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Coevolution has driven speciation and evolutionary novelty in functional traits
across the Tree of Life. Classic coevolutionary syndromes such as plant-pollinator,
plant-herbivore, and host-parasite have focused strongly on the fitness conse-
quences during the lifetime of the interacting partners. Less is known about the
consequences of coevolved traits for ecosystem-level processes, in particular
their 'afterlife' legacies for litter decomposition, nutrient cycling, and the functional
ecology of decomposers. We review the mechanisms by which traits resulting from
coevolution between plants and their consumers, microbial symbionts, or humans,
and between microbial decomposers and invertebrates, drive plant litter decom-
position pathways and rates. This supports the idea that much of current global
variation in the decomposition of plant material is a legacy of coevolution.

Coevolution: from fitness focus to decomposition driver

A key driver of speciation and trait development has been coevolution, in which the evolutionary
trajectories of two taxa depend on one another [1-4]. Coevolution can be a feature of a highly
specific interaction, for example, the exclusive pollination of Yucca whipplei by the moth
Tegeticula maculata [5], or — more often — it is embedded in a complex, multi-species web of
interactions [6]. Pollination is often seen as the most illustrative example of coevolution. Other
widely studied categories of coevolution are plant-herbivore, seed—-disperser, host—parasite,
predator—prey, host—(endo)symbiont, and competitive relationships [2].

In the current coevolution literature, the focus has been on how coevolved traits affect the fitness of
the respective partners during their lifetime, either positively in both partners (as in mutualisms) or
negatively in one partner (as in host-parasite and plant-herbivore relationships). By comparison,
secondary consequences of coevolution for other processes have rarely been considered. One
key secondary consequence is that many coevolved plant traits continue to be of ecological signif-
icance after the death of plant tissue. Their decomposition is thought of as an 'afterlife’ effect [7]. The
relevant plant afterlife traits interact with different taxonomic and functional groups of decomposers:
fungi, bacteria, and invertebrates. There is growing knowledge about how the trait evolution of plants
[8-10] and decomposers [11] has contributed to the decomposition pathways and rates observed
today. There is also growing knowledge about how evolutionary linkages between plants and other
organisms they co-occur with, such as herbivores, pathogens, microbial symbionts, and humans,
impact on decomposition rates. However, this knowledge is scattered through different fields of
the decomposition-related literature. A comprehensive understanding of the coevolution legacy for
decomposition of dead plant matter by different mechanisms would greatly contribute to our ability
to predict the effects of global change-induced alterations in vegetation composition on biogeo-
chemical cycling. This is partly because biotic interaction networks that are important for ecosystem
functions including decomposition [12], and which are to a large extent the legacy of coevolution, are
rapidly being disrupted because of climate and land-use changes [13,14].

This paper aims to fill this research gap by assembling different categories of coevolutionary
legacy for plant decomposition (Figure 1), each with different pairs of biotic partners including
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for litter decomposability.
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ing, plant breeding, and modified land-
scapes with feedback to evolution of
human brain, digestion, and dentition.

How myriad coevolutionary links be-
tween invertebrates and microbial de-
composers affect global carbon cycling
needs further investigation.

Overall, plant decomposition rates are
largely the legacy of wide-ranging coevo-
lutionary relationships.
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Figure 1. Conceptual framework showing the types of coevolution in terms of partner—partner and their legacy
for plant decomposition. These include coevolution between microbes (gray), plants (green), animals (yellow), and
humans (red) with cascading impacts on decomposition (blue). Processes and chemistry linking the boxes are in black
text, and examples of the biotic interactions are in red text. Abbreviation: N, nitrogen.

(i) plants with their consumers, (i) plants with mutualistic microbes, (i) plants with people, and
(iv) microbial litter decomposers with fauna. These four categories should bring complementary
evidence for our hypothesis — that the variation in the decomposition of plant material in today's
world is, to a large extent, the legacy of the coevolution between multiple pairs of evolutionarily
distant organisms.

