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ABSTRACT: In a world where natural habitats are ever more frag-
mented, the dynamics of metacommunities are essential to properly
understand species responses to perturbations. If species’ popula-
tions fluctuate asynchronously, the risk of their simultaneous ex-
tinction is low, thus reducing the species’ regional extinction risk.
However, identifying synchronizing or desynchronizing mecha-
nisms in systems containing several species and when perturbations
affect multiple species is challenging. We propose a metacommun-
ity model consisting of two food chains connected by dispersal to
study the transmission of small perturbations affecting populations
in the vicinity of an equilibrium. In spite of the complex responses
produced by such a system, two elements enable us to understand
the key processes that rule the synchrony between populations:
(1) knowing which species have the strongest response to perturba-
tions and (2) the relative importance of dispersal processes com-
pared with local dynamics for each species. We show that pertur-
bing a species in one patch can lead to asynchrony between patches
if the perturbed species is not the most affected by dispersal. The syn-
chrony patterns of rare species are the most sensitive to the relative
strength of dispersal to demographic processes, thus making biomass
distribution critical to understanding the response of trophic meta-
communities to perturbations. We further partition the effect of each
perturbation on species synchrony when perturbations affect multi-
ple trophic levels. Our approach allows disentangling and predicting
the responses of simple trophic metacommunities to perturbations,
thus providing a theoretical foundation for future studies consider-
ing more complex spatial ecological systems.

Keywords: food chain, top-down, bottom-up, dispersal, coupling,
biomass distribution.

Introduction

Biodiversity is under increasing anthropic perturbations
that alter populations and community dynamics (e.g., the
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latest Intergovernmental Science-Policy Platform on Bio-
diversity and Ecosystem Services [IPBES] assessment; Diaz
et al. 2019). In particular, species live in more and more
fragmented habitats (Haddad et al. 2015), which reduce
dispersal and partially isolate communities from one an-
other. The metacommunity framework is key to addressing
the responses of species and communities to perturbations
in this changing world (Leibold et al. 2004; Amarasekare
2008; Leibold and Chase 2017). Small isolated populations
are more prone to extinction (Purvis et al. 2000), and si-
multaneous local extinctions across sites lead to a global ex-
tinction. The asynchrony between different populations of
the same species is a fundamental mechanism ensuring the
global persistence and temporal stability of an entire meta-
population at the landscape scale, as it reduces the risk of
simultaneous extinction in all patches (Blasius et al. 1999).

While dispersal tends to synchronize populations of
the same species (Abbott 2011), dispersal of specific tro-
phic levels can lead to synchrony or asynchrony between
the various species in food chains (Koelle and Vander-
meer 2005; Pedersen et al. 2016). Species that disperse
or forage across several communities can propagate tro-
phic cascades in space, as shown empirically and theoret-
ically (Knight et al. 2005; McCoy et al. 2009; Casini et al.
2012; Garcia-Callejas et al. 2019); depending on which
trophic levels disperse, the strength of trophic cascades
within each community can be amplified or dampened (Le-
roux and Loreau 2008). In addition, different food chain
lengths in different sites can lead to opposite responses of
different populations of the same species (Wollrab et al.
2012).

The dispersal of top predators has been particularly stud-
ied, as generalist consumers linking different food webs
by feeding on multiple energetic channels are ubiquitous
across ecosystems (Rooney et al. 2006, 2008; Wolkovich
et al. 2014; Ward et al. 2015). In particular, mobile pre-
datory fish couple pelagic and benthic compartments in
aquatic ecosystems (Vander Zanden and Vadeboncoeur
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2002; Vadeboncoeur et al. 2005), and predator dispersal
leads to trophic cascades in surrounding ecosystems (Knight
et al. 2005; Casini et al. 2012; Tscharntke et al. 2012). In
such systems, asynchrony is promoted by the asymmetry
between coupled food chains (McCann et al. 1998; Rooney
et al. 2006) even when top predator populations are under
correlated environmental perturbations (Vasseur and Fox
2007).

Many of these theoretical studies have considered the
synchrony of food chains that display chaotic dynamics
or limit cycles (McCann et al. 1998; Koelle and Vander-
meer 2005; Rooney et al. 2006), which are characteristic
of strong top-down control (Barbier and Loreau 2019).
In this case, many of the mechanisms cited above (e.g.,
top predator coupling or asymmetry) act simultaneously
and interact with the variability generated internally by
the limit cycles of food chain dynamics, which makes it
difficult to tease apart the effects of internal and external
sources of variability. Variability can also be generated by
stochastic external perturbations, but few studies investi-
gating synchrony in metacommunities have considered
these (McCann et al. 2005; Vasseur and Fox 2007). Wang
et al. (2015) used them successfully to investigate the sta-
bility of competitive metacommunities, but their effects
in trophic metacommunities remain poorly understood.
In the context of stochastic perturbations, mechanisms
such as asymmetry may not be required to get asynchrony
between the different populations.

Here, we propose a first step toward a more systematic
approach to synchrony in trophic metacommunities near
equilibrium, where several species can disperse and several
stochastic perturbations can affect different species inde-
pendently. We aim to understand what shapes synchrony
in a broad spectrum of ecological settings, dominated by ei-
ther bottom-up or top-down control within a food chain
(Barbier and Loreau 2019) and by either trophic or spatial
mechanisms at each trophic level. To achieve this goal, it is
primordial to describe the relative contribution of pertur-
bations and dispersal compared with the local demographic
dynamics among species. In a single food chain, Barbier
and Loreau (2019) showed that a few parameters control
the biomass distribution among trophic levels (i.e., top-
or bottom-heavy pyramids) and the overall top-down or
bottom-up behavior of the system (e.g., trophic cascades).
In turn, the biomass distribution drives many processes
in food web dynamics. For instance, Arnoldi et al. (2019)
showed that the variance generated by stochastic perturba-
tions depends on species’ biomass. Thus, perturbations with
the same variance can impact the dynamics of different spe-
cies more or less depending on their relative abundances.

