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Abstract. Biomass production in ecosystems is a complex process regulated by several
facets of biodiversity and species identity, but also species interactions such as competition or
complementarity between species. For studying these different facets separately, ecosystem bio-
mass is generally partitioned in two biodiversity effects. The composition effect is a simple, lin-
ear effect, and the interaction effect is a more subtle, nonlinear effect. Here we used a
clustering approach (1) to separately and comprehensively capture all linear and nonlinear
effects induced by both biodiversity effects on ecosystem functioning, and (2) to determine the
functional composition at the origin of each biodiversity effect. We used data from the long-
term Cedar Creek BioDIV experiment carried out over 22 yr, and we partitioned multiplica-
tively the biomass in composition and interaction effects. Both biodiversity effects were weakly
correlated. Our clustering approach accurately explains and predicts each diversity effect over
time: each one is modeled by a different functional composition. Even if environmental condi-
tions and the strength of interaction effect strongly varied over time, the functional clusters of
species that govern the interaction effect do not change over the 22 yr of the experiment. The
functional composition governing the interaction effect is therefore very robust. In contrast,
the functional clusters of species that govern the composition effect are less robust and change
with environmental conditions. Understanding ecosystem functioning therefore requires that
ecological properties are first partitioned by type, then each type of property is analyzed and
modeled separately. Approaches without a priori groupings of species, such as functional clus-
tering, appear particularly efficient and robust to unravel the web of species interactions, and
identify the role played by species on biodiversity effects.

Key words: assembly motif; biodiversity–ecosystem functioning; combinatorial analysis; functional
groups; species clustering.

INTRODUCTION

Explaining and predicting variation in ecosystem prop-
erties such as plant biomass across ecosystems remains a
challenge for ecology. Biodiversity–ecosystem functioning
research has found that the functioning of an ecosystem
depends in part on biotic factors, including species com-
position (Hooper et al. 2005, Balvanera et al. 2006, Isbell
et al. 2017). Several studies emphasized the role played by
the functional composition of ecosystems, that is, the
functional groups of species (Tilman et al. 1997, 2001,

Cardinale et al. 2011, Weisser et al. 2017). They also
showed that functional diversity, that is, the number of
functional groups, enhances biomass production (Tilman
et al. 1997, Hooper and Dukes 2004, Reich et al. 2004,
Weisser et al. 2017). Biomass production, however, is a
complex ecosystem process that is regulated by several
facets of biodiversity, including species composition and
species interactions such as competition or complemen-
tarity between species. Disentangling the role played by
species composition and species interactions has been a
major focus of biodiversity and ecosystem functioning
research during the past 20 yr (Loreau and Hector 2001,
Loreau et al. 2002, Hooper et al. 2005, Cardinale et al.
2007, 2011, Hector et al. 2011). Several questions, how-
ever, remain unanswered. In particular, an important
question is whether the effects of species composition and
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species interactions are induced by the same species, and
if not, which species govern each of these effects. It is also
unknown whether the role played by the various species
persists over time, or whether it varies with the state of
the ecosystem or environmental conditions (Allan et al.
2011, Isbell et al. 2011).
The most common way to separate the effects of species

composition and species interactions is to refer to an
expected yield based on species monocultures. Two differ-
ent approaches, however, have been proposed to partition
these effects: an additive partition and a multiplicative par-
tition. The additive partition (Loreau 1998, Loreau and
Hector 2001) was developed to test whether the selection
effect induced by dominant species in mixtures was enough
to explain the effects of biodiversity on ecosystem function-
ing. This approach splits the net diversity effect, that is, the
difference between observed and expected yield, into a
selection effect and a complementary effect. It has greatly
improved our understanding of the biodiversity–ecosystem
functioning relationship during the last two decades, nota-
bly by showing that dominant species do not often solely
explain biodiversity effects (Loreau and Hector 2001, Hec-
tor et al. 2002, Cardinale et al. 2011, Reich et al. 2012).
The multiplicative partition is older (Wilson 1988). It aims
to test the overyielding of a species mixture in regard to the
expected yield based on species monocultures. It thus parti-
tions a nonlinear interaction effect from a linear composi-
tion effect, both diversity effects being relative and
dimensionless. The multiplicative partition is therefore well
adapted to identifying species that react similarly to co-
occurring species in species mixtures, and hence that con-
tribute similarly to ecosystem functioning (Wilson 1988,
Garnier et al. 1997, Jaillard et al. 2018a).
Species that contribute in a similar way to biodiversity

effects are assumed to be functionally redundant (Lor-
eau 2004), and are thus clustered into a single functional
group (Violle et al. 2007, Garnier et al. 2016). The theo-
retical corpus of functional ecology distinguishes
between effect functional groups, which cluster species
that similarly influence ecosystem properties, and
response functional groups, which cluster species that
respond similarly to changes in biotic and abiotic factors
(Dı́az and Cabido 2001). Both species clusterings are
generally based on species properties that are assumed a
priori to play a role in either ecosystem functioning or
the response to environmental changes (Lavorel and
Garnier 2002). This approach makes two strong assump-
tions, which may not hold: (1) species interactions can
be fully accounted for by species intrinsic properties, and
(2) the causal or statistical relationships between species
properties and ecosystem functioning are already
known, which considerably limits the heuristic ability of
a priori species clustering (van der Plas et al. 2019).
In Jaillard et al. (2018a, 2018b), we proposed a cluster-

ing approach to determine the functional composition
of ecosystems, that is, the functional groups of species
whose co-occurrence determines a given ecosystem prop-
erty, without any a priori knowledge of these species.