Legacy of plant-consumer coevolution for decomposition

Coevolution between plants and their consumers, including herbivorous and pathogenic
vertebrates, insects, nematodes, viruses, fungi, protozoans, and bacteria, is likely responsible
for much of the Earth's biological diversity [15]. Plant herbivores and pathogens have evolved
myriad traits to break through plant defenses [16] (Figure 2). For instance, many mandibulate
insects that feed on latex-producing plants cut leaf veins to prevent latex flowing towards their
feeding site [17]. In turn, diverse plant species have evolved defenses against their natural
enemies, including thorns and urticating hairs, latex exudation, physically reinforced cell walls,
and wide-ranging toxic molecules (e.g., flavonoids, polyphenols). The latter chemical compounds
may also yield other protective functions (e.g., against solar radiation, frost, mechanical damage)
or attract natural enemies of herbivores [18]. Nonetheless, the evolution of different resistance
strategies, for instance to insect herbivory, is at least partly responsible for the increased com-
plexity of secondary plant metabolites, which in turn has led to a wide diversification of herbivores
[19]. The consequence of such coevolution has mostly been to slow down litter decomposition,
although this is likely dependent on the specific plant adaptation (Figure 2). Indeed, structural/
mechanical [20] or chemical defenses [21] that decrease the palatability of living plant organs
are often still found in shed plant organs. Structural defenses per se against animals likely do not
affect decomposability upon senescence, whereas chemical defenses should continue to affect
litter decomposability across species (Figure 2) [20,22]. The persistence of the defenses driving
this negative relationship between plant palatability and decomposability ranges from long-
lasting to ephemeral after senescence. Polymers such as lignin are particularly long-lasting and
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Figure 2. Potential legacy of plant-consumer coevolution for decomposition. The rise of herbivores (red box) has
resulted in myriad plant defenses (green boxes), with potential effects on litter decomposition. Evolution of different resistance
strategies in plants has led to a wide diversification of herbivore innovations (yellow boxes), resulting in an evolutionary arms
race with plants. In particular, the formation of long-lasting defense and structural compounds as a result of plant-herbivore
coevolution is thought to have resulted in slow decomposition (orange boxes). Detritivore (microbes and animals) innovations
to the afterlife effect of these recalcitrant substrates in litter weaken the negative effects of long-lasting compounds on
decomposition (light beige boxes). Whether or how defensive thorns, trichomes, or urticating hairs, as well as ephemeral
(e.g., soluble) defense compounds, affect leaf decomposition is not known, but any impact is unlikely to be strong
(blue boxes).

lead to slow decomposition both directly and indirectly: recalcitrant lignin molecules are often
interwoven with cellulose and hemicellulose, rendering the latter inaccessible to the extracellular
enzymes of potential decomposers [23].

At the ephemeral end of the range, compounds such as [nitrogen (N)-based] cyanogenic glyco-
sides are water-soluble toxins that are broken down rapidly by microbes both in herbivore guts
and in the litter layer, allowing their fast decomposition. Resistance compounds of intermediate
lifespan in the decomposition environment include terpenes (including 'essential oils') and
polyphenols such as tannins [24]. These compounds, that probably have anti-herbivory or antimi-
crobial functions in the living plant, may partly explain the very slow decomposition of leaf litter and
deadwood of many gymnosperms and eucalypts [25]. However, these compounds are probably
generally less recalcitrant to decomposition than lignin. In addition, gymnosperms are known to
have particularly recalcitrant forms of lignin [26]. Some of the extensive physical and chemical de-
fenses of extant gymnosperms are likely a coevolutionary legacy from the Mesozoic, when large
herbivorous dinosaurs (e.g., sauropods) are thought to have fought an evolutionary arms race
with gymnosperm taxa such as araucarias (Araucariales), cycads (Cycadales), and conifers
(Pinales) [27,28]. An example is Araucaria araucana (monkey puzzle tree) which has large,
physically very tough green scales with sharp tips filled with secondary compounds that function as
its leaves, and similar scales protruding from the bark of the trunk. Based on visual observations of
deadwood of this species (J.H.C. Cormelissen, unpublished), these scales probably have low decom-
posability. This case also raises an interesting more general question — to what extent does coevolu-
tion of plants with herbivores or pathogens occur in more than one plant organ simultaneously, and
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what might be the legacy of this coevolution for decomposition? For instance, defensive resins are
commonly produced in leaves, bark, and seed cones of many gymnosperm taxa, and are thought
to inhibit fungal decomposition of their own litter [29]. Specific defensive compounds have also
been reported from both foliage and bark in some angiosperm taxa including Alnus (alder) [30] and
Populus (poplar) [31], but these defenses may be too transient to strongly affect litter decomposition.
Resource-conservative plant life strategies favoring high plant tissue density, which are linked to in-
creased organ mechanical defense and lifespan, appear to be coordinated at the global scale
between leaves and roots [32], possibly owing to both whole-plant ecophysiological/allometric
constraints and phenotypic integration [33]. Such a trend translates into coordinated variation
in leaf and root decomposability globally [34].