As noted above, food web dynamics can be highly sen-
sitive to varying dispersal rates of particular trophic lev-
els (Koelle and Vandermeer 2005; Pedersen et al. 2016).
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Comparing the absolute values of dispersal rates, how-
ever, is not meaningful when considering species with dif-
ferent biological rates Therefore, we rescale the dispersal
rate of each species by its density-dependent mortality
rate, which is assumed to be representative of various in-
traspecific processes, as done by Barbier and Loreau (2019)
for all biological rates. More generally, quantifying the rel-
ative importance of local dynamics and dispersal processes
is key to properly assessing how dispersal affects the over-
all dynamics of each species. In fact, the relative impor-
tance of local dynamics and dispersal is what distinguishes
different metacommunity paradigms (Leibold et al. 2004;
Leibold and Chase 2017); it also controls different recov-
ery regimes after perturbations. For instance, Zelnik et al.
(2019) showed that with low dispersal and fast local dy-
namics the system recovers locally from the perturbation,
while with high dispersal and slow local dynamics pertur-
bations propagate across the whole system. In our system,
we can expect the biomass distribution to affect the relative
importance of local dynamics and dispersal processes, as
they do not scale in the same way with species biomass.

Taken together, these mechanisms must lead to situa-
tions where perturbations do not have the strongest im-
pact on the species whose dynamics are the most impacted
by dispersal. In such a situation, those perturbations can
filter through the food web before being transmitted
through dispersal and then affect different locations in op-
posite ways. A synthetic understanding of synchrony may
thus be achieved by quantifying the propagation of per-
turbations, both vertically along food chains and horizon-
tally across space.

We develop a model of coupled food chains based on
these recent studies and first consider a perturbation af-
fecting a unique species in one patch and dispersal per-
formed by a single species. Then we explore the factors
that govern synchrony between populations at the same
or different trophic levels. In particular, we carefully ex-
amine the effects of perturbations depending on (1) which
species have the strongest response to perturbations and
(2) for which trophic level the strength of dispersal relative
to demographic processes is highest. Finally, we try to dis-
entangle the effects of several independent perturbations
affecting different species. As a starting point, we consider
a simple setting with Lotka-Volterra dynamics and sto-
chastic external perturbations around an equilibrium. This
allows us to partition the variability and correlations gen-
erated by multiple perturbations. Partitioning approaches
provide a powerful way to disentangle the effects of differ-
ent mechanisms and to assess their relative importance
(Price 1970; Loreau and Hector 2001; Jaillard et al. 2018).
It also allows us to use simple scenarios in which a single
species is perturbed as building blocks to understand more
complex systems with multiple perturbations. Thus, we
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could assess the contribution of each species and their in-
fluence on other species to explain the synchrony or the
asynchrony between the different populations.

Material and Methods
The Metacommunity Model

We extend the model developed by Barbier and Loreau
(2019). They considered a food chain model with a sim-
ple metabolic parametrization, for which they described
the biomass distribution and their responses to perturba-
tions. Their model corresponds to the “intrapatch dy-
namics” part of equations (1a) and (1b), to which we graft
a dispersal term to consider a metacommunity with two
patches (fig. 1A):

dB
d—tl = Bl(gl — DB, — O52,132) + 51(3/1 - Bl)) (la)
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The term B, is the biomass of trophic level i in the patch
of interest, B; its biomass in the other patch, ¢ is the
biomass conversion efficiency, and «;; is the interaction
strength between consumer i and prey j. Species i disperses
between the two patches at rate §,. The density-independent
net growth rate of primary producers g; in equation (1a),
the mortality rate of consumers 7; in equation (1b), and the
density-dependent mortality rate D; scale with species met-
abolic rates m,, as biological rates are linked to energy ex-
penditure (see sec. S1-2 of the supplemental PDF [avail-
able online]):

g =mg, r=myr, D; =mD. (2)

To get a broad range of possible responses, we assume
the predator-prey metabolic rate ratio m and the interac-
tion strength to self-regulation ratio a to be constant. These
ratios capture the relations between parameters and tro-
phic levels. This enables us to consider contrasting situa-
tions while keeping the model as simple as possible:
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Figure 1: A, Metacommunity model with two patches, each containing a food chain with four trophic levels. Species disperse between the
two patches at rate d,. B, Predator-prey model with its synthetic parameters: ea is the positive effect of the prey on its predator, ma is the
negative effect of the predator on its prey, and D; is self-regulation.



