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Abstract

In addition to the processes structuring free-living communities, host-associated

microbiota are directly or indirectly shaped by the host. Therefore, microbiota data

have a hierarchical structure where samples are nested under one or several vari-

ables representing host-specific factors, often spanning multiple levels of biological

organization. Current statistical methods do not accommodate this hierarchical data

structure and therefore cannot explicitly account for the effect of the host in struc-

turing the microbiota. We introduce a novel extension of joint species distribution

models (JSDMs) which can straightforwardly accommodate and discern between

effects such as host phylogeny and traits, recorded covariates such as diet and col-

lection site, among other ecological processes. Our proposed methodology includes

powerful yet familiar outputs seen in community ecology overall, including (a)

model-based ordination to visualize and quantify the main patterns in the data; (b)

variance partitioning to assess how influential the included host-specific factors are

in structuring the microbiota; and (c) co-occurrence networks to visualize microbe-

to-microbe associations.
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1 | INTRODUCTION

Ecological communities are the product of stochastic and determinis-

tic processes, while environmental factors may set the upper bound

on carrying capacity, competitive and facilitative interactions within

and among taxa determine the identity of the species present in

local communities. Ecologists are often interested in inferring ecolog-

ical processes from patterns and determining their relative impor-

tance for the community under study (Vellend, 2010). During the

last few years, there has been a growing interest in developing new

statistical tools aimed towards ecologists and the analysis of multi-

variate community data (see, e.g., Legendre & Legendre, 1983).

Many of the distance-based approaches, however, have a number of

drawbacks, including uncertainty of selecting the most appropriate

null models, low statistical power and the lack of possibilities for

making predictions (Warton, Wright, & Wang, 2012). One alterna-

tive, model-based framework which has become increasingly popular

in community ecology, is joint species distribution models (JSDMs,

(Pollock et al., 2014). Such models are an extension of generalized

linear mixed models (GLMMs, Bolker et al., 2009), where multiple

species are analysed simultaneously often together with environ-

mental variables, thereby revealing community-level responses to

environmental change. By incorporating both fixed and random

effects, sometimes at multiple levels of biological organization,

JSDMs have the capacity to assess the relative importance of pro-

cesses such as environmental and biotic filtering versus stochastic

variability. Furthermore, with the increase in trait-based and phylo-

genetic data in community ecology together with the growing appre-

ciation that species interactions are constrained by the “phylogenetic

baggage” they inherit from their ancestors (Thompson, 1994), JSDMs
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can further accommodate information on both species traits and

phylogenetic relatedness among species (Aivelo & Norberg, 2018;

Ives & Helmus, 2010; Kaldhusdal, Brandl, M€uller, M€ost, & Hothorn,

2015; Ovaskainen et al., 2017). At last, accounting for phylogenetic

relatedness among species can greatly improve estimation accuracy

and power when there is a phylogenetic signal in species traits and/

or residual variation (Li & Ives, 2017).

To model covariances between a large number of species using a

standard multivariate random effect, as a standard JSDM (Pollock

et al., 2014; Xia, Chen, Fung, & Li, 2013) does, is computationally

challenging; the number of parameters that needs to be estimated

when assuming a completely unstructured covariance matrix

increases rapidly (quadratically) with the number of species. An

increasingly popular tool for overcoming this problem, which is cap-

able of modelling such high-dimensional data, is latent factor models

(Warton et al., 2015). In community ecology, latent factor models

and JSDMs have been combined to allow for a more parsimonious

yet flexible way of modelling species covariances in large communi-

ties (Letten, Keith, Tozer, & Hui, 2015; Ovaskainen et al., 2017).

Such an approach offers a number of benefits. First, latent factors

provide a method of explicitly accounting for residual correlation.