This clustering approach searches for the species clusters
that best account for the observed variations in the
ecosystem property. Importantly, this approach only
considers changes in ecosystem properties associated
with changes in species co-occurrence, while being blind
to the functional traits of species, the processes involved
in species interactions, or the shape of the biodiversity–
ecosystem functioning relationships, among other infor-
mation. Such an approach without any a priori informa-
tion would be particularly valuable to identify the role
played by the various species in each effect of biodiver-
sity on each ecosystem property. If a given species were
assigned to different functional groups depending on the
biodiversity effect under scrutiny, this would suggest that
previous attempts to use the same functional groups to
explain multiple ecosystem properties are inadequate.
Long-term biodiversity–ecosystem functioning experi-

ments are particularly useful to track variations in the
functional composition of ecosystems and the structure of
species interactions over time. Seminal studies highlighted
changes in biodiversity effects over the course of long-term
biodiversity–ecosystem functioning experiments, notably
an increase in net biodiversity effects over time (Fargione
et al. 2007, Allan et al. 2011, Reich et al. 2012). However,
the underlying processes remain unknown given that the
physiological mechanisms and functional traits involved
were not assessed at each time step in these studies.
Here we examine the respective contributions of the

composition and interaction effects of biodiversity on total
plant biomass production in a long-term biodiversity
experiment (Cedar Creek BioDIV experiment Tilman
et al. [2001]) using a multiplicative partition approach.
First, we partition biomass production into a composition
effect and an interaction effect. Second, we identify the
species groups that govern each of the biodiversity effects,
and whether these groups of species change through time.
Because the composition and interaction effects differ
drastically by their nature, they were analyzed and mod-
eled separately to examine the functional composition that
governs each of these biodiversity effects adequately. We
show that the composition and interaction effects are gov-
erned by different groups of species. In particular, the
interaction effect is accurately modeled by five functional
groups of species. The clustering of species into these five
functional groups is very robust over time, despite strong
variations in environmental conditions. Clustering
approaches without a priori knowledge are simple but very
efficient and robust methods to identify the sets of species
contributing to each biodiversity effect.

MATERIAL AND METHODS

The BioDIVexperiment

The Cedar Creek BioDIV experiment (also called Bio-
diversity II and referred as e1207) was designed to test

7http://www.cedarcreek.umn.edu/research/
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the effects of plant biodiversity on population and
ecosystem functioning (see Tilman et al. 1997, 2001,
2002). It is composed of 168 plots assembled from a pool
of 16 perennial grassland species. The species composi-
tion in each plot was randomly drawn from a 16-species
pool. The 16 species were originally clustered into a pri-
ori four functional groups: legumes, nonlegume forbs,
warm-season C4 grasses, and cool-season C3 grasses
(that we denote L, F, 4, and 3, respectively). A strip of
each plot was harvested from 1996 to 2017.
The long-term BioDIV experiment encountered a

few experimental difficulties over time, as pointed out
by Fargione et al. (2007), Reich et al. (2012), and
Clark et al. (2018). Detailed information regarding the
data used in this study is given in Appendix S1: Sec-
tion S1. Overall, we analyzed 16 monocultures, 1 by
species, and 117 species mixtures containing 2, 3, 4, 6,
7, 8, 14, 15, and 16 species (in 26, 10, 17, 6, 14, 10,
28, 5, and 1 combinations, respectively). Each species
was included in 53� 4 (mean� standard deviation)
out of 117 species mixtures in average. We used yield
data derived from “sorted biomass” by species, and
thus did not consider the biomass of weed species that
appeared over time.

Multiplicative partition of diversity effects

For a given year, the yield of a species mixture was
multiplicatively partitioned (Wilson 1988). First, we
obtained the interaction effect by dividing the observed
yield, Yobserved, by the expected yield, Yexpected. Yexpected

is computed as the average yield of monocultures of spe-
cies co-occurring in the species mixture. Second, we
obtained the composition effect by dividing the expected
yield Yexpected by Ymonocultures computed as the average
yield of all species grown in monoculture used in the
experiment (Jaillard et al. 2018a) (Appendix S1: Section
S2):

Yobserved ¼Yobserved

Y expected

Y expected

Ymonocultures
Ymonocultures:

The first quotient of this equation is called the inter-
action effect, the second quotient is called the compo-
sition effect, and the last term is called the scale factor
of the experiment for a given year. Composition and
interaction effects are species mixture properties. The
interaction effect integrates all nonlinear effects
induced by interactions among species within a species
mixture on ecosystem biomass. Given that the interac-
tion effect is a quotient, its mean is computed using a
geometric formula. The composition effect corresponds
to linear effects induced by the species composition of
a given species mixture: the more productive the con-
stitutive species, the greater the composition effect. By
definition, the composition effect equals one in a spe-
cies mixture composed of all species used in the experi-
ment, here the species mixture containing 16 species. It

must be close to one if the occurrence frequencies of
the different species in the experiment are close to each
other.

Time analysis of interaction effect, composition effect,
and relative yield

The use of time-series experiments raises the issue of
environmental variations over time. Reich et al. (2012)
computed an environmental scale factor for each year.
This factor was Ymonocultures, that is, the average yield in
monoculture of all species used in the experiment (here
the 16 grassland species) for a given year. Reich et al.
(2012) defined the relative yield as the ratio between the
observed yield Yobserved and the scale factor Ymonocultures:
The relative yield is therefore the product between the
interaction effect and the composition effect (Appendix
S1: Section S2). By definition, the interaction effect,
composition effect, and relative yield are dimensionless
quantities corrected for environmental variations by this
environmental scale factor.
The use of time-series experiments also raises the

question of pseudoreplications (Hurlbert 1984). The
data were first treated as time series to examine trends
over time. Next, we treated them as 22 annual pseu-
doreplications: each annual harvest was separately ana-
lyzed, and the reported global statistics are the medians
of the annual statistics. In this analysis, each harvest is
equally weighted.

