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Ecosystem stability strongly depends on spatial aspects since localized perturbations

spread across an entire region through species dispersal. Assessing the synchrony of

the response of connected populations is fundamental to understand stability at different

scales because if populations fluctuate asynchronously, the risk of their simultaneous

extinction is low, thus reducing the species’ regional extinction risk. Here, we consider

a metacommunity model consisting of two food chains connected by dispersal and

we review the various mechanisms governing the transmission of small perturbations

affecting populations in the vicinity of equilibrium. First, we describe how perturbations

propagate vertically (i.e., within food chains through trophic interactions) and horizontally

(i.e., between food chains through dispersal) in metacommunities. Then, we discuss the

mechanisms susceptible to alter synchrony patterns such as density-depend dispersal

or spatial heterogeneity. Density-dependent dispersal, which is the influence of prey or

predator abundance on dispersal, has a major impact because the species with the

highest coefficient of variation of biomass governs the dispersal rate of the dispersing

species and determines the synchrony of its populations, thus bypassing the classic

vertical transmission of perturbations. Spatial heterogeneity, which is a disparity between

patches of the attack rate of predators on prey in our model, alters the vertical

transmission of perturbations in each patch, thus making synchrony dependent on which

patch is perturbed. Finally, by combining our understanding of the impact of each of

these mechanisms on synchrony, we are able to full explain the response of realistic

metacommunities such as themodel developed by Rooney et al. (2006). By disentangling

the main mechanisms governing synchrony, our metacommunity model provides a broad

insight into the consequences of spacial aspects on food web stability.

Keywords: food chain, top-down, bottom-up, dispersal, coupling, density-dependent, stochastic perturbations,

self-regulation

INTRODUCTION

Biodiversity is facing major threats because of ever growing anthropogenic perturbations as
reported by the IPBES assessment published in 2019 (Díaz et al., 2019). Human activities fragment
and alter species habitat, thus changing the connectivity between different populations and the
local conditions governing ecosystem functioning (Haddad et al., 2015). These distant populations
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experience their own dynamics whose synchrony is key for
species persistence and stability. Indeed, asynchronous dynamics
limit the risk of simultaneous local extinctions leading to
regional extinction (Blasius et al., 1999) and reduces the temporal
variability of species biomass at regional scale (Wang et al.,
2015). The metacommunity framework is particularly interesting
to address this spatial aspect of community dynamics (Loreau
et al., 2003; Leibold et al., 2004; Amarasekare, 2008; Leibold and
Chase, 2017; Gross et al., 2020), because it represents space as a
collection of patches hosting communities whose populations are
linked between patches by dispersal. Thus, in a landscape altered
by human activities, individuals navigate in a heterogeneous
metacommunity where the parameters governing community
dynamics vary among patches.

Rooney et al. (2006) set a milestone as they showed that top
predators can couple distinct energy channels that differ in both
productivity and turnover rate. They translated this statement
into amathematical model with two asymmetric energy channels,
i.e., two parallel food chains with different interaction strengths,
and showed that this asymmetry promotes both local and non-
local stability in food webs. In their model, top predators derive
their energy from two distinct food chains characterized by
different interaction strengths and they preferentially feed on the
food chain where prey are most abundant (Figure 1). Their work
opened research perspectives on some mechanisms governing
food web stability in metacommunities, in particular spatial
heterogeneity and habitat selection.

Spatial heterogeneity is a major factor in ecology and the
metacommunity framework is particularly adapted to study
its impact on food web dynamics. Organisms couple various
habitats by migration (Furey et al., 2018) and large mobile
predators couple different energetic pathways by feeding on
several prey (Vadeboncoeur et al., 2005; Rooney et al., 2006; Olff
et al., 2009). Spatial heterogeneity leads to different dynamics

FIGURE 1 | Model of Rooney et al. (2006) where top predators P couple two

food chains consisting of a resource R and a consumer C. Both resources

feed on a common nutrient pool Nc. Interaction strength between R1 and C1

and between C1 and P is γ times higher than in food chain 2. A fraction p of

nutrients from the common pool Nc is absorbed by R1. Top predators

preferentially prey on the consumer that has the highest biomass density

(π = C1/(C1 + C2) defines the preference for C1). See Equation (11) and

Supplementary Table S1-2 in the Supplementary Material for a detailed

description of the model and its parameters.

in each patch, which is supposed to promote asynchrony.
However, dispersal couples distant patches and links their
dynamics. Goldwyn and Hastings (2009) demonstrated that
low heterogeneity is enough to generate strong asynchrony in
metacommunities. Rooney et al. (2006) showed that spatial
heterogeneity (named structural asymmetry in their study),
stabilizes food webs by increasing its asymptotic resilience and
decreasing the synchrony of prey dynamics when predators are
perturbed. Unfortunately, Rooney et al. (2006) only considered
perturbations affecting top predators and prey preference
depending on prey abundance (Figure 1), thus confounding the
effects of spatial heterogeneity and prey preference. Pierre et
al. (In prep.) proposed an extensive description of the response
of heterogeneous metacommunities to stochastic perturbations.
They showed that spatial heterogeneity is not a fundamentally
stabilizing factor in metacommunities because it promotes
either synchrony or asynchrony of the populations of a species
depending on which population is perturbed (i.e., if the
perturbed population is in the patch where interaction strength
is the highest).