The above discussion about different types of consumer—plant coevolution and their legacy for
litter decomposition has focused solely on litter decomposability, namely, on anti-consumer
trait afterlife effects on the decomposition of litter derived from the defended plant tissues them-
selves. However, there is ample evidence that the anti-consumer legacy extends beyond the litter
itself and affects the decomposition, carbon, and nutrient dynamics of soil organic matter much
more broadly, including organic matter derived from other plant species. For instance, polyphe-
nols such as condensed and hydrolyzable tannins are known to affect — and often inhibit — the
decomposition and nutrient mineralization of soil organic matter by affecting saprotrophic fungi,
mycorrhizal fungi, and soil invertebrates [24,35]. An interesting example was shown for the boreal
ericoid dwarf shrub Empetrum hermaphroditum (crowberry) which has high concentrations of the
stable polyphenol batatasin-lll in its leaves and leaf litter. The litter of various plant species was
experimentally shown to decompose significantly more slowly when placed in humus collected
from below E. hermaphroditum as compared to humus collected from below Vaccinium myrtillus
(bilberry), and this inhibition of decomposition was explained as an allelopathic effect of batatasin-Ill
[36]. How coevolution of plants and consumers affects the decomposition of litter and soil organic
matter beyond the decomposition of defended tissues themselves is a relatively poorly studied but
promising research field, given its likely important implications for soil carbon and nutrient dynamics
globally.

Legacy of coevolution between plants and microbial symbionts for decomposition
Plants participate in a huge diversity of ecological interactions with microorganisms living on all
plant surfaces, including belowground (rhizosphere), in aerially exposed tissues (phyllosphere),
and within the plant (endosphere). These interactions vary widely in their fithess outcome for
plants (positive, neutral, negative) and their degree of partner specificity [37]. Effects of coevolution
of plants with associated microbial symbionts on decomposition can be expected to arise via three
main mechanisms, namely, changes in (i) the chemical and physical (anatomical or morphological)
composition of plant tissue; (i) plant biomass allocation to different organs, tissue types, and/or
spatial compartments; and (jii) ecological strategies of the microbiota associated with the plant,
as well as with adjacent soil and litter layer habitats.

From both ecological and evolutionary perspectives, one of the most striking plant-symbiont
interactions is nutritional mutualism involving mycorrhizal fungi (here considered to be microbes
for convenience although they often have extensive hyphal networks) and root-inhabiting
N-fixing bacteria, in which plant roots exchange photosynthate for nutrients, with consequences
for the development of terrestrial biogeochemical cycles [38,39]. The decomposability of dead
leaves, roots, and stems (including wood) is usually well correlated with both their secondary
chemistry and their tissue nutrient content [7,24,40-42]. Mutualistic interactions with microbes,
by enhancing the uptake of nutrients in different chemical forms, have greatly expanded the
potential range of plant nutrient-use strategies [43,44]. This is reflected in the higher values of
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leaf and root N in N-fixing plants [45,46] and the association between mycorrhizal association
type and the N and phosphorus (P) content of plant tissues [47,48]. These symbioses have
ancient evolutionary origins, from 65 million years ago (Mya) for N-fixing [49] to at least the Silurian
colonization of land by plants >400 Mya for mycorrhiza [43,50]. By influencing the range of
concentrations of plant nutrients and phenolic defense compounds, this plant-symbiont coevo-
lution has driven litter decomposability.

Another important aspect of plant-fungi coevolution is the capacity of ericoid mycorrhizal (ErM)
and ectomycorrhizal (EcM) fungi in infertile ecosystems (e.g., tundra, heathland, forest on acidic
soils) to exude powerful enzymes to digest complex phenolic compounds and pass on their
residues in simpler organic forms (e.g., amino acids) to the plant partner. The latter is thereby largely
independent of nutrient mineralization because such minerals tend to be very limited in these
ecosystems [38]. By producing tissues protected with large-chain phenolic compounds for longer
lifespan, EcM and ErM plant partners generally produce recalcitrant, slow-decomposing leaf and
root litter [47,51,52], thereby giving both the fungus (with its special enzymes) and themselves
a competitive advantage [47] (Figure 3). However, given the importance of mycorrhizal fungi for
litter decomposition processes and soil formation, we know surprisingly little about their role in
degrading and recycling plant root tissue with which they are associated and their interactions
with other saprotrophs [53,54].