Clustering analysis of interaction effect, composition
effect, and relative yield

We separately analyzed biodiversity effects and rela-
tive yield using a clustering approach to a posteriori
determine the functional composition that governs each
of the three species mixture properties throughout the
experiment, namely, interaction effect, composition
effect and relative yield (Jaillard et al. 2018b).
The clustering analysis over time proceeded in two

steps. First, we searched for the species clusters that best
account for the species mixture property over the whole
time period, each harvest being equally weighted. The
species clustering that best accounts for the species mix-
ture property is the one that minimizes the intracluster
variance and maximizes the intercluster variance. This
condition is measured by the coefficient of determina-
tion, R2, of the species clustering, that is, the ratio of the
variance explained by the species clustering on the total
observed variance. The clustering method is top-down,
that is, it starts with a single large group of species,
which is successively partitioned until there are as many
groups as there are species. It provides a hierarchical tree
of functional groups of species.
Second, the predictive capacity of species clustering

was evaluated by cross-validation at each level of the
hierarchical tree and for each annual harvest: we used a
leave-one-out cross-validation, that is, each ecosystem
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property was independently predicted by removing the
ecosystem property to predict from the data set. The pre-
dictive accuracy of the species clustering was measured
by the model efficiency, E, that is, the ratio of the vari-
ance of predictions on the total observed variance. The
Akaike information criterion corrected for small sample
size, AICc, of species clustering was also calculated at
each level of the hierarchical tree and for each annual
harvest. This criterion measures the parsimony of a clus-
tering model. The hierarchical tree of species clustering
was then pruned based on two criteria: an increasing E,
then a decreasing AICc. The level of pruning determines
the maximum number of functional groups that can be
retained without overfitting. The F ratio and P value
associated to R2 for the maximum number of functional
groups are then computed.
The reported statistics, that is, the model efficiency E

and the maximum number of functional groups, are the
medians of the annual statistics. The greater the coeffi-
cient of determination R2 and the efficiency E, the
greater the explanatory and predictive abilities of the
model. A high E/R2 ratio indicates a model with a pre-
dictive ability close to its explanatory capability. The
number of functional groups has no statistical signifi-
cance. However, the greater the explanatory and predic-
tive capabilities of the model, the greater the number of
functional groups possibly identified.
As a matter of comparison with the a posteriori clus-

tering approach, we also used the four functional groups
a priori defined by Tilman et al. (2001) to assess interac-
tion effect, composition effect and relative yield. A hier-
archical tree of species clustering was built for each
diversity effect and relative yield, by forcing the species
tree to go through species clustering into the four func-
tional groups a priori defined (Appendix S1: Section S3).

Robustness of clustering analyses

The robustness of the a priori and a posteriori species
clustering was evaluated by bootstrapping. Clustering
analyses were done with 1–21 harvests, randomly resam-
pled from the set of 22 harvests. Each resampling was
repeated 100 times, leading to 21× 100 clustering analy-
ses. Each resulting species clustering, from the trunk to
the leaves, was compared to the species clustering
obtained with 22 harvests using the Jaccard index. The
Jaccard index measures a distance between two cluster-
ings: an index of one indicates a zero distance. The
reported statistics were the medians of 100 Jaccard indices
computed for each of 21 numbers of removed harvests.

Statistical analyses and clustering computations

All the computations were performed using the R-
software (R Development Core Team 2009). We per-
formed linear regressions using lm function. Partition of
observed yield into interaction effect, composition effect,
and scale factor was done using a R-source script

(Jaillard et al. 2017). We performed the clustering com-
putations using the R-package functClust available on
the R-CRAN (see Open Research). All other scripts
(Jaillard 2021) are available on the INRAE dataverse.

RESULTS

Partitioning ecosystem biomass into interaction and
composition effects

Out of the 22 yr, the interaction effect ranges from
0.01 to 13.4. This means that interactions among species
have decreased up to 100 times, or increased more than
13 times, the yield compared to the expected yield (Fig.
1a). The interaction effect is strongly correlated with the
relative yield (median Pearson’s r2 = 0.713, median P =
0.012). It equals 2.43� 1.84 (mean� standard devia-
tion) in average, and increases over time (by 0.065 per
year, Pearson’s r2 = 0.061, P < 10−10) (Fig. 1b). A
detailed analysis shows that the interaction effect
increases primarily in species-rich mixtures, with an
increase of 0.11 per year for the species mixtures con-
taining from 14 to 16 species, compared to an increase
of 0.01 only for the two-species mixtures, for example
(Appendix S2: Fig. S1).
The composition effect ranges from 0.03 to 3.1; that

means that the expected yield of species mixtures used in
the BioDIV experiment ranged from almost nothing to
more than three times the average monocultures (Fig. 1c).
Its average out of the 22 yr is 1.02� 0.34, which is mar-
ginally different from 1 (P= 0.009). This means that the
different species occur equitably in the BioDIV experi-
ment. The composition effect is weakly correlated with
the relative yield (median Pearson’s r2 = 0.064, median P
< 10−10). It does not change over time (by −0.001 per
year, Pearson’s r2 = 0.001, P= 0.223) (Fig. 1d). Although
formally linked, the interaction effect and the composi-
tion effect are weakly correlated (median Pearson’s r2 =
0.058, median P= 0.009) (Fig. 1e).
The scale factor is the annual average yield in mono-