This is important because missing covariates, ecological interactions

and/or spatiotemporal correlation will induce residual correlation

among species, which, if not accounted for, may lead to erroneous

inference. Second, latent factors facilitate model-based ordination in

order to visualize and quantify the main patterns in rows and/or col-

umns of the data (Hui, 2016, 2017). While traditional distance-based

ordination techniques may confound location (i.e., the mean abun-

dance) and dispersion (i.e., the variability) effects (Warton et al.,

2012), model-based ordination directly models the mean–variance

relationship and can therefore accurately distinguish between the

two effects (Sohn & Li, 2017; Hui, Taskinen, Pledger, Foster, & War-

ton, 2015). At last, the estimated factor loadings can be conveniently

interpreted as indicating whether two species co-occur more or less

often than by chance as well as the direction and strength of their

co-occurrence, thus allowing a latent factor approach to robustly

estimate large species-to-species co-occurrence networks (Ovaskai-

nen, Abrego, Halme, & Dunson, 2016). Note that an important deci-

sion when fitting latent factor models is the choice of the number of

latent factors. While less than five is usually sufficient for a good

approximation to correlations, there is a trade-off between model

complexity and the model’s capacity to capture the true correlation

structure (Warton et al., 2015). An alternative approach is to use

variable selection, which automatically shrinks less-informative latent

factors to zero (Bhattacharya & Dunson, 2011).

In parallel to community ecology, there is a growing field of micro-

bial ecology studying both free-living and host-associated microbiota.

While microbial ecologists can adopt many of the same statistical tools

developed for traditional multivariate abundance data (see, e.g., Balint

et al., 2016), researchers studying host-associated microbiota need to

consider an additional layer of processes structuring the focal commu-

nity, namely that host-associated microbiota are additionally shaped

directly or indirectly by their hosts. For example, interactions between

hosts and microbes often involve long-lasting and sometimes extre-

mely intimate relationships, where the host may have evolved the

capacity to directly control the identity and/or abundance of its micro-

bial symbionts (Berendsen, Pieterse, & Bakker, 2012; McFall-Ngai

et al., 2013). Similar to an environmental niche, the host must be

viewed as a multidimensional composite of all host-specific factors

driving the occurrence and/or abundance of microbes within a host–

everything from broad evolutionary relationships between host

species (Groussin et al., 2017) to the direct production of specific bio-

molecules within a single host individual (Liu et al., 2016). As a result,

host-associated microbiota have a hierarchical data structure where

samples are nested under one or several variables representing

recorded and/or measured host-specific factors sometimes spanning

multiple levels of biological organization.

In this article, we propose a novel extension of JSDMs to analyse

host-associated microbiota, based around explicitly modelling its char-

acteristic hierarchical data structure. In doing so, our proposed model

can straightforwardly accommodate and discriminate among any mea-

sured host-specific factors. Over the past few years, there has been an

increase in model-based approaches aimed specifically towards the

analysis of host-associated microbiota (see, e.g., Grantham, Reich,

Borer, & Gross, 2017; Xia et al., 2013; Xu, Paterson, & Xu, 2017;

Zhang et al., 2017). To our knowledge however, our proposed model

is the first to explicitly and transparently account for the aforemen-

tioned hierarchical structure that is inherent in data on host-associated

microbiota (Figure 1). Other key features of the proposed model,

which are inherited from JSDMs and latent factor models, include the

following: (a) parsimonious modelling of the high-dimensional correla-

tion structures typical of host-associated microbiota; (b) model-based

ordination to visualize and quantify the main patterns in the data; (c)

variance partitioning to assess the explanatory power of the modelled

host-specific factors and their influence in shaping the microbiota; and

finally (d) co-occurrence networks to visualize microbe-to-microbe

associations. Furthermore, by building our model in a probabilistic, that

is, Bayesian framework, we can straightforwardly sample from the

posterior probability distribution of the correlation matrix computed

by the factor loadings; this means that we can choose to look at, or

further analyse the correlations that have at least, for example, 95%

(or even 97% or 99%) probability.