Metacommunity models usually represent dispersal as a
passive flow of individuals from high-density to low-density
patches. However, organisms select their habitat depending on
many factors, such as resource availability, predator avoidance
and climatic requirements (Fronhofer et al., 2015; Jacob et al.,
2015). Thus, dispersal is triggered by the abundance of other
prey and predators, as shown experimentally across many taxa
(Hauzy et al., 2007; Fronhofer et al., 2018; Harman et al.,
2020), thus generalizing density-dependent dispersal. Density-
dependent dispersal is closely related to the prey preference
implemented by Rooney et al. (2006) when predators have a
high dispersal rate and strongly couple prey population dynamics
because, in both cases, predation selectively increases in the
food chain with the highest biomass density of prey. This
mechanism increases asymptotic resilience and dampens the
oscillations of biomass dynamics (Post et al., 2000; McCann
et al., 2005; Rooney et al., 2006). Density-dependent dispersal
also promotes asynchrony in metacommunity models (Li et al.,
2005; Hauzy et al., 2010; Liu et al., 2016). Only Quévreux
et al. (2021c), however, considered stochastic perturbations. They
found that the predictions of models with density-dependent
dispersal are opposite to those of models with passive dispersal
because density-dependent dispersal alters the transmission of
perturbations between patches.

All these studies were focused on food web stability. However,
the notion of stability is the subject of intense debate in ecology
(McCann, 2000), and its various definitions do not measure the
same features of ecosystem dynamics (Arnoldi et al., 2016). Many
studies, including Rooney et al. (2006), considered asymptotic
resilience, which is the rate at which a system returns to
equilibrium after a perturbation in a very long run, as measured
by the dominant eigenvalue of the Jacobian matrix of the
system. Asymptotic resilience has often been used to describe
the stability of the entire system but Haegeman et al. (2016),
Arnoldi et al. (2018) demonstrated that it is actually driven
by rare species and ignores abundant species, which contribute
most to total biomass. Therefore, the temporal variability of
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biomass, measured by coefficient of variation (CV), is a much
better metric because it can be easily measured experimentally
and gives access to synchrony (Vasseur and Fox, 2009; Fox et al.,
2013). In addition, the CV of biomass in response to stochastic
perturbations is a powerful theoretical tool used by Quévreux
et al. (2021a) to disentangle the different mechanisms governing
synchrony as perturbations can affect particular species and are
then transmitted across the metacommunity.

Recently, several mechanisms governing synchrony in
metacommunities have been extensively described. The effects
of spatial heterogeneity and density-dependent dispersal
on synchrony in metacommunities have received particular
attention but these mechanisms were studies in isolation. Here,
we propose to go back to Rooney et al. (2006) and to reinterpret
their results in the light of the recent studies cites above. We first
describe the general framework of our model and how stability
can be assessed. We then summarize the results of our recent
studies on density-dependent dispersal (Quévreux et al., 2021c)
and spatial heterogeneity (Quévreux et al., in prep.). Finally, we
explain how these two mechanisms interact and shape synchrony
in a model similar to that developed by Rooney et al. (2006).

MEASURING STABILITY

Stochastic Perturbations
As mentioned above, stability can be measured by the temporal
variability of biomass generated by stochastic perturbations
(Arnoldi et al., 2016, 2019). Stochastic perturbations are applied
to one or several populations to measure the variance of
the biomass of each population following the transmission of
perturbations in the entire metacommunity. Mathematically,
stochastic perturbations are modeled as follows:

dBi = fi(B1, ...,BS)dt
︸ ︷︷ ︸

deterministic

+ σiB
z
i dWi

︸ ︷︷ ︸

perturbation

(1)

fi(B1, ...,BS) is the deterministic part of the dynamics of the
biomass of the species i, which depends on the biomass of
the S species present in the metacommunity (see Equations
8a, 8b bellow). Stochastic perturbations are defined by their
standard deviation σi and a white noise term dWi with mean
0 and variance 1. In addition, perturbations scale with each
species’ biomass with an exponent z depending on the type of
perturbation considered (Haegeman and Loreau, 2011; Arnoldi
et al., 2019): exogenous stochasticity (from harvesting for
instance) corresponds to z = 0, demographic stochasticity (from
birth-death processes) to z = 0.5, and environmental factors
to z = 1 (see demonstration in Lande et al., 2003 and in
the Supplementary Material of Quévreux et al., 2021a). Arnoldi
et al. (2019) showed that when a species is perturbed, the ratio
of its biomass variance to perturbation variance increases with
the species’ biomass in the case of environmental perturbations,
while it is independent of its biomass in the case of demographic
perturbations. Therefore, Quévreux et al. (2021a) and Quévreux
et al. (2021c) chose demographic perturbations in their analysis
as these enabled them to perturb different species with the same
relative intensity regardless of their abundance.

Response to Perturbations
Synchrony in the metacommunity can be evaluated from the
covariance between the temporal variations of the various
species and patches, which are encoded in the variance-
covariance matrix C∗. If the metacommunity is at equilibrium
and perturbations are small enough, we can linearise the system
in the vicinity of the equilibrium to get Equation (2) where
Xi = Bi − B∗i is the deviation from equilibrium [see the
Supplementary Material of Quévreux et al. (2021a) for more
mathematical details].

d
−→
X

dt
= J

−→
X + T

−→
E (2)

J is the Jacobian matrix and T defines how the perturbations
Ej = σjdWj affect the dynamics. For instance, Tij tells us
how perturbation j affects species i. In the case of independent
demographic perturbations, T is a diagonal matrix whose
elements are Tii = B∗0.5i .

Then, we get the variance-covariance matrix C∗ of species

biomasses (variance-covariance matrix of
−→
X ) from the variance-

covariance matrix of perturbations VE (variance-covariance

matrix of
−→
E ) by solving the Lyapunov (Equation 3) (Arnold,

1974; Wang et al., 2015; Arnoldi et al., 2016; Shanafelt and
Loreau, 2018, and see the Supplementary Material of Quévreux
et al., 2021a for a detailed description of the solution of
Equation 3).