By contrast, the generally higher N concentrations of N-fixing plants compared to non-fixers do
not seem to have a strong afterlife legacy because decomposability does not differ consistently
between these two groups [40]. However, the nutritious litter may promote the growth of other
N-demanding species such as grasses [55] which may then reduce the relative abundance of
the N-fixers in the community (Figure 3). Mycorrhizal and N-fixing coevolution have a strong phy-
logenetic structure for both the microbial and plant partner; this is seen most strongly in rhizobial
N-fixing mutualism as well as EcM, ErM, and orchid mycorrhizae. Arbuscular mycorrhizae are
more broadly spread phylogenetically [43]. In addition to mycorrhizal and N-fixing mutualisms,
many other interactions between plants and symbionts living in and on all their tissues are due
to coevolution of the ecological traits of both partners [56], with a potential knock-on influence
on decomposition dynamics.

In addition to contributing to variation in litter chemical composition, coevolved plant—symbiont
interactions can influence decomposition dynamics by determining the relative amounts, and
spatial distribution, of litter inputs above- and belowground. Plant associations with mycorrhizal
fungi can shape plant biomass allocation between roots and shoots [57]. Root-associated
microbes can also alter the relative proportion of fine versus coarse roots, and their depth
distribution [58,59]. Decomposition rates [34] and carbon stabilization pathways [60] differ
between leaf, shoot, fine root, and coarse root litter, and vary with soil depth [61]. Coevolved
plant-microbe interactions that influence root architecture and biomass allocation should
therefore affect decomposition, soil organic matter formation, and nutrient cycling.

Furthermore, the microbial community in living leaves and wood will affect plant performance
and vice versa [62-65]. The presence of seed-mediated transmission of microbes across plant
generations suggests long-term coevolution between plants and their microbiota [66]. Leaf and
wood endophyte communities can persist after tissues senesce [67], with potential legacies for
decay. These microbial residents likely have privileged access to dead plant material, potentially
shaping decay directly through their own decay enzyme expression and indirectly as they alter
the succession of later microbial communities, thereby also driving the ‘home field advantage'
effect in decomposition [68].
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Figure 3. Examples of the consequences of plant-microbe coevolution for community and ecosystem-level
processes. (A) Nitrogen (N)-fixing symbiosis impacts on soil organic matter (SOM), decomposition, and N availability
eventually lead to a lower reliance of the plant host on N-fixing bacteria. (B) The reverse is true for of ericoid mycorrhizal
(ErM) symbiosis, where the impacts of the plant litter recalcitrance on SOM decomposition reinforce plant host reliance on
ErM fungi that are able to efficiently extract nutrients from SOM. Drawings are from references [103-105]. Abbreviation:

AM, arbuscular mycorrhiza.
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A very interesting type of symbiotic relationship is between plants and endophytic fungi where
the latter contain alkaloids that can serve as anti-herbivore defense for the plant. The legacy
of this symbiosis for litter decomposition rates and nutrient mineralization is complex and still
incompletely understood [69]. This is partly because these alkaloids have been reported to
have (or lack) inhibitory effects on microbial decomposers, while in some cases, the fungal
symbionts may turn saprophytic after the senescence of plant tissues, which could accelerate
their litter decomposition. Moreover, the endophytic fungi may interact with decomposing
microbes either directly or by altering the chemistry of the plant tissues, which may also
accelerate or decelerate litter decomposition [69]. How plants outsource their chemical
defenses to endophytic microbes, and what the net consequences are for litter decomposition
via these different mechanisms, are a promising field of study in understanding the coevolutionary
legacies for decomposition.