We apply our proposed model to two published data sets. While

we include the effect of host phylogenetic relatedness in both case

studies, we illustrate the flexibility of our approach by adapting the

proposed model to overdispersed counts and presence—absence

responses, and study-specific metadata relevant to each case study.

By utilizing recent progress in latent factor modelling, our proposed

model can also assist in cases where metadata are scarce by finding

latent “hidden” variables driving the microbiota.

2 | METHODS

We applied the proposed methodology to two published data sets

on host-associated microbiota. Both data sets possess two main
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features which characterize many host-associated microbiota data,

namely high dimensionality, that is, the number of OTUs is a non-

negligible proportion of the number of samples, and sparsity, that is,

most OTUs are rarely observed. The first data set comprise 90 sam-

ples from 20 sponge species collected in four closely located sites in

the Bocas del Toro archipelago (Supporting Information Figure S1,

for original study see Easson & Thacker, 2014). The metadata con-

tain apart from collection site, a classification of hosts into either

high microbial abundance (HMA) or low microbial abundance (LMA)

sponges (hereafter termed ecotype). This classification is based on

the abundance of microbes harboured by the host and determined

by transmission electron microscopy (Gloeckner et al., 2014). The

authors constructed a host phylogeny from 18S rRNA gene

sequences (downloaded from GenBank) by implementing a relaxed-

clock model in MrBayes. The data have a hierarchical structure with

n = 90 samples nested within S = 20 host species and L = 4 collec-

tion sites. Host species are then further nested under one of R = 2

ecotypes. The response matrix had already been filtered to only

include OTUs (defined at 97% similarity) with at least 500 reads, but

we further removed OTUs with <20 presences across samples,

resulting in m = 187 modelled OTUs.

The second data set consists of 59 Neotropical bird species with

a total of 116 samples from the large intestine. Host species were

collected from 12 lowland forests sites across Costa Rica and Peru

(Supporting Information Figure S2, for original study see Hird,

S�anchez, Carstens, & Brumfield, 2015). The metadata include bird

taxonomy and several covariates–including dietary specialization,

stomach contents and host habitat. The authors sequenced and used

the mitochondrial locus ND2 to reconstruct the host phylogeny by

implementing a partitioned GTR + C model in BEAST. Similar to the

sponge data set, this data set has a hierarchical structure with

n = 116 samples nested within S = 59 host species and L = 12 col-

lection sites. We filtered the response matrix to include OTUs (de-

fined at 97% similarity) with at least 50 reads and 40 presences

across samples, resulting in m = 151 modelled OTUs. Of the full list

of covariates available, we included diet, stomach content, sex, ele-

vation and collection site as explanatory predictor variables in our

model. While diet and geography have been shown to influence the

human gut microbiota (see, e.g., Muegge et al., 2011; Yatsunenko

et al., 2012), the effect of sex and elevation is less known.

2.1 | Joint species distribution models

We considered two response types commonly encountered in host-

associated microbiota data: counts and presence–absence. In a for-

mal manner, let the response matrix being modelled consist of either

counts or presence—absence records of m OTUs from n samples,

and let yij denote the response of the j-th OTU in the i-th sample.

Also, let Nðl;r2Þ denote a univariate normal distribution with mean

l and variance r2, and analogously, let MVNðl;RÞ denote a multi-

variate normal distribution with mean vector and covariance matrix

R. We now split our model formulation up into the two case stud-

ies/response types.

