.

We hope that future studies can address two fundamental 
questions: 1) whether the predation density-dependence that 
we observe stems purely from aggregation or from other eco-
logical phenomena, and 2) whether some universal principle, 
such as selection for larger populations, could explain this 

density-dependence and, through it, the emergence of other 
widespread macro-ecological scaling laws.
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