culture of all species used in the experiment (Fig. 1f). It
varies from 53.1 to 103.2 g/m2 over the whole 1996–2017
period (75.3� 17.2 g/m2), and is weakly correlated with
the relative yield (Pearson’s r2 = 0.024, P< 10−10) (Fig.
1f and Appendix S2: Fig. S2). The average yield in
monoculture of each species ranges from 8.5 to 199.0 g/
m2 (75.3� 17.2 g/m2) (Appendix S2: Fig. S3a). The
legumes are among the most productive species, and the
C3 grasses among the least productive species in mono-
culture. The yield in monoculture of all species is corre-
lated with the scale factor, that is, the average yield in
monoculture of all species, with an average slope of 1 (P
= 1.11 × 10−06). However, a variance analysis shows that
the yield in monoculture of four species increased much
faster than the scale factor: Amorpha canescens, Lupinus
perennis, Monarda fistulosa, and Lespedeza capitata
(slope = 3.4, 2.3, 2.2, and 1.6, respectively, with a P <
0.01) (Appendix S2: Fig. S3b). Amorpha canescens,

Article e03441; page 4 BENOı̂T JAILLARD ETAL. Ecology, Vol. 102, No. 9



Lupinus perennis, and Lespedeza capitata are legumes,
suggesting that legumes in monoculture overresponded
to environmental variations.

Prediction of interaction and composition effects based on
a priori species clustering

The clustering analysis forced by the a priori species
clustering and applied to the interaction effect gives a
coefficient of determination R2 of 0.408 (F ratio = 229.4,
P < 10−10), and an efficiency E of 0.285 (E/R2 = 0.698)
(Fig. 2a, b). This means that a priori species clustering

explains at best 41% of the total variance of interaction
effect and predicts in return 29% of the observed vari-
ance on interaction effect; that is 70% of explained vari-
ance. The clustering analysis also shows that the
optimum number of functional groups is three (AICc =
66.2). This means that the species clustering into four
functional groups overfits the species mixture yield: it
explains better the total variance of interaction effect,
but it predicts a lower proportion of observed variance
for the interaction effect.
The clustering analysis of composition effect gives stron-

ger results: R2 of 0.547 (F-ratio = 162.8, P< 10−10), and E
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of 0.328 (E/R2 = 0.599) (Fig. 2c, d). However, it also shows
that the optimum number of functional groups is three
(AICc =−350.7), rather than four as a priori defined. Yield
in monoculture significantly differs among species’ func-
tional groups. It is such as: Legumes > (Forbs–C4 grasses)
>C3 grasses (L> F4 > 3, with P<0.001).
The clustering analysis of relative yield based on a priori

species clustering gives intermediate results: R2 of 0.440 (F-
ratio = 384.4, P<10−10), and E of 0.274 (E/R2 = 0.623) for
three functional groups (AICc = 49.6) (Fig. 2e, f).
Overall, the a priori clusterings issued from the con-

ventional species clustering explain between 41 and 55%

of variance, and predict in return between 27 and 33% of
observed variance over the 22 yr. The a priori clusterings
have thus a moderate explanatory capacity and a poor
predictive ability for both diversity effects, as well as for
the relative yield of species mixtures.

Prediction of interaction and composition effects based on
a posteriori species clustering

The a posteriori clustering analysis applied to the
interaction effect over the 22 yr gives a R2 of 0.669 (F-
ratio = 199.6, P < 10−10), and E of 0.400 (E/R2 = 0.598)
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(Fig. 3a). The median Akaike information criterion
(AICc = 15.3) indicates an optimum number of five
functional groups of species. The five functional
groups are: A= {Lupinus perennis}, B = {Andropogon
gerardi, Elymus canadensis}, C= {Poa pratensis}, D=-
{Amorpha canescens}, and E = {Lespedeza capitata,
Petalostemum purpureum, Achillea millefolium, Ascle-
pias tuberosa, Liatris aspera, Monarda fistulosa, Pan-
icum virgatum, Schizachyrium scoparium, Sorghastrum
nutans, Agropyron smithii, Koeleria cristata} (Fig. 3b).
The functional groups A, C, and D are singletons. The

singletons A and D are each composed of a legume,
Lupinus perennis in a singleton and Amorpha canescens
in another singleton. Amorpha canescens is the most
productive species. The yield in monoculture of func-
tional groups gives the following ranking: D>A≈E >
B >C (P < 0.001).
The clustering analysis applied to the composition

effect gives a R2 of 0.640 (F-ratio = 309.7, P< 10−10), and
E of 0.498 (E/R2 = 0.778) (Fig. 3c). The median Akaike
information criterion (AICc =−375.1) indicates an opti-
mum number of three functional groups of species: A=
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FIG. 3. A posteriori clustering of species for interaction effect, composition effect, and relative yield of ecosystems from 1996 to
2017. (a) and (b) Interaction effect. (c) and (d) Composition effect. (e) and (f) Relative yield. (a), (c), and (e) Modeling of diversity
effects based on the hierarchical tree of species clustering. Each bar corresponds to the error induced by leaving out the ecosystem
to predict (cross-validation). Solid red line is the 1:1 line. (b), (d), and (f) Hierarchical tree of species clustering. Optimal number of
functional groups is indicated by Akaike information criterion AICc corrected for small sample size: It is 5, 3, and 3 for interaction
effect, composition effect, and relative yield, respectively. Functional groups are noted A, B, C, D, and E for interaction effect; A, B,
and C for composition effect; and a, b, and c for relative yield. The level of leaves corresponds to tree coefficient of determination
R2