2.1.1 | Case study 1 (Counts)

Due to the presence of overdispersion that was quadratic in nature,

as confirmed by a mean–variance plot of the OTU counts (not
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shown), we assumed a negative binomial distribution for the

responses. In a specific manner, we considered a negative binomial

distribution with a quadratic mean—variance relationship for the ele-

ment yij, such that VarðyijÞ ¼ wij þ /jw
2
ij where /j is the OTU-specific

overdispersion parameter. The mean abundance was related to the

covariates using a log-link function. Denoting the mean abundance

of OTU j in sample i by wij, then forModel 1 we have

yij�Negative-Binomialðwij;/jÞ; i¼ 1; . . .;n¼ 90;

j¼ 1; . . .;m¼ 187

logðwijÞ ¼ ai þ cj þ
X5

q¼1

Ziqkqj þ
X5

q¼1

ZH
s½i�qk

H
qj; q¼ 1; . . .;5 (1)

ai�NðlðhostÞs½i�;r2ðsampleÞÞ
lðhostÞs ¼ lðecotypeÞsþlðsiteÞsþlðphyloÞs�hphylo; s¼1; . . .;S¼20

(2)

lðecotypeÞs � Nðlr½s�;r2ðecotypeÞÞ

lðsiteÞs � Nðll½s�;r2ðsiteÞÞ

lðphyloÞs � MVNð0;CðphyloÞÞ

lr � Cauchyð0;2:5Þ; r¼1; . . .;R¼2

ll � Cauchyð0;2:5Þ; l¼1; . . .;L¼4

cj � Cauchyð0;2:5Þ

hphylo � Expð0:1Þ

To clarify the above formulation, s, r and l index effects that

are attributed to the S = 20 host species, R = 2 ecotypes and

L = 4 sites, respectively. For instance, “s[i]” and “r[s]” denote “sam-

ple i nested within host species s” and “host species s nested

within ecotype r”, respectively (Figure 1). In Equation (1), the quan-

tities ai and cj represent sample and OTU-specific effects, respec-

tively. The former adjusts for differences in sequencing depth

among samples, while the latter controls for differences in OTU

total abundance. The inclusion of ai serves two main purposes.

First and foremost, including ai allows us to account for the hierar-

chical data structure and its effect on sample total abundance

specifically. In particular, to account for sample i being nested

within host species s (which are further nested within ecotype r)

and site l, the sample effects ai are drawn from a normal distribu-

tion with a mean that is a linear function of three host-specific

effects: host ecotype l(ecotype); host collection site l(site); and

host phylogeny l(phylo). Furthermore, the host ecotype l(ecotype)

and host collection site l(site) effects are themselves drawn from a

normal distribution with an ecotype and site-specific mean, respec-

tively. Second, the inclusion of ai means that the resulting ordina-

tions constructed by the latent factors on the sample Ziq and host

species ZH
s½i�q level are in terms of species composition only, as

opposed to a composite of abundance and composition if the site

effects were not included in the formulation. We included five

latent factors at both the sample and host species level, and both

Ziq and ZH
s½i�q were assigned standard normal priors Nð0;1Þ with the

assumption of zero mean and unit variance to fix the location and

scale (see Chapter 5, Skrondal & Rabe-Hesketh, 2004). Further-

more, to address rotational variance, the upper triangular compo-

nents of both loading matrices (i.e., sample k and host species kH

level) are fixed to zero with the diagonals constrained to be posi-

tive (Geweke & Zhou, 1996). As recommended by Polson and Scott

(2012), and analogous to the prior distributions we use for the

mean lr and ll, we used a weakly informative prior in the form of

a half-Cauchy distribution with a centre and scale equal to 0 and

2.5 for the overdispersion parameter /. Moreover, following Gel-

man, Jakulin, Pittau, and Su (2008), we used the same distribution

with location and scale equal to 0 and 1 as prior information on

the variance parameters: r2(sample); r2(ecotype); and r2(site). Based

on our empirical investigation, we found that the use of such priors

stabilized the MCMC sampling substantially without introducing too

much prior information, compared to using more uninformative

prior distributions. At last, the quantity C(phylo) corresponds to a

phylogenetic correlation matrix constructed from the host phy-

logeny by assuming Brownian motion evolution such that the

covariances between host species are proportional to their shared

branch length from the most recent common ancestor (Felsen-

stein, 1985). The phylogenetic parameter hphylo quantifies variance

that can be attributed to the phylogenetic effect and is drawn

from an exponential distribution with a rate parameter of 0.1.