Varying m leads to food chains where predators have
faster or slower biomass dynamics than their prey, and
varying a leads to food chains where interspecific interac-
tions prevail or not compared with intraspecific interac-
tions (fig. 1B). As all biological rates are rescaled by D,
we also define d,, the dispersal rate relative to self-
regulation (referred as the “scaled dispersal rate” in the
rest of the article), in order to keep the values of the dis-
persal rate relative to the other biological rates consistent
across trophic levels. Finally, the timescale of the system
is defined by setting the metabolic rate of the primary pro-
ducer m, to unity. Thus, we can transform equations (1a)
and (1b) into
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Thus, ¢a and ma define the positive effect of the prey
on its predator and the negative effect of the predator on
its prey, respectively (fig. 1B). These two synthetic param-
eters define the overall behavior of the food chain and will
be varied over the interval [0.1,10] (see table S1-2; ta-
bles S1-1 and S1-2 are available online) to consider a broad
range of possible responses (for more details, see fig. 2A
and Barbier and Loreau 2019). Parameter values are sum-
marized in tables S1-1 and S1-2.
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Figure 2: General description of an isolated food chain (d; = 0, no dispersal) for nine combinations of the physiological and ecological
parameters ea and ma that respectively describe the positive effect of biomass consumption and the negative effects of mortality due to
predation (see Barbier and Loreau 2019). A, Biomass distribution among trophic levels. B, Correlation between species biomass dynamics.
The correlations seen in the time series are represented by a correlation matrix where each element is the correlation coefficient between two
species. Thus, the matrix is symmetric and the diagonal elements are equal to 1, as each species is perfectly autocorrelated. C, Correlation
matrix within a food chain with a demographic stochastic perturbation applied to primary producers. D, Same correlation matrix with a

demographic stochastic perturbation applied to top predators.
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Stochastic Perturbations

To study the response of the metacommunity to pertur-
bations, we apply stochastic perturbations. From equa-
tions (4a) and (4b) we get the following stochastic differ-
ential equation:

dB, = f(B,,...,By)dt + oBdW, . (5)
—— S

deterministic perturbation

The term f,(B,, ... , Bs) represents the deterministic part
of the dynamics of species i biomass depending on the
biomass of the S species present in the metacommunity
(as described by eqq. [4a] and [4b]). Stochastic perturba-
tions are defined by their standard deviation o, and dW, a
white-noise term with mean 0 and variance 1. In addition,
perturbations scale with each species biomass with an
exponent z. We consider two types of perturbations (Hae-
geman and Loreau 2011; Arnoldi et al. 2019): demo-
graphic stochasticity (from birth-death processes) corre-
sponds to z = 0.5, and environmental factors lead to
z = 1 (see the demonstration in sec. SI1-3 of the supple-
mental PDF and in Lande et al. 2003). Arnoldi et al. (2019)
showed that when a species is perturbed, the ratio of its
biomass variance to the perturbation variance increases
with the species’ biomass in the case of environmental per-
turbations, while it is independent of its biomass in the
case of demographic perturbations. Therefore, we chose
demographic perturbations in our analysis, as they enable
us to perturb different species with the same relative inten-
sity regardless of their abundance. This choice is made
purely for modeling convenience. Although environmen-
tal perturbations may be more relevant from an ecological
point of view, changing the perturbation exponent will al-
ter only which trophic level is most affected (e.g., the most
abundant, for environmental perturbations), not the rest
of our analysis (see fig. S2-5; figs. S2-1-S2-5 are available
online).

Response to Perturbations

We aim to determine the synchrony between populations
at equilibrium when they receive small stochastic pertur-
bations. Synchrony can be evaluated from the covariance
between the temporal variations of different species and
patches, which are encoded in the variance-covariance
matrix C'. Therefore, we linearize the system in the vicin-
ity of equilibrium to get equation (6), where X; = B, — B;
is the deviation from equilibrium (see secs. S1-4 and S1-6
of the supplemental PDF):

ax
- . 6
; JX + TE (6)

The term J is the Jacobian matrix (see sec. S1-5 of the
supplemental PDF), and T defines how the perturbations
E; = 0,dW, apply to the system (scaling with species
biomass).

Then we get the variance-covariance matrix C" of spe-
cies biomasses (variance-covariance matrix of X) from
the variance-covariance matrix of perturbations Vg
(variance-covariance matrix of E) by solving the Lyapunov
equation (7) (Arnold 1974; Wang et al. 2015; Arnoldi
et al. 2016; Shanafelt and Loreau 2018):

JC + C'JT + TV,T" = 0. (7)

The expressions of Vi and T and the method to solve
the Lyapunov equation are detailed in section S1-6 of the
supplemental PDF. The variance-covariance matrix C* can
also be obtained through numerical simulations with the
Euler-Maruyama method, which is detailed in section S1-
7 of the supplemental PDF.

From the variance-covariance matrix C* whose ele-
ments are w;, we can compute the correlation matrix R* of
the system whose elements p,; are defined by

(8)

Processes Controlling the Synchrony

We first explore the general response of the food chain
model to perturbations affecting specific trophic levels
(or when trophic levels are perturbed). Thus, we show
how the perturbations propagate vertically through the
food chain depending on various ecological conditions
described by the synthetic parameters summarized in fig-
ure 1B. Then we study a simple case where only one spe-
cies is perturbed and one species is able to disperse in or-
der to identify the mechanisms leading to the asynchrony
of the two populations of the same species. We finish with
two more complex settings: one where all trophic levels
are able to disperse at the same rate, and one where all tro-
phic levels in the two patches are affected by independent
perturbations.

In the first setting, we identify the factors controlling
the relative importance of demographic and dispersal pro-
cesses: dispersal processes tend to correlate (or anticor-
relate) populations, while demographic process tend to
decorrelate them. We define a metric M, that describes
the relative weight of these two processes by taking the ab-
solute values of the elements of equations (4a) and (4b) to
assess the sheer intensity of local demographic processes
and dispersal processes calculated with the equilibrium
biomasses:
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In the second setting, we use the Lyapunov equation
to partition the effect of each perturbation and to disen-
tangle the contribution of each perturbation and each
trophic level to the correlation pattern.