tree at the optimum number of species functional groups. The dotted red line corresponds to optimal tree efficiency Etree. The
years 1996 (in red), 2006 (in blue), and 2016 (in gold) are shown as examples.
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{Amorpha canescens, Liatris aspera, Monarda fistulosa},
B = {Lespedeza capitata, Lupinus perennis, Petalostemum
purpureum, Panicum virgatum, Schizachyrium scoparium,
Sorghastrum nutans, Elymus canadensis, Koeleria cristata,
Poa pratensi} and C = {Andropogon gerardi, Achillea
millefolium, Agropyron smithii} (Fig. 3d). The functional
group A contains the three most productive species in
monoculture, and the functional group C includes three
species out of the least productive species in monoculture
(Appendix S2: Fig. S3). The yield in monoculture of
functional groups gives the following ranking: A>B>C
(P< 0.001).
The clustering analysis applied to the relative yield

gives a R2 of 0.552 (F-ratio = 584.3, P < 10−10), and an E
of 0.434 (E/R2 = 0.786) (Fig. 3e). The median Akaike
information criterion (AICc = 17.5) indicates an opti-
mum number of three functional groups of species: a=
{Lupinus perennis}, b= {Amorpha canescens, Lespedeza
capitata, Petalostemum purpureum, Agropyron smithii,
Koeleria cristata} and c = {Elymus canadensis, Poa
pratensis, Andropogon gerardi, Schizachyrium scoparium,
Sorghastrum nutans, Panicum virgatum, Achillea mille-
folium, Asclepias tuberosa, Liatris aspera, Monarda fistu-
losa} (Fig. 3f).
Overall, the a posteriori clusterings explain between 55

and 67% of variance, and predict in return between 40
and 50% of variance observed in the 117 species mixtures
over 22 yr. In addition, their AICc are lower than the
AICc of conventional clusterings, indicating that these
models are more parsimonious. The a posteriori species
clusterings are therefore more parsimonious and have a
much better explanatory capacity and predictive ability
than conventional clusterings for both diversity effects, as
well as for the relative yield of species mixtures.

Robustness of a priori and a posteriori species clustering

To be useful, a clustering must be robust. We therefore
assessed the robustness of species clustering by ran-
domly removing an increasing number of years (Appen-
dix S2: Fig. S4). As expected, a priori clusterings are
very robust, by construction. The a posteriori species
clustering for the interaction effect is also very robust:
the clusterings into five and four functional groups are
only drastically modified after the removal of 10 out of
the 22 yr, and the clustering into three functional groups
after the removal of 14 out of the 22 yr. This indicates
that the functional composition of interaction effect
does not change over 22 yr. The a posteriori species clus-
tering for the composition effect appears less robust: the
clustering into three, even two functional groups is
strongly modified after the removal of a few years only.
This suggests that the functional composition of compo-
sition effect varies over time. As previously shown, the
yield in monoculture of four species increases with scale
factor. The shift of yield in monoculture of these species
would induce changes in the functional composition of
composition effect over time.

Association between combinations of functional groups
and diversity effects

Our clustering of species into functional groups leads to
the sorting of species mixtures into combinations of func-
tional groups, which we termed assembly motifs. By conve-
nience, hereafter we sort the assembly motifs by increasing
species mixture property (Fig. 4). In the a priori clustering,
the interaction effect is optimally modeled by three func-
tional groups: L, 4 and (F3) together. The interaction effect
is low when each functional group is isolated (motifs 4, L
and (F3)), medium when functional groups co-occur two-
by-two (motifs (F3)4, L(F3) and L4), and the highest when
the three functional groups co-occur together (motif L(F3)
4) (Fig. 4a). In sum, the interaction effect increases with
the number of functional groups.
In the a posteriori clustering, the same trend is observed,

but in a more nuanced way. The interaction effect is higher
when the functional group A co-occurs with other groups
in assembly motifs: ABCE≫BCE, ACE≫CE, ABCDE
≫BCDE, ABC≫BC, ABCD≫BCD, ACDE>CDE,
AC≫C, and ACD≫CD. The co-occurrence of A is asso-
ciated with a high positive effect. The functional group B is
not associated with a high interaction effect, but the co-
occurrence of Awith B is associated with the highest inter-
action effects: ABCE, ABCDE, ABC, and ABCD motifs
are among the highest interaction effects, and ABCE>
ACE, ABCDE>ACDE, ABC>AC and ABCD>ACD.
Conversely, when A occurs with or without B, the co-
occurrence of D decreases the interaction effect: ABCDE
<ABCE, ABCD<ABC, ACDE<ACE, and ACD<AC.
The co-occurrence of D when A occurs is associated with a
negative effect.
The composition effect responds differently to combi-

nations of functional groups (Fig. 4c,d). As expected,
combinations of all functional groups (motifs L(F4)3
and ABC, Fig. 4c,d, respectively) are close to one. The
co-occurrence of functional groups is generally associ-
ated with a composition effect that is intermediate to
those of constitutive functional groups. For instance, in
the a priori clustering, L >L3 > 3, (F4) > (F4)3 > 3 or L
> L(F4)3 > (F4)3 (Fig. 4c), in the a posteriori clustering,
A>AB> B or A>ABC > BC (Fig. 4d). The only excep-
tion is L(F4) > L > (F4) in a priori clustering, but the
composition effect of motifs L and L(F4) are not signifi-
cantly different. The relative yield is the product of inter-
action effect and composition effect: it responds to the
number of functional groups as a trade-off between
interaction effect and composition effect (Fig. 4e,f).