JC∗ + C∗J⊤ + TVET
⊤ = 0 (3)

From the variance-covariance matrix C∗, whose elements are wij,
we can compute the correlation matrix R∗ of the system whose
elements ρij are defined by:

ρij =
wij

√
wiiwjj

(4)

Correlation coefficients represent the pairwise synchrony of
species i and j: if ρij > 0 (correlation), species i and j
are synchronous and if ρij < 0 (anti-correlation), species
i and j are asynchronous. Note that this metric is different
from the community-wide synchrony defined by Loreau and
de Mazancourt (2008), which measures the overall synchrony of
many species.

TROPHIC METACOMMUNITY MODEL

The metacommunity model used by Quévreux et al. (2021a)
and Quévreux et al. (2021c) is based on the food chain model
developed by Barbier and Loreau (2019), which corresponds to
the “intra-patch dynamics” part of Equations (5a) and (5b), and
integrates a dispersal term to consider a metacommunity with
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two patches (Figure 2A).

dB
(1)
1

dt
= B

(1)
1 (g1 − D1B

(1)
1 − α2,1B

(1)
2 )+ δ1(B

(2)
1 − B

(1)
1 ) (5a)

dB
(1)
i

dt
= B

(1)
i (−ri − DiB

(1)
i + εαi,i−1B

(1)
i−1 − αi+1,iB

(1)
i+1)

︸ ︷︷ ︸

intra-patch dynamics

+ δi(B
(2)
i − B

(1)
i )

︸ ︷︷ ︸

dispersal

for i > 1 (5b)

B
(1)
i is the biomass of trophic level i in patch #1, B

(2)
i its biomass

in patch #2, ε is the biomass conversion efficiency and αi,j is
the interaction strength between consumer i and prey j. Species
i disperses between the two patches at rate δi. The density
independent net growth rate of primary producers g1 in Equation
(5a), the mortality rate of consumers ri in Equation (5b) and the
density dependent mortality rate Di scale with species metabolic
ratesmi as biological rates are linked to energy expenditure.

g1 = m1g ri = mir Di = miD (6)

In order to get a broad range of possible responses, we assume the
predator-prey metabolic rate ratiom and the interaction strength
to self-regulation ratio a to be constant. These ratios capture the
relations between parameters and trophic levels. This enables us
to consider contrasting situations while keeping the model as
simple as possible.

m =
mi+1

mi
a =

αi,i−1

Di
di =

δi

Di
(7)

Varying m leads to food chains where predators have either
faster or slower biomass dynamics than their prey and varying
a leads to food chains where interspecific interactions do or do
not prevail over intraspecific interactions. As all biological rates
are rescaled by Di, we also define di, the dispersal rate relative to
self-regulation (referred as scaled dispersal rate in the rest of the
study), in order to keep the values of the dispersal rate relative to
the other biological rates consistent across trophic levels. Finally,
the time scale of the system is defined by setting the metabolic
rate of primary producers m1 to unity. Equations (5a) and (5b)
then become:

1

D

dB
(1)
1

dt
= B

(1)
1 (

g

D
− B

(1)
1 −maB

(1)
2 )+ d1(B

(2)
1 − B

(1)
1 )

(8a)

1

mi−1D

dB
(1)
i

dt
= B

(1)
i (−

r

D
− B

(1)
i + εaB

(1)
i−1 −maB

(1)
i+1)

︸ ︷︷ ︸

intra-patch dynamics

+ di(B
(2)
i − B

(1)
i )

︸ ︷︷ ︸

dispersal

for i > 1 (8b)

Thus, εa and ma define the positive effect of the prey on its
predator and the negative effect of the predator on its prey,
respectively (Figure 2B). These two synthetic parameters define
the overall behavior of the food chain and are varied over
the interval [0.1, 10] to consider a broad range of possible
responses (see Supplementary Table S1-1 for the values of the
other parameters). Indeed, over this range of parameters, biomass
distribution varies from bottom-heavy (i.e., prey are more
abundant than their predators) to top-heavy (i.e., predators are
more abundant than their prey), or display a trophic cascade
pattern with an alternation of abundant and rare species, top
predators always being abundant (Figure 2C). By covering this
range of possible responses, the robustness of the results to
various ecological contexts can be assessed to demonstrate the
generality of the involved mechanisms. However, for the sake of
simplicity, we will only show results for one combination of εa
and ma in the following [εa = 10 and ma = 10 because they are
close to the values used by Rooney et al. (2006)].

FUNDAMENTAL RULES OF
PERTURBATION TRANSMISSION AND
SPATIAL CORRELATION

The fundamental rules of perturbation transmission in trophic
metacommunities in the vicinity of equilibrium have been
described by Quévreux et al. (2021a). To summarize their results,
we consider a two patch predator-prey metacommunity with
passive dispersal of predators exclusively and perturbation of
prey in patch #1 (Figure 3A). Perturbations propagate vertically
in patch #1 through trophic interactions and correlate the
dynamics of prey and predators in patch #1 by a bottom-up
effect (Figure 3B 1©). Indeed, if perturbations increase prey
biomass, predator biomass also increases because of the vertical
transfer of biomass. Then, the passive dispersal of predators
transmits the perturbations horizontally and correlates their
populations spatially (Figure 3B 2©). Finally, predators in patch
#2 transmit perturbations vertically to the rest of the food chain
in patch #2 by a top-down effect. This leads to the temporal anti-
correlation of the dynamics of predators and prey (Figure 3B
3©), because if a perturbation increases predator biomass, prey
biomass decreases due to the negative effect of predators on prey.
The final result of all these effects is the spatial anti-correlation of
prey biomass dynamics (Figure 3B 4©). It is possible to explain
the entire correlation matrix of the metacommunity in the same
way (Figure 3C).