M, =

Results

General Responses of the Food Chain
Model to Perturbations

We first describe the biomass distribution and the responses
to perturbations of an isolated food chain (i.e., without
considering spacial dynamics). We use a broad range of
physiological and ecological parameters to describe all of
the possible responses of the food chain model (fig. 24).
The term ma represents the strength of negative interac-
tions (mortality due to predation), while ea represents the
strength of positive interactions (biomass gain due to con-
sumption; fig. 1B). As in Barbier and Loreau (2019), the
food chain displays various biomass distributions in differ-
ent regimes: bottom-heavy biomass pyramids (for ea =
0.1), top-heavy biomass pyramids (for ea = 10 and ma =
0.1), or alternating “cascade” patterns (for ea = 10 and
ma = 10).

In each case, we can capture the dynamical behavior of
the food chain by considering the correlation matrix of
the response of each species to perturbations applied to
specific trophic levels (fig. 2B). Perturbing primary pro-
ducers leads to bottom-up responses in which adjacent
trophic levels are correlated (i.e., their biomasses respond
in the same way; fig. 2B, 2C), while perturbing top pred-
ators leads to top-down responses in which adjacent tro-
phic levels are anticorrelated (i.e., their biomasses re-
spond in opposite ways; fig. 2B, 2D).

When all species receive independent stochastic demo-
graphic perturbations (fig. S2-1A), the correlation pattern
is dominated by bottom-up effects for high values of ma
(ma = 10, which corresponds to the strongest responses
in fig. 2C) and is top down for low values of ma (ma < 1,
which corresponds to the strongest responses in fig. 2D;
see also fig. S2-1C).

Propagation of a Perturbation
When One Species Disperses

Perturbations can propagate vertically within a food chain
or horizontally between food chains. To understand how
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these two types of propagations shape the synchrony be-
tween patches, we first consider a simple case where only
primary producers are perturbed in patch 1 (patch 2 being
the unperturbed patch) and only top predators disperse
(fig. 3A).

In patch 1, the perturbation has a bottom-up effect that
correlates species (fig. 3B, label 1) as in figure 2C, where
primary producers are also directly perturbed. While in
patch 2, the perturbation has a top-down transmission
(fig. 3A), leading to an anticorrelation of adjacent trophic
levels (fig. 3B, label 2), which is similar to figure 2D, as the
transmission of the perturbation by top predators is equiv-
alent to a direct perturbations of top predators in patch 2.
Then the different correlation patterns within each patch
affect the synchrony between the two patches. First, the two
populations of top predators are perfectly correlated, as they
are directly coupled through dispersal (fig. 3B, label 3). Sec-
ond, the populations of carnivores are anticorrelated be-
cause they are respectively correlated and anticorrelated to
top predators in patches 1 and 2 (fig. 3B, label 4). Similarly,
the correlation between each trophiclevel and top predators
in each patch drives the correlation between the two popula-
tions at lower trophic levels.

For Whom Does Dispersal Matter?

Now all species disperse at the same rate d;, but we still
consider perturbations only affecting the primary produ-
cers in patch 1. Even if all scaled dispersal rates are equal,
the relative importance of dispersal processes compared
with intrapatch demography quantified by M, (see eq. [9])
differs between species. When scaled dispersal rates d, in-
crease, M, increases first for top predators, then for car-
nivores and so on until it increases for primary producers
(fig. 4E). This is due to biomass distribution (fig. 2A), as
dispersal scales linearly with biomass while intrapatch de-
mography scales with squared biomass (self-regulation) or
biomass products (predation; see eqq. [4a] and [4b] as well
as fig. S2-1E in the supplemental PDF).

At low scaled dispersal rates (e.g., d; = 107*), dispersal
matters only for top predators (fig. 4E, label A), leading to
a situation already described by figure 3. At intermediate
scaled dispersal rates (e.g., d; = 107*¢), dispersal also
matters for carnivores (fig. 4E, label B). Thus, top preda-
tors and carnivores are correlated between patches, and
we observe anticorrelations between adjacent trophic lev-
els lower than 4 (fig. 4B). This time, this leads to the anti-
correlation of subpopulations of herbivores (fig. 4F, label B),
while they were correlated previously (fig. 3B and fig. 4F,
label A). Therefore, each time dispersal starts to matter
for another trophic level, the correlation pattern in patch 2
changes (fig. 4A-4D), leading to shifts between correlations
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Figure 3: Transmission of perturbations between the two patches (primary producers perturbed in patch 1, ea = 0.1, ma = 10, and only
top predators disperse). Disk size represents species abundance. A, Only top predators are able to disperse, transmitting the perturbation
between patches. They convert the bottom-up perturbation from patch 1 into a top-down perturbation in patch 2. B, The bottom-up trans-
mission in patch 1 leads to correlations between adjacent trophic levels (label 1), while the top-down transmission leads to anticorrelations
between adjacent trophic levels in patch 2 (label 2). Dispersal directly couples the two populations of top predators that act as one unique
population; thus, they are completely correlated (label 3). The different correlation patterns within each patch lead to correlations or
anticorrelations between populations of the same species in different patches depending on its distance from top predators (label 4).

and anticorrelations between the populations of lower tro-
phic levels (fig. 4F).