DISCUSSION

The interaction and composition effects are distinct
biodiversity effects

Although the interaction and composition effects are
formally linked, we found that they are weakly corre-
lated. The composition effect, that is, the contribution of
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species’ intrinsic properties, and the interaction effect,
that is, the collective contribution of species interactions,
are two distinct biodiversity effects. As previously sug-
gested by Kirwan et al. (2009) and Connolly et al.
(2013), it is therefore useful to model them separately
and independently.

This result supports the findings obtained by previous
authors when separating the selection effect from the
complementarity effect in terrestrial, aquatic, and micro-
bial ecosystems. Indeed, a zero selection effect implies a
zero correlation between the interaction and composi-
tion effects. The deviation from the expected relative

(b)(a)

Conventional a priori clustering A posteriori clustering

(d)(c)

(f)(e)

A
ss

em
bl

y 
m

ot
if

A
ss

em
bl

y 
m

ot
if

A
ss

em
bl

y 
m

ot
if

0

0

0 4 8 12

1 2 3

4

Interaction effect

Composition effect

Relative yield
0 4 8 12

Relative yield

0 1 2 3
Composition effect

8 12 0 4

Interaction effect
8 12
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(f) A posteriori clustering. Black and gold boxes are observed and predicted yields, respectively. The blue line corresponds to mean
values over 22 yr.
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yield of species in mixture is not necessarily positively
correlated with their yield in monoculture (Loreau and
Hector 2001, Hector et al. 2002, Cardinale et al. 2007,
2011). However, the additive partition, as defined and
used by Loreau and Hector (2001), and the multiplica-
tive partition defined by Wilson (1988) are two different
approaches that address different issues. The additive
partition was designed to test a possible selection effect
by using the general theory of selection proposed by
Price (1995). The multiplicative partition separates non-
linear effects from linear effects at the ecosystem level: It
is therefore best suited to identify functionally redun-
dant species, that is, species that react similarly to species
interactions, whatever the expected yield of species mix-
tures (Wilson 1988, Garnier et al. 1997, Jaillard et al.
2018a).
The composition effect is a simple, additive, and linear

effect induced by differences in productivity of co-
occurring species that compose an ecosystem: the more
productive the co-occurring species, the higher the com-
position effect. It integrates the entire biological variabil-
ity of species that compose ecosystems. The composition
effect is therefore a basic effect that necessarily occurs in
all ecosystems. In the BioDIV experiment, the composi-
tion effect is close to 1 on average, because the number
of ecosystems is large enough, and all species are equita-
bly represented in the experimental design. It does not
vary over time because the experimental design did not
change over time. Our findings show that the composi-
tion effect is well modeled and predicted by the cluster-
ing analysis. The model of a posteriori species clustering
into three functional groups explains 64% of the vari-
ance of the composition effect over 22 yr. This is a high
explanatory power over such a long time period. In
return, our model can independently predict 70% of the
variance explained across the 22 yr. The clustering analy-
sis has a strong explanatory and predictive capacity for
the composition effect of ecosystems. However, the
model of species clustering is not robust. This suggests
that the contribution of each species to the composition
effect varies over time. Our results confirm that species
in monoculture respond differently to changes in envi-
ronmental conditions, especially for the legumes. The
scale factor, which captures environmental conditions,
varies from 1 to 2, meaning that external environmental
forces strongly regulate ecosystem productivity. The
scale factor integrates the main temporal environmental
effects on ecosystems, but the composition effect also
integrates a part of environmental effects. Although the
compositional effect appears to be a simple effect, its
sensitivity to environmental variations impedes its
robust modeling by a unique clustering of species.
In contrast, the interaction effect is a collective ecosys-

tem property: it is nonlinear and possibly idiosyncratic.
We found that the interaction effect increases steadily
over time, especially in species-rich mixtures. We also
observed that its contribution to yield predominated.
This result is consistent with the findings previously

reported by Fargione et al. (2007) and Reich et al. (2012)
for the same experiment. Conversely to the composition
effect, the clustering analysis of the interaction effect
identified up to five functional groups of species. The
species clustering into five groups is very robust. Such
an accuracy and stability of the clustering model over
such a long period is striking. It demonstrates that the
nature of species interactions involved in the regulation
of biomass production does not change over time, even
if the environmental effect strongly fluctuates, and even
if the strength of interaction effect strongly varies over
time. This demonstrates that, in the BioDIV experiment,
the web of species interactions within ecosystems does
not change over the 22 yr. Given the predominance of
the interaction effect over the composition one, explain-
ing and predicting ecosystem productivity therefore
requires explaining and predicting the interaction effect
in priority.

An a posteriori species clustering explains and predicts
accurately ecosystem functioning