This simple mechanism can be easily applied to more complex
setups. When several species are able to disperse, Quévreux et al.
(2021a) showed that the species with the highest dispersal relative
to the other local demographic processes (e.g., predation and
self-regulation) transmits perturbations to the other patch. In
addition, the effects of independent perturbations on the variance
and correlation of species are additive (see Quévreux et al.,
2021a; Supplementary Material). Thus, a metacommunity of
many species receiving multiple independent perturbations can
be simplified into a sum of tractable sub-metacommunities to
explain the synchrony of its different populations.
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FIGURE 2 | General description of the metacommunity model. (A) Metacommunity model with two patches, each sustaining a food chain with the same species

whose populations are linked by dispersal. (B) Food web model: εa the positive effect of the prey on its predator and ma the negative effect of the predator on its prey.

Di is self-regulation, which represents negative intra-specific interactions (e.g., disease and territoriality). (C) Biomass distribution in an isolated food chain depending

on εa and ma (g = 1, r = 0, ε = 0.65, D = 1, di = 0). Adapted from Quévreux et al. (2021a).

FIGURE 3 | Synchrony in a two-patches predator prey metacommunity. Only predators are able to disperse and prey receive stochastic perturbations in patch #1.

(A) Propagation of perturbations from patch #1 to patch #2. (B) Correlation between the various populations in response to perturbations. (C) Correlation matrix of the

metacommunity. Each colored square represents the correlation coefficient between two populations. The green numbers correspond to the correlations showed in

(B), for instance, squares labeled with 1 are the correlation between prey and predators in patch #1. The diagonal blocks (delimited by white dashed lines) represent

the correlation of populations within the same patch, while the off-diagonal blocks represent the correlation of populations belonging to different patches. (εa = 0.1,

ma = 10 and d2 = 103, from Quévreux et al., 2021c).

BREAKING THE RULES

Several mechanismsmay alter these fundamental rules governing
perturbation transmission inmetacommunities. In the following,
we describe two mechanisms that can reverse the synchrony
predicted by the simple model described previously: density-
dependent dispersal and spatial heterogeneity.

Density-Dependent Dispersal
Most metacommunity models consider passive dispersal for the
sake of simplicity. However, many species emigrate to find food
or avoid predators (Fronhofer et al., 2015; Jacob et al., 2015).
Quévreux et al. (2021c) included the density-dependent dispersal
function of Hauzy et al. (2010) in the metacommunity model
developed by Quévreux et al. (2021a) (see Equation 10 in the
Supplementary Material).

Thus, the dispersal of species i can be modulated by its
own density, prey density and/or predator density. In the
following, we only consider the prey density-dependent dispersal
of predators (fprey,i detailed in Equation 9a), but the two
other dependencies are thoroughly described in Quévreux et al.
(2021c).

fprey,i(Bi−1) =
B−1
i−1

B−1
i−1 + S−1

i,i−1

(9a)

Si,j = S0,iB
∗
j (9b)

Si,j is the sensitivity of the dispersal of species i to species j
biomass density, with S0,i a constant and B∗j the biomass of

species j at equilibrium. fprey,i(Bi−1) is a decreasing function of
Bi−1, which means that a higher biomass density of prey in patch
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#1 decreases the emigration of predators to patch #2 (negative
density-dependent dispersal). In addition, varying S0,i enables
us to tune the sensitivity of dispersal to biomass density. For
instance, for prey density-dependent dispersal fprey,i, a small value
of S0,i leads to a strong response to prey biomass while a high
value leads to a weak response. In the latter case, dispersal is
similar to passive dispersal.

Quévreux et al. (2021c) showed that taking density-dependent
dispersal into account can lead to synchrony patterns in
total contradiction to those predicted by models considering
passive dispersal. As an example, we consider a metacommunity
with two trophic levels where only predators are able to
disperse depending on prey density (see Equation 10 in
the Supplementary Material), and prey in patch #1 receive
stochastic perturbations. If predator dispersal is not sensitive to
prey density (S0,i = 103), the dynamics of prey populations are

FIGURE 4 | Correlation between populations in the two patches depending on

the sensitivity coefficient S0,i . Prey in patch #1 receive stochastic perturbations

and predator dispersal depends on prey biomass density. Prey do not disperse

(εa = 10, ma = 10 and d2 = 103). Adapted from Quévreux et al. (2021c).

anti-correlated (Figure 4), according to the results of Quévreux
et al. (2021a) presented in Figure 3. If predator dispersal is
sensitive to prey density (S0,i = 10−3), the dynamics of prey
populations become correlated and predator populations tend to
be anti-correlated (Figure 4).

To explain these correlation patterns, Quévreux et al. (2021c)
proposed two mechanisms, which we detail in the case of a
perturbation that increases the biomass of prey in patch #1. First,
when dispersal depends on the density of several species, the
species with the highest biomass CV drives dispersal, i.e., prey in
the case we consider (Supplementary Figure S1-1A). Note this
mechanisms is acting for prey and predator density-dependent
dispersal (Figure 5A). This makes predators immigrate in
patch #1 because prey are abundant there, and leads the
opposite variations of predator biomass between the two
patches (Supplementary Figure S1-1B). Thus, perturbations are
directly transmitted from prey in patch #1 (Figure 5B 1©) to
patch #2 and bypass the classic vertical transmission through
trophic interactions (Figure 5B 2©). Finally, perturbations are
transmitted vertically in patch #2 (Figure 5B 3©), and the release
of predator pressure in patch #2 increases prey biomass in
patch #2.

Spatial Heterogeneity
Representing spatial heterogeneity is one of the major purposes
of the metacommunity framework. Quévreux et al. (in prep.)
represented spatial heterogeneity in the same way as Rooney
et al. (2006) by increasing interaction strength by a factor γ

in patch #1 (Figure 6). They also increased biomass production
by primary producers by a factor ω, which is set equal to γ

in the following. They showed that varying ω does not change
synchrony qualitatively but strongly affects species persistence.