Legacy of plant-human coevolution for decomposition

Early domestication by humans may have started with people accidentally dropping gathered
plant seeds near human settlements [70] and continued into the present with increasingly sophis-
ticated selection of favorable crop traits. In turn, the development of crop domestication has
fundamentally changed human diets, leading to the evolution of multiple human traits such as
changes in dental morphology and increases in brain size [71]. This very special case of coevolution
between plants and people has had many consequences for crop traits and their afterlife effects on
decomposition (Figure 4).
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Figure 4. Potential legacy of plant-human coevolution for decomposition. Food crop species have been subjected
to 'natural' selection influenced by human modification of crop growing conditions. The efficiency of human food production
resulting from this crop domestication has helped to develop human capacity for increasingly sophisticated tools which
further modify crop growing conditions. In addition, crop evolution has been increasingly influenced by directed artificial
selection or engineering of crop genotypes that favor yield and palatability. These two types of selection, in combination,
have led to the emergence of a crop domestication syndrome for annual plants of fast growth and resource acquisition
strategies based on plant traits that promote fast afterlife decomposition.
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Food crop species have been subjected to 'natural' selection caused by human modification of
crop growing conditions, such as improved soil structure, enhanced nutrient and water supply,
protection from herbivory and weed competition, and regular soil disturbance (e.g., ploughing)
and harvesting [33]. The efficiency of human food production resulting from this crop domestica-
tion helped to develop human capacity (e.g., improved cognition abilities and modified societal
organization) to devise increasingly sophisticated tools (e.g., the use of biological and chemical
methods to fight herbivores and pathogens) and further modify crop growing conditions. In
addition, crop evolution has been influenced by directed artificial selection or engineering of
crop genotypes for favorable traits for human use, such as increased crop yield and palatability.
These two types of selection, in combination, have led to the emergence of a crop domestication
syndrome for annual plants of fast growth with resource acquisition strategies [33,72] based on
plant traits that promote fast afterlife decomposition. Aboveground, domestication reduces living
plant resource investment in anti-herbivore defense [73,74] and increases leaf N and P concen-
trations [75]. Such differences in leaf traits have also been observed in the litter of domesticated
plants, where lower lignin concentrations, lignin:P ratios, and N:P ratios lead to an average
increase of 36% in litter mass loss rate across 24 crop species compared to their wild relatives
[76]. Belowground, however, no clear influence of domestication on root traits across species
has been demonstrated yet [77].

Legacy of fauna-microbial decomposer coevolution for plant decomposition
Some microbial decomposers are tightly linked to detritivorous arthropods. Many litter-feeding
detritivores rely on their hindgut microbes to digest dead plant tissue, especially those that lack
the enzymes to break down the ingested recalcitrant polymers [78]. Some arthropod groups
form obligatory internal mutualistic relationships with microbes. For instance, higher termites
(Termitidae) harbor exclusively prokaryotic communities in their dilated hindguts [79]. By contrast,
their actual community composition is largely determined by their diet and microhabitat [79],
suggesting low taxonomic affiliation between prokaryote and host.

Various termites, stick insects, and beetles have evolved endogenous digestive enzymes that tar-
get less-complex carbon polymers [80-82], whereas others (e.g., Termitomyces termites and
certain ants) cultivate fungal gardens outside their guts to decompose complex polymers
[83,84]. In all cases, a given piece of litter is decomposed in a more stable and favorable environ-
ment than if it was lying on the soil surface. The evolution of digestive mutualisms, which dates
back to at least the Cretaceous [85], is believed to be derived from the coprophagic behavior
of particular arthropod groups where concentrated microbial consortia in feces may have
facilitated the evolution of host-microbe interdependence [36].