Multiple Perturbation Partitioning

The case displayed in figure 4 was easy to handle, as only
one perturbation was applied and we knew for which spe-
cies dispersal mattered. Such a simple case can actually act
as a building block to understanding correlation patterns
produced by multiple perturbations. In fact, for R inde-
pendent perturbations, the variance-covariance matrix Cg
is equal to the sum of the variance-covariance matrices C;
obtained when only one perturbation j is applied, Cs =
Zf: \Cs; (see sec. S2-3-1 of the supplemental PDF). Then
correlations between the populations of species i can be ex-
pressed as the sum of the correlations obtained when each
perturbation j is applied alone weighted by the corre-
sponding variance in the two patches:

R
pi =Y pyMyM,. (10)
j=1

The term R is the number of independent perturba-
tions, p; is the correlation coefficient between the two

populations of species i, and p;; is the same correlation co-
efficient in the case where only perturbation j is applied.
The term M, quantifies the variability generated locally
by perturbation j that is effectively transmitted to the other
patch (fig. 5A). If M, is close to zero, the perturbation is
poorly transmitted, and the two patches will probably be
asynchronous. The term M, weights each p,; by the vari-
ability generated by perturbation j compared with the other
perturbations (fig. 5B). If M;, is low, perturbation j would
generate less variability than the other perturbations, and
the associated correlation p;; will not significantly contrib-
ute to the correlation p; generated by all perturbations.

In the following, we present a simple case with two spe-
cies in each patch receiving independent demographic
stochastic perturbations and only primary producers are
able to disperse (for an example with four species, see
fig. $2-3). In figure 6, we illustrate step by step the decom-
position of the correlation pattern generated by multiple
perturbations (fig. 6G).

When only primary producers are perturbed in patch 1,
both primary producers and herbivores are correlated be-
cause of the bottom-up transmission of the perturbation in
both patches, as only primary producers disperse (fig. 6A).
However, when only herbivores are perturbed, herbivores



*(JPIUL ) XLIJeW UOI}R[A1I0D A JO $HDO[q [euoSerp-Jjo oY) Jo sjuawadpe [euoSerp ay) 0} [enbs are suone[110d pajuasardar
a1, "(saroads [re 10y Tenba) ‘p sajer yesiadsip payess Sursearour 10y saydjed om) woay saads sures a1y Jo suonendod usamiaq wonePIIO) o (J PUB O g ‘Y Ul pajussaid sadrnewr
UOTJB[21100 1]} Jo[d 03 pasn sajer [esIadsIp Paeds Jo san[eA ) 03 19JaI A[9A1302dsax (I pue D g Y S[oqeT "sajed [esiadsip pafess Sursearour ypim [249] orydory yoes 10y ([6] ‘ba 29s) sassaoord
Tesxadstp pue oryderSowap wns 2y 03 sassadoid [esradsip Jo oner ay) 'y g *(g¢ Sy 29s 7 yored) yojed paqrnizadun ayy syussarda ypojq ydur doy a arym (1 yojed) yojed paqanirad
o)) sjuasaxdar YPo[q P9 Wo330q YT, “((7 UT S[AQE[ Y} 23S) suone[p1I0d saads yodjedrajur juasardar sO[q I9YI0 Y} JA[IYM ‘SUONe[II0d sadads ypjedenur juasardar syoo[q [euode
-1 p s9yel [es1adsIp pafeds JUIIAYIP InoJ 10J saypjed Usam)aq pue UTYIIM $a1Dads U9am)aq SIOLI)BUT UOTIR[2LI0D dIe (J-Y paqinitad Apoaarp jou st ¢ yojed afym ‘suoneqinizad oryderd
-owrap 2412021 T yojed ur szonpoid Arewrg (0T = vui ‘70 = v3) saypjed pajoouuod omy ur jussaid ureyd pooj e Sururroy sarads 1oy jo suonendod usamiaq uonepPIIO) F dInSiy

!p orex [eszadsip pareos !p orex [esiadsip pareos yeclvecl yeclyrecl
t e I- . L 00 |- ¢ ¢
m [ (& b g :
! ! - S I B I
” ” g = m%_ s ¢ 5 z
! ! 3 € €
: ” & & omdorg 4 4
{ =) Wn 1°0=p3 1'0=03
: 1 = m
} | 8 _1 _1
- m - ) ..m ﬂOﬁ - % o m.TOﬁ - ﬁ o
[0 ! i omh mom PETIVeETI PETIveTI
3 } I - I B I I
I ! = a .
! ! - o 0'1- | 4 [4
“ { g =3 so- - £ s €
| ]z = w3 v 3 v
{ { a ] o
! : g 2 01 i ¢ 5 4
- — s £ juoroneod € €
; : I 01 UOIIB[O1I0)) 4 4
@ - 1'0=03
. 1'0=r3 E | 1'0=p3 3 g L0r='r v

E195



‘suoneqinirad 1930 Y3 Pm paredwod A[edof saerausd 31 Liqertea ayy 4q [ uonequmiad yoes Jo 10ap° oy siySem Sy ‘g m Ayiqerrea edof o3 Ut Ayiqerrea
panrtwsuer) Jo oner ayj sI oW v *(z yoyed 10) 1 yoyed ur parjdde st [ uoneqmyzad uaym (“'a 10) “im pue (““a 10) “'m 03 Tenba Apanoadsar axe “Uiwm pue “°im ‘ypyed a0 oY) ur payTwsueI)
Aypiqerrea oy se s pue uoneqinyrad o) Aq pajerauad Aoaxrp Aypiqerrea oy se 2w surap ap parfdde st [ uonequnirad uaym A[aandadsar <z pue T saypjed ur 1 sarads jo aouerrea
a1 S XIIeW 9]} JO SJUIWA[D AT YITYM ““at pue “'wm suoneqinirad spdnnu £q parersuad ursyyed uonepriod oy 0y uoneqiniiad yoes Jo uonnquyuod oY) SunySom sOLAIN 6 2nS1g

e

Sy S Anpiqerrea
\ -— @ -— @ [820]

S <N ]

UOoISSIWSUBI)

/ 20144 N uoneqanirod

= =2
1Tm N S N NE
4 q _ ME ‘il‘)l\l(ln. \ Fsup.aj g N\ B .illjn}:.