Quévreux et al. (in prep.) mainly showed that, in
heterogeneous metacommunities, synchrony depends on
which patch is perturbed, i.e., perturbing the population
of a species in patch #1 or #2 does not lead to the same
correlation pattern between patches. Here, we consider a
metacommunity where interaction strength is higher in patch #1

FIGURE 5 | Effect of density-dependent dispersal on perturbation propagation in metacommunities. (A) If dispersal depends on the density of several species, the

species with the highest biomass CV drives dispersal. (B) Propagation of stochastic perturbations when predators have prey density-dependent dispersal. 1 Direct

stochastic perturbation of prey in patch #1. 2 Horizontal transmission to the predators in patch #2 by density-dependent dispersal that bypasses vertical transmission

in patch #1. 3 Vertical transmission in patch #2 through trophic interactions. (Adapted from Quévreux et al., 2021c).
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FIGURE 6 | Metacommunity model with spatial asymmetry in interaction

strength. Interaction strength and biomass production by primary producers

are γ and ω times higher, respectively, in patch #1 than in patch #2.

FIGURE 7 | Correlation between the two populations of prey and predators

depending on asymmetry of interaction strength γ when prey are perturbed in

either patch #1 or patch #2. Only predators are able to disperse (εa = 10,

ma = 10, d2 = 103 and ω = γ ). Adapted from Quévreux et al. (in prep.).

and only predators are able to disperse. Increasing asymmetry
of interaction strength γ increases the correlation of prey
populations when prey are perturbed in patch #1 while it
decreases it when prey are perturbed in patch #2 (Figure 7).
This discrepancy is due to the source-sink dynamics of predators
(predator biomass produced in excess in patch #1 spills over
patch #2), which increases apparent competition for prey and
leads to a lower prey biomass in patch #2 than in patch #1
(Figure 8 1© and Supplementary Figures S1-2A,B). This alters
predator-prey dynamics: when prey are perturbed in patch
#1, high prey biomass and high interaction strength generate
strong responses of prey and predator biomasses (Figure 8A
2© and Supplementary Figures S1-2C) that are transmitted to
prey in patch #2, which are completely under predator control
(Figure 8A 3©). This increases synchrony because predators
drive the dynamics in the two patches. When prey are perturbed
in patch #2, predator-prey dynamics are weak because of low prey
biomass and weak interaction strength (Figure 8B 2©). Thus,
perturbations are weakly transmitted to patch #2 (Figure 8B 3©)
and prey populations slowly return to equilibrium, which leads
to asynchrony (Supplementary Figure S1-2C).

WHEN DENSITY-DEPENDENT DISPERSAL
AND SPATIAL HETEROGENEITY COLLIDE

We now build a model similar to Rooney et al.’s (2006) food web
model (Figure 9A). We consider four trophic levels and we set
dispersal to mimic the coupling of the two food chains in Rooney
et al.’s (2006) model (Figure 9B). Primary producers have a
high passive dispersal, which correlates its two populations, in
order to mimic the common nutrient pool of Rooney et al.’s
(2006) model (see Equation 11 and Supplementary Table S1-2

in the Supplementary Material for a detailed description of
the model). Top predators have a prey density-dependent
dispersal that is equivalent to the prey preference governing
foraging effort in Rooney et al.’s (2006) model (see Equations
12, 13 and Supplementary Figures S1-3–S1-6 in the
Supplementary Material). We set the scaled dispersal rates
of primary producers and top predator equal to 103 to strongly
couple the two populations and make them equivalent to a
unique population. Finally, Rooney et al. (2006) did not consider
self-regulation and biomass was distributed in a trophic cascade
pattern in their model (see Supplementary Figure S1-3C),
thus we study our model for εa = 10 and ma = 10 to have
similar characteristics.

Rooney et al. (2006) only considered perturbations of top
predators but here, we also consider perturbations affecting their
prey to understand how the coupling described in Rooney et al.
(2006) transmits perturbations across space. When top predators
(species 4) are perturbed, their population dynamics are strongly
correlated (Figure 10A) because the passive component of
dispersal (i.e., imbalance in top predator biomass distribution
among patches) prevails due to rapid dispersal (d4 = 103)
while the transmission to carnivores (species 3) through trophic
interactions is slower (ma = 10). This correlation of top
predators leads to the correlation of carnivore because of the
synchronous top-down transmission of perturbations in both
patches. The observed decrease in synchrony with asymmetry
of interaction strength γ is due to the slight difference in the
dynamics of the two patches.

When carnivores (species 3) are perturbed, their population
dynamics are correlated while the dynamics of the top predator
(species 4) are anti-correlated (Figure 10A), in accordance with
the results of the model with density-dependent dispersal alone
(Figure 4). Indeed, when carnivores are perturbed, their biomass
CV is higher than that of top predators (Figure 10B), and the
dispersal of top predators is governed by their prey density-
dependent component.

Increasing the asymmetry of interaction strength γ affects
several aspects of the metacommunity. First, it alters the biomass
distribution in the metacommunity. Because of increased
interaction strength in patch #1, primary producers (species 1)
are heavily predated in patch #1, which acts as a sink, while
patch #2 is a source. Thus, the biomass of all consumers is
higher in patch #1 than in patch #2 (Figure 11A). The biomass
of all species is higher than in the same food chain without
dispersal in patch #1, while it is lower in patch #2 (Figure 11B).
Second, increasing γ decreases the correlation of carnivore
dynamics (species 3) when they are perturbed in patch #1, while
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FIGURE 8 | Effect of spatial heterogeneity on synchrony. Asymmetry of interaction strength γ leads to a strong apparent competition 1 , creating biomass difference

between the two patches (disk size). (A) Perturbation of prey in patch #1 which 2 leads to strong responses of prey and predator biomasses due to abundant prey

biomasses and high interaction strength. 3 Strong transmission in patch #2 increasing the correlation of prey populations (control of prey populations by predators).