Many authors have shown that ecosystem productiv-
ity increases with biodiversity, notably with the number
of species (Tilman et al. 1997, 2001, Cardinale et al.
2011, Weisser et al. 2017) and with the number of func-
tional groups (Tilman et al. 1997, Hooper and Dukes
2004, Reich et al. 2004, Weisser et al. 2017). However, in
general, the effects identified are moderate, and explain
only a small fraction of observed variance. For instance,
Tilman et al. (1997) showed that standing yield increases
twice from one to five functional groups. Our results
showed that this increase is much greater, reaching
between three and four times from one to three func-
tional groups. The effect underlined by Tilman et al.
(1997) seems moderate in comparison to the one we
computed for two reasons. First, the authors referred to
conventional functional groups built a priori, usually
based on a taxonomic or physiological basis (Hooper
et al. 2002). For instance, all Cedar Creek experiments
(Tilman et al. 1997, 2001, 2002, Symstad et al. 1998,
Craine et al. 2002, 2003, Reich et al. 2004, 2012) used
four functional groups: the group of legumes that share
the nitrogen symbiotic fixation in roots, the groups of
C3 and C4 grasses differ in their photosynthetic metabo-
lism in leaves, and the group of forbs that includes vari-
ous nonfixing Dicotyledons. We showed that the
legumes in monoculture respond more than other
groups to environmental conditions. However, it has
been also previously noted that these groups are func-
tionally heterogeneous (Tilman et al. 1997, Reich et al.
2001, 2003, 2004, Craine et al. 2002, 2003). The cluster-
ing approach brings together taxonomically and physio-
logically different species, but the co-occurrence of these
in ecosystems has similar effects on the ecosystem prop-
erty. Second, ecosystem biomass production results from
several diversity and environmental effects, whose deter-
minisms are different and independent. The partition of
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biomass into interaction effect, composition effect and
scale factor makes it possible to isolate each of these
contributions: (1) multiplicative, nonlinear and collective
contribution of interactions among species via the inter-
action effect; (2) additive, linear, and specific contribu-
tion via the composition effect, (3) and abiotic effects
induced by environmental conditions via the scale-
factor. We are thus able to analyze which process deter-
mines each of these contributions more precisely. The
analysis of assembly motifs involved in each diversity
effect shows that the drivers that determine composition
effect and interaction effect are completely different.
Finally, our findings showed that assembly motifs, that

is combinations of functional groups, are highly structur-
ing and very discriminating entities. As several authors
have already shown (Hooper and Vitousek 1997, Tilman
et al. 1997, Hooper 1998, Hooper and Dukes 2004),
assembly motifs are of great interest for explaining varia-
tion in ecosystem properties. Obviously, species interac-
tions vary according to patterns of species co-occurrence,
inducing different effects on ecosystem functioning. As a
consequence, a given species, or functional group of spe-
cies, responds differently according to the assembly motif
to which it belongs, that is, according to the other species
with which it co-occurs within the assembly motif. The
ecosystem clustering into assembly motifs accounts for
both the linearity of response of the composition effect
and the nonlinearity of response of the interaction effect
to changes in ecosystem biodiversity.

An a posteriori species clustering identifies the main
species that govern ecosystem functioning

The a posteriori clustering greatly improves the
explanatory and predictive abilities of species clustering.
However, ecosystem biomass results in the same time
from both the composition effect and the interaction
effect. As previously claimed (Jaillard et al. 2018a), a
clustering analysis using observational data, without
prior partition, can only identify the main species com-
binations that govern ecosystem functioning. Our results
show that both model accuracy and efficiency for such a
species clustering remain high. Nevertheless, this species
clustering can only be a trade-off between the species
clustering for interaction effect and the species clustering
for composition effect. This unique species clustering is
a combination of several clusterings: such a species clus-
tering is therefore difficult to interpret in terms of bio-
logical processes.
Many studies from the BioDIV experiment have noted

the major role played by legumes in the regulation of
ecosystem productivity (Symstad et al. 1998, Tilman
et al. 2001, Craine et al. 2002, Fornara and Tilman
2009). Our results further emphasized interactions
between Lupinus perennis, Andropogon gerardi, Elymus
canadensis, Poa pratensis, and Amorpha canescens. When
Lupinus perennis co-occurs with any other species, the
interaction effect is high: Lupinus perennis increases the

species mixture biomass, likely by improving the biomass
of co-occurring species. When Lupinus perennis co-
occurs with Andropogon gerardi, Elymus canadensis, or
Poa pratensis, the interaction effect is the highest: Lupi-
nus perennis and Andropogon gerardi, Elymus canadensis,
or Poa pratensis have a synergetic effect. When Lupinus
perennis co-occurs with Amorpha canescens, with or
without Andropogon gerardi, Elymus canadensis, or Poa
pratensis, the interaction effect is lower: Amorpha canes-
cens reduces the improving effect of Lupinus perennis.
Our findings demonstrate that these interaction effects
do not change over time.
Amorpha canescens and Lupinus perennis are legumes

that fix nitrogen (Fornara and Tilman 2009). However,
one can have large interspecific ecological differences
among legumes related to nitrogen fixation (Craine et al.
2002), and nitrogen fixation can be associated with a
broad suite of physiological traits. For instance, Lupinus
mobilizes soil phosphorus in its rhizosphere as a result
of organic acid release by roots (Hinsinger et al. 2002,
Lambers et al. 2013). Other legumes strongly acidify
their rhizosphere and change soil properties (Jaillard
et al. 2003). These effects are not captured by functional
traits traditionally used to build conventional species
clustering. Amorpha canescens is the most productive
species in the BioDIV experiment. It is clear that Amor-
pha canescens and Lupinus perennis act differently, possi-
bly because of the higher competitive ability of Amorpha
canescens for light or for other resources: when Amorpha
canescens co-occurs with Lupinus perennis, it decreases
the positive interaction effect induced by Lupinus peren-
nis. Lupinus perennis and Amorpha canescens are
legumes: a clustering that groups together all legumes,
thus including both species, hence can have a good
explanatory capacity. However, not all legumes release
organic substances that mobilize soil phosphorus in the
rhizosphere, or grow broadly and produce large amounts
of yield in monoculture. A species clustering that groups
together Lupinus perennis and Amorpha canescens conse-
quently fails to predict ecosystem biomass because it
confuses the roles actually played by each legume on the
ecosystem property. Only an a posteriori clustering of
species can faithfully account for the observed function-
ing of an ecosystem.