£90] 4 Aiqeriea
/ pantwsuen
3 y [sup.ay lo0]
[*sup.iy lo0] k M k M
E M k M
— @ —0\ —® —0 N
H H_Oamn_ 1# QQHNQ m H# QOHNQ I# QOH&Q

v

E196



patch #1 patch #2 patch #1 patch #2

r NS S LT [ S— '
I A ea=10 | I B ea=10 |
= | 3 1 |
Q Q
| . : < [ . \ < |
2o ! PP b2 ! i !
[ ! = 1 1 E ! s |
- ' - ' |
o) ! 3 !
I O 1 | O 1
Trophic | 1 4 ! : | -l 2 ! :
level | 10* 10% 10 10*° 10 | 10* 10% 10° 10* 10*
-2 | c Scaled dispersal rate d; : | D Scaled dispersal rate d; :
-
| < ea=10 | | < ea=10 |
| =10 . L1 210 \ |
= I = 1
| 2 1 [ S I |
[ s | | g s |
| £05 . i 1 £05 . i
(= : U - ! S
Iz , 1+ 3 , I
| = 0.0 1 | | 8 0.0 1 |
| @ 104 102 10° 10> 10* " 104 102 10° 10> 10% |
| Scaled dispersal rate d; P Scaled dispersal rate d; |
: E ea=10 | : F ea=10 |
=" 0.6 ! | = 0.6 ! |
7 : I T N\
=S I s 1§ s |
| 5 04 | S | B 04 1 =
2 il 2 . i
|2 = | B
IS 02 1 Eo02 ! |
2 : I ; |
| 104102 100 10> 10* Il 104102 100 10> 10* '
| Scaled dispersal rate d; [ Scaled dispersal rate d; |
| [ |
P i — 4 U U Ui U U U U U g iy o4
G ea=10 H ea=10
1 1 1 1
patch #1 patch #2 Cli E ?':
(=] Q
W0 e E I : %, | :
= 1 L g2 = I o
[5) o S © o
T = 1 8 = 1
UO 1 ~ 8 1
N @@ A ; . !
10* 102 10° 10* 10* 10* 102 10° 10* 10*
Scaled dispersal rate d; Scaled dispersal rate d;

Figure 6: Detailed correlation pattern between two coupled primary producer-herbivore food chains for ea = 10 and ma = 10 with in-
creasing scaled dispersal rates d,. Only primary producers are able to disperse. A, B, Correlation between patches when only primary
producers (A) and herbivores (B) from patch 1 are perturbed. C, D, Relative importance of transmitted variability to local variability
(M,) when primary producers (C) and when herbivores (D) are perturbed in patch 1. E, F, Relative weight of the variance generated by
each perturbation (M) when primary producers (E) and when herbivores (F) are perturbed in patch 1. G, Correlation between patches when
independent demographic stochastic perturbations are applied to all species of each patch. H, Reconstructed correlation pattern obtained
thanks to equation (10). H = 2(A x C x E + B x D x F) by symmetry, as patches 1 and 2 receive similar independent perturbations.
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become decorrelated, as scaled dispersal rates d; increase
(fig. 6B) because of the weak correlation between adjacent
trophic levels for ea = 10 and ma = 10 (see fig. 2C, 2D).

Our metric M, is equal to zero at low scaled dispersal
rates d; (fig. 6C, 6D), thus indicating that the perturba-
tions in patch 1 are weakly transmitted in patch 2. At high
scaled dispersal rates d;, M, tends to 1, as species become
perfectly correlated except for herbivores in figure 6D. In
this case, as they are perturbed but do not disperse, the
perturbation is attenuated during its transmission through
primary producers.

In this example, our metric M; is higher for both pri-
mary producers and herbivores when the perturbation
is applied to herbivores (fig. 6F) than when it is applied
to primary producers (fig. 6E). This means that perturba-
tions applied to herbivores generate most of the variabil-
ity in the metacommunity, and the correlation pattern in
figure 6B thus strongly contributes to the reconstructed
correlation pattern gathering the effects of all perturba-
tions (fig. 6H), following equation (10).

Now we have the response of all of the elements of equa-
tion (10), we can explain the correlation pattern seen in fig-
ure 6H. At low scaled dispersal rates d, perturbations are
not transmitted (M, = 0), leaving the two patches inde-
pendent and uncorrelated, while at high scaled dispersal
rates d,, the correlation pattern is similar to figure 6B, as
herbivore perturbation generates most of the variability.
In between, we have a humped-shaped relationship be-
tween herbivore population correlation and scaled dispersal
rates d; because when perturbations start to be transmitted
(fig. 6C, 6D), herbivore populations are correlated (left of
the dashed line; fig. 6A, 6B). Then the decrease in figure 6B
leads to the decrease seen in figure 6H.

The reconstructed correlation pattern in figure 6H is
identical to the correlation pattern obtained by perturbing
directly each species in each patch (fig. 6G), thus dem-
onstrating the validity of equation (10) (see fig. S2-4).