(B) Perturbation of prey in patch #2 which 2 leads to weak predator-prey dynamics due to low prey biomass and low interaction strength. 3 Weak transmission in

patch #2 leading to almost independent recovery in each patch, which decreases correlation. Adapted from Quévreux et al. (in prep.).

FIGURE 9 | Comparison between (A) Rooney et al.’s and (B) our metacommunity model. γ is the asymmetry of interaction strength and p the fraction of nutrients

taken up by resource species in food chain #1 (p = 0.5). Four species are considered: primary producers (species 1), herbivores (species 2), carnivores (species 3)

and top predators (species 4).

it mostly increases this correlation when carnivores are perturbed
in patch #2 (Figure 10A). This result is in contradiction with
the results of the model with asymmetry alone that predicts
the opposite (Figure 4). This discrepancy is explained by the
interaction between the effects of density-dependent dispersal
and spatial heterogeneity. For instance, when carnivores are
perturbed in patch #1 (Figure 12A 1©), perturbations are
directly transmitted in patch #2 by density-dependent dispersal
(vertical trophic transmission is bypassed, see Figures 5, 12A
2©). Then, weak trophic interactions in patch #2, because
of low interaction strength and low biomass (Figure 11),
poorly transmit perturbations and decrease the correlation

between the two populations of carnivores (Figure 12A 3©).
Conversely, strong trophic interactions in patch #1 permit a
good transmission of perturbations and lead to the strong
correlation of the two populations of carnivores when they are
perturbed in patch #2 (Figure 11B 3©). To sum up, because of
density-dependent dispersal, perturbations bypass the vertical
transmission in the patch where they occur and directly affect
the other patch where vertical transmission matters. This is
different from Pierre et al. (In prep.), who found that the vertical
transmission of perturbations in the perturbed patch was central
to determine correlation patterns. Therefore, the swap of the
patch where vertical transmission of perturbations matters due to
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FIGURE 10 | Response of the metacommunity to stochastic perturbations depending on asymmetry of interaction strength γ and the perturbed species (top label).

Line types represent the patch where species are perturbed. (A) Correlation between populations of top predators (species 4 in red) and carnivores (species 3 in

green). (B) Coefficient of variation of biomass of top predators and carnivores in the patch where perturbations occur (i.e., if top predators are perturbed in patch #1,

we only display the biomass CV of species in patch #1).

FIGURE 11 | Biomass distribution depending on asymmetry of interaction strength γ . (A) Absolute biomass of each species in each patch. (B) Biomass scaled to the

biomass measured in a metacommunity without dispersal. Note that the curves of species 2 are not missing but simply overlap with the curves of species 4.

density-dependent dispersal explains the discrepancies between
Figures 7, 10A.

DISCUSSION

In this paper, we have presented a broad overview of
the mechanisms that govern synchrony in metacommunities
affected by perturbations in the vicinity of equilibrium.
Fundamentally, in a homogeneous metacommunity with passive
dispersal, which is our null model of metacommunity, passive
dispersal correlates the dynamics of the dispersing species and
transmits perturbations between patches. Thus, perturbations

have a bottom-up transmission in one patch and a top-down
transmission in the other patch (Figures 3B, 13A), which leads
to different correlation patterns in each patch. Then, comparing
these intra-patch correlation patterns is enough to predict the
inter-patch correlation patterns (i.e., the correlation of the
dynamics of population belonging to different patches). We
have detailed two mechanisms that alter these fundamental
rules: density-dependent dispersal and spatial heterogeneity.
First, if dispersal depends on the biomass density of other
species, perturbations can affect the dispersing species directly
and bypass the classic vertical transmission through trophic
interactions (Figures 5B, 13B). In this case, correlation patterns
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FIGURE 12 | Crossed effects of density-dependent dispersal and asymmetry of interaction strength γ when carnivores are perturbed (A) in patch #1 or (B) in patch

#2. Synchrony is explained by the successive steps of perturbation propagation across the metacommunity. 1 Direct stochastic perturbation of carnivores in one

patch. 2 Horizontal transmission to the other patch by density-dependent dispersal that bypasses vertical transmission in the perturbed patch. 3 Vertical

transmission in the other patch through trophic interactions. This vertical transmission is stronger in patch #1 than in patch #2 because of the high biomasses (disc

size) and the interaction strength, which is γ times higher in patch #1 than in patch #2, which leads to strong trophic interactions (arrow size).

FIGURE 13 | Summary of the mechanisms governing synchrony in metacommunities. (A) Fundamental rules of perturbation transmission in a homogeneous

metacommunity with passive dispersal. (B) Density-dependent dispersal alters the horizontal transmission of perturbations. (C) Spatial asymmetry alters the biomass

densities and the vertical transmission of perturbations in each patch.

can be opposite to those predicted by the null model, which
only consider passive dispersal (Figure 4). Second, if space
is heterogeneous, with different interaction strengths in the
two patches in our case, perturbations are either transmitted
strongly in the patch where interaction strength is high or
weakly transmitted in the patch where interaction strength is low
(Figures 8, 13C). The correlation of the dynamics of the two
populations of the perturbed species depends on which patch
is perturbed: perturbing the patch with low interaction strength
decreases the correlation while perturbing the patch with high
interaction strength increases the correlation compared with that
predicted by a model with an homogeneous space (Figure 7).

Finally, combining density-dependent dispersal and spatial
heterogeneity leads to the reversal of the effect of heterogeneity
on synchrony. In fact, density-dependent dispersal bypasses the
vertical transmission of perturbations in the perturbed patch and
transmits perturbations to the other patch directly, where vertical
transmission matters (Figure 12).