CONCLUSION

Most ecosystem functions, such as biomass production,
respiration and nutrient recycling, result from at least two
biodiversity effects, a composition effect and an interac-
tion effect. Here we argue that understanding the drivers
of ecosystem functions requires that each biodiversity
effect needs to be first separated then analyzed separately.
Our findings confirm that both diversity effects are not
correlated, and that an a posteriori species clustering
accounts for and accurately predicts each diversity effect.
Overall, our findings demonstrate that, in the long-term
BioDIV experiment, even if environmental conditions
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and the interaction effect vary over time, the web of spe-
cies interactions within ecosystems does not change with
time. Clustering analyses without a priori represent a
robust approach that is particularly efficient to unravel
the web of species interactions.
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Nyfeler, and M.-T. Sebastià. 2009. Diversity-interaction mod-
eling: estimating contributions of species identities and inter-
action to ecosystem function. Ecology 90:2032–2038.

Lambers, H., J. C. Clements, and M. N. Nelson. 2013. How a
phosphorus-acquisition strategy based on carboxylate exuda-
tion powers the success and agronomic potential of lupines
(Lupinus, Fabaceae). American Journal of Botany 100:263–
288.

Lavorel, S., and E. Garnier. 2002. Predicting changes in com-
munity composition and ecosystem functioning from plant
traits: revisiting the Holy Grail. Functional Ecology 16:545–
556.

Loreau, M. 1998. Partitioning selection and complementarity in
biodiversity experiments. Oikos 412:72–76.

Loreau, M. 2004. Does functional redundancy exits? Oikos
104:606–611.

Loreau, M., and A. Hector. 2001. Partitioning selection and com-
plementarity in biodiversity experiments. Nature 412:72–76.

Loreau, M., S. Naeem, and P. Inchausti. 2002. Page 294. Biodi-
versity and ecosystem functioning: synthesis and perspectives.
Oxford University Press, Oxford, UK.

Price, G. R. 1995. The nature of selection. Journal of Theoreti-
cal Biology 175:389–396.

R Development Core Team. 2009. R: A language and environ-
ment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. http://www.R-project.org

Reich, P. B., et al. 2001. Do species and functional groups differ
in acquisition and use of C, N and water under varying atmo-
spheric CO2 and N availability regimes? A field test with 16
grassland species. New Phytologist 150:435–448.

Reich, P. B., C. Buschena, M. Tjoelker, K. Wrage, J. Knops, D.
Tilman, and J. L. Machado. 2003. Variation in growth rate
and ecophysiology among 34 grassland and savanna species
under contrasting N supply: a test of functional group differ-
ences. New Phytologist 157:717–731.

Reich, P. B., D. Tilman, F. Isbell, K. Mueller, S. E. Hobbie, D.
F. B. Flynn, and N. Eisenhauer. 2012. Impacts of biodiversity
loss escalate through time as redundancy fades. Science
336:589–592.

Reich, P. B., D. Tilman, S. Naeem, D. Ellsworth, J. Knops, J.
Craine, D. Wedin, and J. Trost. 2004. Species and functional
group diversity independently influence biomass accumula-
tion and its response to CO2 and N. Proceedings of National
Academy of Sciences of United States of America 101:10101–
10106.

Symstad, A. J., D. Tilman, J. Willson, and J. Knops. 1998. Spe-
cies loss and ecosystem functioning: effects of species identity
and community composition. Oikos 81:389–397.

Tilman, D., J. Knops, D. Wedin, and P. B. Reich. 2002. Plant
diversity and composition: effects on productivity and nutri-
ents dynamics of experimental grasslands. Pages 21–35 in M.
Loreau, S. Naeem, and P. Inchausti, editors. Biodiversity and
ecosystem functioning. Oxford University Press, Oxford,
UK.

Tilman, D., J. Knops, D. Wedin, P. B. Reich, M. Ritchie,
and E. Siemann. 1997. The influence of functional diver-
sity and composition on ecosystem processes. Science
277:1300–1302.

Tilman, D., J. Knops, D. Wedin, P. B. Reich, M. Ritchie, and E.
Siemann. 2001. Diversity and productivity in a long-term
grassland experiment. Science 294:843–846.

van der Plas, F., et al. 2019. Plant traits are poor predictors of
long-term ecosystem functioning. bioRxiv 859314. https://
doi.org/10.1101/859314

Violle, C., M.-L. Navas, D. Vile, E. Kazakou, C. Fortunel, I.
Hummel, and E. Garnier. 2007. Let the concept of trait be
functional!. Oikos 116:882–892.

Weisser, W. W., et al. 2017. Biodiversity effects one ecosystem
functioning in a 15-year grassland experiment: Patterns,
mechanisms, and open questions. Basic and Applied Ecology
23:1–73.

Wilson, J. B. 1988. Shoot competition and root competition.
Journal of Applied Ecology 25:279–296.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article at http://onlinelibrary.wiley.com/doi/
10.1002/ecy.3441/suppinfo

OPEN RESEARCH

Data sets are available from the University of Minnesota Cedar Creek Data Catalog under the following data set IDs: "ple123:
Plant aboveground biomass data"; "pce123: Plant species percent cover data"; "ple120: Plant aboveground biomass data"; "pce120:
Plant species percent cover data". The package functClust is available on the R-CRAN at https://CRAN.R-project.org/package=func
tClust. The R-codes (Jaillard 2021) used here for computing and drawing the figures are available from Portail Data INRAE at
https://doi.org/10.15454/DD9J5T.
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