The most striking coevolutionary examples are microbe—host relationships involved in the break-
down of woody debris from trees. The emergence of highly lignified wood ~400 Mya [87] led to a
major shift in global terrestrial carbon cycle. Currently, decomposition of all carbon polymers in
wood is only possible by select groups of bacteria and fungi that have the enzymatic capacity
to degrade lignin [88]. These groups also form symbioses, both internal and external, with a
few insect lineages that allow the insect partner to consume wood, which is then degraded
internally or externally to the insect gut, by the microbial symbiont. Of special note are ambrosia
beetles belonging to Scolytinae and Platypodinae [89], and termites belonging to Macrotermitinae,
that have advanced fungal agriculture systems [83,90] in which litter is inoculated with fungi in a
stable and relatively mesic environment to promote litter decomposition. Coevolution has resulted
in arthropods (e.g., termites, ants, wasps, beetles) acting as vectors for the fungal decomposers
from which they benefit by accessing more digested litter, or being farmers of fungi in so-called
fungal gardens [91,92]. Ambrosia beetles, for instance, form an obligate mutualism with various
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ascomycete and basidiomycete fungi [90,93-95]. These symbiotic fungi depend on their host for
the colonization and inoculation of new trees. Spores are rubbed off when the beetle excavates
tunnels in woody plants and forms a fungal garden of mycelia on which the beetle and their larvae
feed. Ambrosia beetles live predominantly in stressed, dying, or dead woody plants and do not
feed on wood directly. They excavate stems to form galleries, creating a species-specific architec-
ture of tunnels in which the fungi can establish, thus kick-starting wood decomposition. Some
xylophagous beetles, clearwing moths (Sesiidae), and termites invade living trees where they
consume heartwood and senesced branches. Some of these (e.g., Coptotermes, drywood
termites) even live within their live plant hosts, and there is evidence that such compromised
trees have reduced growth and increased mortality [95], leading to selective advantages for
those trees that avoid such invasions, and which may carry over into the plant afterlife.

The diversity and efficiency of the modern wood-decomposer pathways lagged behind evolution of
wood itself [96]. Four wood-decay innovations are thought to have emerged much after the evolu-
tion of wood, in order of emergence: (i) the enzymatic pathway key to white rot fungi which breaks
down lignin [11]; (i) the less metabolically expensive chelator-mediated Fenton pathway in which
free radicals modify lignin, allowing brown rot fungi to access other carbon polymers [97-99]; iii)
the modification of invertebrate gut symbiosis [100]; and (iv) the origin of fungus-farming insects
[91]. There is little direct evidence about the effect of these innovations on the global carbon
cycle. It is thought that this lag may have led to the buildup of lignin-rich litter in the Carboniferous,
although others argue that wood decay was slowed because of differences in the climatic
conditions of these early environments [11,96]. The evolutionary innovations associated with gut
symbiosis of xylophagous invertebrates and fungal-farming insects may both have had strong
effects on the carbon cycle of tropical forests. Currently termites consume >50% of the wood in
some tropical forests [101,102] and thereby contribute significantly to decomposition.

Concluding remarks

In this synthesis, we make a case for the importance of multiple aspects of plant coevolution with
herbivores, parasites, pathogens, (microbial) mutualists, and humans, as well as between micro-
bial decomposers and fauna, for litter decomposition. Without being exhaustive (see Outstanding
questions), we believe that the evidence presented here supports the hypothesis that coevolution
can play an important role, beyond the well-studied aspects of organism fitness, in driving
ecosystem processes.
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Outstanding questions

How do we assess the multiple
coevolutionary interactions? In a single
plant, several coevolutionary interactions
take place simultaneously, with complex
effects on ecosystem function. For
example, many plants form a tight
association with mycorrhizal fungi,
and this can have both positive
(e.g., increase in tissue N or P con-
tent) and negative (e.g., increase in
recalcitrant fungal chitin) effects on
decomposition rates. At the same
time, plants must also cope with attack
by leaf or root herbivores (e.g., by hav-
ing high polyphenol content).

Is there evidence for the coevolution
of animal detritivores and their gut
microflora? Macrodetritivores such
as isopods, millipedes, termites, and
many beetle and fly larvae largely
completely rely on the diversity and
activity  of  their  associated
gut microflora for the digestion of
recalcitrant plant litter, which has
important ecosystem-level conse-
quences. Some of the mutualistic
microbes are only found within their
host, but actual coevolution remains
to be demonstrated.

Is agricultural crop selection, together
with crop management, currently
changing the afterlife effect of crop
residues on soil and ecosystem
processes? What is the effect on
global soils of a recent widespread
geographic expansion of cultivation of
a small set of crop species — and of a
recent increased focus on crop selec-
tion for traits conferring resistance to
biotic or abiotic threats — both on the
rate of carbon cycling and soil organ-
isms, including microbes and animals?

What is the importance of possible
coevolutionary legacies for ecosystem
functions other than decomposition —
for example, on aspects of soil organic
matter formation, bedrock weathering
(e.g., by lichens, mycorrhizal fungi,
the rhizosphere), cycling of elements
other than plant carbon and nitrogen,
and soil hydrology (including vegetation
drought resistance through mycorrhizal
networks)?
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