Contribution of Models to Explain
Synchrony
Dispersal is a complex process that has received much attention
in the last two decades in order to understand the dynamics
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of metacommunities. Many mechanisms have been identified
(Amarasekare, 2008; Gross et al., 2020), but most of them
have been studied with different models (metacommunity or
coupled food webs) displaying different dynamical regimes
(equilibrium or limit cycles) and with different measures of
stability (asymptotic resilience, occurrence of Hopf bifurcation,
or temporal variability). Here, we propose a general framework
based on a food web model that covers a broad range
of ecological contexts, which enables us to derive robust
conclusions. In addition, the flexibility of the model, which
can be easily modified, and the use stochastic perturbations,
which can target specific trophic levels in a particular patch,
enable us to have a deep understanding of the mechanisms
acting in the metacommity. Most previous studies described
the factors governing synchrony and stability without explaining
the mechanisms underlying the observed effects. For instance,
Hauzy et al. (2010) and Rooney et al. (2006) did not explain how
density-dependent dispersal and asymmetry affect synchrony.

Our model fills this gap: it is easy to handle because it is
linearised and most of the mechanisms have additive effects.
For instance, the effects of density-dependent dispersal and
spatial heterogeneity can be disentangled properly. It appears
that spatial heterogeneity has a weaker effect on predator (species
3) synchrony than density-dependent dispersal since the overall
correlation of their populations is qualitatively similar to that
obtained in a model with density-dependent dispersal only.
Thus, in Rooney et al. (2006) model, prey preference is the
major driver of synchrony and structural asymmetry, which
is how they defined spatial heterogeneity, has minor effects.
The comparison with Rooney et al.’s (2006) model stresses the
continuum between coupled food chains and metacommunities.
Many studies consider a unique population of mobile top
predators feeding on two distinct energetic channels (Post et al.,
2000; McCann et al., 2005; Rooney et al., 2006; Vasseur and Fox,
2007; Attayde and Ripa, 2008), but these models are actually a
limiting case of a metacommunity in which top predators have a
density-dependent dispersal and a high dispersal rate.

Our results based on a two-patch metacommunity may
well explains what would happen in a larger landscape with
many patches since the overall response to perturbations
would be the additive effect of pairwise connections between
patches. Synchrony in multi-patch metacommunities has been
addressed by models with limit cycles (Marleau et al., 2014;
Hayes and Anderson, 2018), but the response of such large
metacommunities to perturbations remains to be explored.

Trophic Context of Dispersal
Synchrony in metacommunities is tightly linked to trophic
interactions and biomass distribution. Barbier and Loreau (2019)
and Quévreux et al. (2021a) showed that perturbations tend
to have a bottom-up (top-down) transmission when biomass
pyramid is bottom (top) heavy. This is mostly due to the
distribution of metabolic rates among species: when m is high,
high trophic levels have a faster metabolic rate than lower trophic
levels, which accelerates their biomass dynamics (Equation 8b).
Thus, these fast top predators will quickly dampen perturbations
while perturbed lower trophic levels with a slower pace of life will

have a stronger impact on the rest of the food chain. In addition,
some types of perturbations can affect species depending on
their abundance. Arnoldi et al. (2019) showed that immigration
perturbations strongly affect rare species while environmental
perturbations strongly affect abundant species. Demographic
perturbations are generally used because they affect species with
the same intensity regardless of their biomass but environmental
perturbations are more relevant from an ecological point of view.
Thus, synchrony in metacommunities under environmental
stressors affecting every species may be more easily understood
by tracking the transmission of perturbations affecting the most
abundant species.

The effect of dispersal is conditioned indirectly by trophic
dynamics. Quévreux et al. (2021a) showed that perturbation
transmission depends on the relative importance of dispersal
compared with the other local demographic processes. Thus,
in a metacommunity, dispersal will have the biggest impact
not on the species with the highest dispersal rate but on the
species for whom dispersal has the highest relative contribution
to biomass dynamics. This distinction is critical because many
studies reported that the dispersal of particular trophic levels is
stabilizing (Koelle and Vandermeer, 2005; Pedersen et al., 2016).

The trophic context of dispersal is even more important for
density-dependent dispersal. Quévreux et al. (2021c) showed that
vertical transmission through trophic interactions is bypassed
only if the species interacting with the dispersing species have
a higher biomass CV than the dispersing species (Figure 5A).
Species biomass CV depends on perturbation intensity but also
on its transmission across the food chain. Shanafelt and Loreau
(2018) demonstrated that in food chains displaying a trophic
cascade, species experiencing a strong top-town control have a
high biomass CV because they have a low biomass. Thus, trophic
cascades also translate into stability cascades with species being
more or less stable depending on their trophic position. In the
case of density-dependent dispersal, these rare species should
have a major impact on dispersal in many situations.

Finally, we were able to draw general conclusions from
the wide range of responses displayed by the model. A key
factor of Barbier and Loreau (2019) model is self-regulation,
which encapsulates various negative intra-specific interactions
such as territoriality, cannibalism and disease transmission
that lead to a density-dependent mortality rate. Self-regulation
remains neglected in many food web models, although it has
been identified in natural marine phytoplankton communities
(Picoche and Barraquand, 2020), where it promotes species
coexistence (Picoche and Barraquand, 2019) and food web
stability (Barabás et al., 2017) by dampening interspecific
interactions relative to intraspecific interactions. Thus, self-
regulation definitively interferes with dispersal andmust be taken
into account in future metacommunity models.

Equilibrium and Nonequilibrium Dynamics
As we explained above, our model is easy to handle because
it is linearised and thus most of its responses to perturbations
have additive effects. However, this may not hold with systems
that are not at equilibrium or subject to perturbations pushing
them to far from equilibrium. For instance, Post et al. (2000),
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McCann et al. (2005), Hauzy et al. (2010), and Marleau et al.
(2014) did not consider self-regulation and their food webmodels
were characterized by strong inter-specific interactions leading to
limit cycles.