Discussion

Our metacommunity model aimed to understand how per-
turbations propagate vertically in patches and horizontally
between patches to identify under which conditions species
responses in different patches can be synchronous or asyn-
chronous. First, we found that less abundant species are
more affected by dispersal. Thus, even when all species dis-
perse at the same scaled rate, the biomass distribution in a
food chain determines for which species dispersal contrib-
utes the most to biomass dynamics. In addition, if the per-
turbed species does not disperse enough to synchronize its
different populations, the perturbation can be transmitted
by other species. In such a situation, we found that species
responses in different patches can be asynchronous. Sec-

ond, we found that the effects of multiple independent
perturbations can be partitioned. This enabled us to use
simple situations in which a single species is perturbed
as building blocks to analyze more complex systems with
multiple perturbations. Thus, we were able to identify which
perturbations drove synchrony or asynchrony in this con-
text and thus to explain their contribution using two simple
metrics.

For Whom Does Dispersal Matter?

Knowing who disperses is crucial to understanding bio-
mass dynamics in metacommunities (Koelle and Vander-
meer 2005; Pedersen et al. 2016). However, even when
dispersal is homogeneous among the various species (i.e.,
same scaled dispersal rates d; for all species), increasing dis-
persal does not affect all species in the same way (fig. 7). In
fact, abundant species are more affected by demographic
processes such as self-regulation, which scales as the square
of biomass, or trophic interactions, which scale as the prod-
uct of predator and prey biomass (see eq. [9]). Thus, changes
in scaled dispersal rates lead to top-down or bottom-up cou-
pling between patches depending on biomass distribution.
Once we know for whom dispersal matters, the model
can be simplified to a metacommunity where only a few
species connect patches. With such a restricted dispersal,
perturbing a species in one patch can lead to an opposite
response in the other connected patch. In fact, perturba-
tions affecting basal species have a bottom-up propaga-
tion (fig. 2C) and correlate all the species from the same
food chain, while perturbations affecting top species have
a top-down propagation and create trophic cascade cor-
relation patterns (fig. 2D). Thus, if the perturbed species
are not the dispersing species, both patches can display
different correlation patterns, which can lead to anticor-
related responses of the different populations of the same
species and hence to asynchrony between the different
populations (figs. S2-1E, S2-2A, S2-2B). The correlation
or anticorrelation of populations depends on the shortest
trophic distance from the dispersing species, as suggested
by Wollrab et al. (2012). Species at odd distance have cor-
related population fluctuations, while species at even dis-
tance have anticorrelated population fluctuations (fig. 3A).
The case where bottom-up perturbations are transmit-
ted by top predators is related to the spillover process: a
predator population thrives as a result of resource abun-
dance in one patch and spills over to the other patches
(Holt 1984). For instance, favorable environmental con-
ditions in the Baltic main basin increase cod abundance
(bottom-up control) that colonize the Gulf of Riga, leading
to a trophic cascade in this locality (top-down response;
Casini et al. 2012). More generally, predators cast a “shadow”
that leads to trophic cascades around their source patch
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(McCoy et al. 2009). For instance, dragonflies that prey
on flying insects around ponds reduce pollination there
(Knight et al. 2005). Such dynamics of predators between
natural habitats and crop fields are central in pest biocon-
trol (Tscharntke et al. 2012).

The bottom-up coupling between patches does not seem
to be mediated by primary producers, which often have a
low mobility (sessile terrestrial plants or drifting phyto-
plankton), but rather by nonliving materials (Polis et al.
1997; Leroux and Loreau 2008). Marleau et al. (2010) and
Gounand et al. (2014) found in their models with limit
cycles that flows of nutrients lead to anticorrelations be-
tween species populations, while we found a succession of
correlations and anticorrelations. This suggests that sys-
tems with limit cycles respond differently to bottom-up
coupling than systems in the vicinity of an equilibrium that
receive stochastic perturbations because of processes such
as phase locking (Jansen 1999; Liebhold et al. 2004; Vasseur
and Fox 2009). Abiotic resources can link very different
food webs. For instance, mineral nutrients and dead or-
ganic matter link green and brown food webs (Wolkovich
et al. 2014; Buchkowski et al. 2019), but additional mecha-
nisms, such as different food chain length, omnivory, or stoi-
chiometric constraints (Attayde and Ripa 2008; Zou et al.
2016), make a direct comparison difficult. Nevertheless, our
model gives basic insights into how a simple bottom-up
coupling affects the dynamics of connected food chains
and should improve our understanding of the additional
effects brought by mechanisms such as different food chain
length or stoichiometric constraints.

While top predator dispersal or basal resource diffu-
sion have been extensively studied, the consequences of
intermediate trophic level dispersal remain poorly under-
stood. Our results show that the dispersal of intermediate
trophic levels can dramatically change the correlation be-
tween populations of nondispersing species. Pedersen et al.
(2016) found that herbivores with a lower dispersal rate
than primary producers or carnivores stabilize metacom-
munity dynamics (by having equilibriums or asynchronous
limit cycles).

Most of the studies of coupled food webs considered
systems displaying limit cycles (McCann et al. 1998; Post
et al. 2000; Koelle and Vandermeer 2005) and largely ig-
nored stochastic perturbations (McCann et al. 2005; Vas-
seur and Fox 2007). Our results suggest that dispersal
patterns that lead to more asynchrony depend on which
species is perturbed. If the most perturbed species is also
the most affected by dispersal, it transmits the perturbation
to all patches and synchronizes them, thus reducing the
stability of the system. Otherwise, asynchrony between
patches can be promoted. Thus, the stabilizing or destabil-
izing effect of dispersal patterns is not absolute and depends
on perturbations.