In systems with limit cycles, phase-locking, which is a constant
phase difference between patches through time, can occur and
lead to emergent metacommunity properties (Jansen, 1999; Lloyd
and May, 1999). For instance, Goldwyn and Hastings (2009)
showed that even a 0.1% variation in species parameters among
patches (small spatial heterogeneity) is enough to generate
substantial asynchrony. Two components of the structure of the
metacommunity are critical for its stability. First, the dispersal
of particular trophic levels determines the occurrence of limit
cycles and the synchrony of their phase (Koelle and Vandermeer,
2005; Hauzy et al., 2010; Pedersen et al., 2016). Second, in
spatially explicit metacommunities, connectivity between patches
(Guichard et al., 2019) and their spatial organization (Marleau
et al., 2014; Hayes and Anderson, 2018) drive phase synchrony.
For instance, in riverine metacommunities, patch linked to
multiple upstream and downstream patches have communities
with less temporal variability (Anderson and Hayes, 2018).

These responses of oscillating systems are not disconnected
from responses to stochastic perturbations. Vasseur and
Fox (2007) demonstrated that small synchronous stochastic
perturbations can continuously deviate the system from its
regular oscillations and dampen predator dynamics. Thus,
stochastic perturbations and limit cycles can strongly interact
to drive food web stability. Finally, in systems at equilibrium
but with strong predator-prey interactions (high values of εa
and ma), perturbations lead to dampened oscillations (see
Rooney et al., 2006 and Supplementary Figure S1-2). Large
perturbations affecting this kind of system could then lead to
responses at the interface between stochastic perturbations and
limit cycles. Thus, the theoretical framework used to understand
synchrony in systems with limit cycles may be used in future
studies to understand the response to perturbations of systems
close to the Hopf bifurcation.

Empirical Testing
Theoretical models help us to understand the response of
ecosystems to perturbations, but empirical tests are required to
confirm the effects of the described mechanisms in real systems.
Fortunately, empiricists have already developed methods and
equipments for manipulating metacommunities. Microcosms
offer immense possibilities because of their high level of control,
as extensively described by Altermatt et al. (2015). Bacteria
and protists represent huge populations with predator-prey
dynamics that can be quantified efficiently by flow cytometry
and image analysis to record fine scale times series (Vasseur
and Fox, 2009; Fox et al., 2013). For instance, Vasseur and
Fox (2009) manually drove dispersal by pipetting medium from
one microcosm to another and applied stochastic perturbations
by randomly changing temperature. Harvey et al. (2016) and
Harvey et al. (2020) coupledmicrocosms by exchanging subsidies
(microwaved aliquots of medium) and oriented dispersal by
asymmetric transfer of medium between microcosms.

Larger facilities are required to perform experiments with
populations of large mobile organisms such as flying insects

and vertebrates. The terrestrial metatron consists of 48
interconnected caged patches (10 × 10 × 2 m) where
temperature, humidity and illuminance can be controlled
(Legrand et al., 2012). There, Fronhofer et al. (2018) measured
density-dependent dispersal of butterflies and damselflies in
the presence of predators such as toads and frogs. Its aquatic
equivalent consists of 144 basins of 2 m3 each that can
be connected by aquatic or aerial corridors and in which
temperature can be controlled. The PLANAQUA experimental
facility includes an aquatic macrocosm platform consisting of 16
artificial lakes with an individual volume of 700 m3, connected
to each other by dispersal corridors, and equipped with an
automated instrumentation (Mougin et al., 2015). With such a
platform, long-term experiments with large fish populations can
be performed in a controlled environment, which is close to a
natural shallow pond integrating littoral, benthic, and pelagic
zones. However, a strong sampling effort is required to get the
time series of predator-prey dynamics and assess their temporal
stability (Rakowski et al., 2019).

Adding the Ecosystem Perspective
We summarized a few mechanisms that govern synchrony in
metacommunities but these mechanisms are population centered
and do not account for the rest of the ecosystem. Ecosystems
are linked by flows of matter and energy (Gruber and Galloway,
2008; Gounand et al., 2018b), turning metacommunities
into metaecosystems (Loreau et al., 2003; Massol et al.,
2011; Guichard, 2017; Gounand et al., 2018a). Nutrient
cycling strongly affects ecosystem dynamics (DeAngelis, 1992;
Loreau, 1994, 2010; Quévreux et al., 2021b) and the response
of local ecosystems to perturbations (Theis et al., 2022).
Nutrient flows between ecosystems create subsidies that alter
local dynamics and can be destabilizing by increasing the
amplitude of biomass oscillations (Marleau et al., 2010),
while the dispersal of particular trophic levels in such
metaecosystems can dampen these negative effect (Leroux and
Loreau, 2012; Gounand et al., 2014). However, the general
response of metaecosystems to stochastic perturbations is yet to
be studied.

Conclusion
In the context of global changes, in a world where habitat
is fragmented and subject to anthropogenic perturbations,
understanding the drivers of species dispersal and how
spatial structure shapes the dynamics at landscape scale
are crucial for conservation policies. The metacommunity
framework is a powerful tool to achieve this goal because
it enables us to disentangle the various mechanisms
governing the synchrony of species dynamics at local and
regional scales. This paper has summarized some aspects of
metacomminities such as density-dependent dispersal and
spatial heterogeneity, which are key to predict the response
of metacommunities to perturbations. These mechanisms
can be studied in isolation and their individual effects can
be added up to have an insight in the response of realistic
metacommunity to perturbations. Ultimately, our results
help us to identify the species and the patches for which
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perturbations must be mitigated to improve stability at local and
regional scales.
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