In addition, perturbations can target specific species
(e.g., harvesting, disease) or affect all of the species in dif-
ferent ways. For instance, Arnoldi et al. (2019) showed
that environmental perturbations (z = 1) mostly affect
abundant species (figs. 7, S2-1B, S2-2D, S2-5). Therefore,
considering the biomass distribution is critical to fully un-
derstanding the responses of coupled food chains to dis-
persal and perturbations.

Multiple Perturbation Partitioning

Complex correlation patterns produced by multiple inde-
pendent perturbations on different species in different
patches can be easily partitioned into a sum of correlation
patterns produced by a single perturbation (fig. 7). Such
a partitioning is permitted by two characteristics of our
model. First, the system is linearized. Thus, the temporal
variations of each species in the vicinity of the equilibrium
are the sum of the variations due to each interacting spe-
cies. Second, the partitioning of the correlation pattern is
permitted by the independence of the various perturba-
tions. In fact, we can decompose the variance-covariance
matrix of perturbation V into a sum of matrices V; cor-
responding to the perturbation of a single species in a sin-
gle patch (see eq. [21] in sec. S2-3-1 of the supplemental
PDF). If some perturbations are correlated, we can still de-
compose the matrix V; into a sum of independent blocks
of correlated perturbations. The contribution of each per-
turbation in an assemblage of many independent pertur-
bations can thus be easily understood, as the product of
the correlations between populations from the two patches
is weighted by the variability generated in each patch (fig. 7).

Such a detailed partition of the contribution of each el-
ement of the system is not possible in systems displaying
nonlinear dynamics. For instance, Koelle and Vander-
meer (2005) tested the effects of primary producer and
top predator dispersal on population synchrony. They found
that these two types of dispersal led to either asynchrony
or synchrony between the populations of the other trophic
levels, but they were unable to go deeper in their interpre-
tation. Their results are similar to our case where a pertur-
bation is applied to top predators only and primary pro-
ducers disperse (fig. S2-2B). Thus, the top predator-prey
interaction must generate most of the variability in their
system with limit cycles and may be equivalent to a pertur-
bation of top predators in our linear system. Therefore, our
model with linear dynamics could give clues to under-
standing the response of models with nonlinear dynamics.
Future investigations considering stochastic perturbations
in models with type II functional responses are required to
go deeper in the comparison between systems with linear
or nonlinear dynamics.



Independence between perturbations is also a key fea-
ture of our study, as we explained earlier. Correlations be-
tween perturbations is expected to change the observed
dynamics (Ripa and Ives 2003; Vasseur and Fox 2007).
Leroux and Loreau (2012) considered reciprocal pulsed
subsidies within a metacommunity model and demon-
strated that the time delay between perturbations in each
patch could reinforce or dampen the resulting oscillations.
This suggests that the correlation pattern observed in our
model when species from both patches are perturbed should
be modified if perturbations are more or less correlated.

Conclusion

Our model demonstrates that asynchrony between popu-
lations in trophic metacommunities is promoted when
the species the most affected by dispersal is not directly per-
turbed. The effect of dispersal on biomass dynamics com-
pared with local demographic processes depends on the
biomass distribution in food chains even if all species dis-
perse at the same scaled rate. Thus, our simple model can
serve as a good null model to test mechanisms involved in
dispersal. Our model must be considered as a null model in
general as it relies on strong assumptions (e.g., m constant
across the food chain) to build a simple model to derive
broad conclusions (Barbier and Loreau 2019). The results
of future studies considering more realistic situations will
surely deviate from our model, but our conclusions should
still be useful, as each predator-prey couple will correspond
to one set of parameters used in our figures.

Dispersal can be seen as a mechanism of optimal forag-
ing where predators follow their prey in the patch where
they are the most abundant. Dispersal also enables prey to
escape their predators by migrating into a “refuge” patch
where they are less abundant. This can be represented by
density-dependent dispersal rates, which have a strong
impact on dynamics (Hauzy et al. 2010; Liu et al. 2016).
However, density-dependent dispersal changes the rela-
tive importance of dispersal and local demography, as dis-
persal then scales with biomass similarly to self-regulation
or predation, thus changing the interplay between dispersal
and biomass distribution. Therefore, future studies should
consider biomass distribution among species to properly
assess the effects of dispersal on food chain dynamics.

When multiple perturbations are applied, the effects of
each perturbation and each species can be partitioned in
our model. Thus, future studies considering heterogene-
ity between patches would be able to isolate the contribu-
tion of the difference of parameters to food chain dynam-
ics. For instance, Rooney et al. (2006) considered two food
chains with different attack rates coupled by a mobile top
predator. In this case, perturbation partitioning would
enable us to deeply understand how such differences be-

Synchrony in Perturbed Metacommunities E201

tween food chains may dampen perturbation transmis-
sion or promote asynchrony.

Thus, our approach appears to be a promising tool to
better understand the effects of many mechanisms that pro-
mote stability or asynchrony in coupled food chains or tro-
phic metacommunities.
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“The chapters on the fishers, on Labrador, those on the agricultural and mineral resources, etc., are all to the purpose. The best game
animal is the caribou, which still in vast herds traverses the island in periodical migrations from north to south; the moose is still common,
and there is good salmon fishing.” Figured: “On the Barrens. The Caribou, Buck and Doe.” From the review of Hatton and Harvey’s New-

foundland (The American Naturalist, 1884, 18:41-45).