Similar to the Cauchy priors, this prior distribution provides a

weak level of regularization—a rate parameter of 0.1 gives a prior

mean of 10, thus preventing the estimated variance of getting

implausibly large.

2.1.2 | Case study 2 (Presence–absence)

We modelled the presence (yij = 1) or absence (yij = 0) of OTU j in

sample i using probit regression, implemented via the indicator func-

tion yij ¼ 1zij[0
where the latent score zij is normally distributed with

the mean equal to a linear function of the covariates and latent fac-

tors, and variance set equal to one. Model 2 was set up as follows:

zij ¼ ai þ Lij þ
X5

q¼1

Ziqkqj; i ¼ 1; . . .; n ¼ 116;

j ¼ 1; . . .;m ¼ 151; q ¼ 1; . . .;5

(3)

Lij ¼ cj þ
X5

k¼1

Xikbkj; k ¼ 1; . . .;5 (4)

ai �NðlðhostÞs½i�;r2ðsampleÞÞ
lðhostÞs ¼ lðnon-phyloÞs þ lðphyloÞs � hphylo; s ¼ 1; . . .; S ¼ 59

(5)

lðnon-phyloÞs �Nðls;r2ðhostÞÞ

lðphyloÞs �MVNð0;CðphyloÞÞ
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ls �Cauchyð0;2:5Þ

cj �Cauchyð0;2:5Þ

/ij � half-Cauchyð0;2:5Þ

r2ðsampleÞ� half-Cauchyð0;1Þ

hphylo �Expð0:1Þ

While the above description is largely the same as that of Model

1, we also included here a linear predictor Lij to model the effects of

five available covariates (represented by the model matrix Xik; k = 1,

. . ., 5) on species composition (Equation 4). The linear predictor Lij

thus acts to explain covariation between OTUs due to the measured

explanatory predictor variables, while the latent factors account for

the remaining, residual covariation. Similar to Model 1, including ai

means that the covariation between OTUs is in terms of species

composition only. By drawing the sample effects ai from a normal

distribution with a mean that is a linear function of both nonphylo-

genetic l(non-phylo) and phylogenetic l(phylo) host effects (Equa-

tion 5), we account for the hierarchical structure present in the data.

Furthermore, from the loading matrix k, we computed a covariance

matrix as X ¼ kk> , which we subsequently converted to a correla-

tion matrix for studying the OTU-to-OTU co-occurrence network.

For both case studies, we used Markov Chain Monte Carlo

(MCMC) to estimate the models via JAGS (Plummer, 2003) and the

runjags package (Denwood, 2016) in R (R Core Team 2016). For

each model, we ran one chain with dispersed initial values for

300,000 iterations saving every 10th sample and discarding the first

25% of samples as burn-in. We evaluated convergence of model

parameters by visually inspecting trace and density plots using the R

packages coda (Plummer, Best, Cowles, & Vines, 2016) and

mcmcplots (McKay, 2015), as well as using the Geweke diagnostic

(Geweke, 1991).

2.2 | Variance partitioning

To discriminate among the relative contributions of the various fac-

tors driving covariation in the JSDMs, we partition the explained

variance by the row effects (ai), the linear predictor (Lij), and the fac-

tor loadings (kqj and kHqj) into components reflecting sample and host-

level effects. Such a variance decomposition is analogous to the

sum-of-squares and variance decompositions seen in analysis of vari-

ance (ANOVA) and linear mixed models (Nakagawa & Schielzeth,

2013). Depending on the response type, the row effects capture

variance in relative abundance (Model 1) or species richness (Model

2), while the linear predictor and the factor loadings capture variance

in species composition. As mentioned above, when the linear predic-

tor is included in (Model 2), the loadings capture residual variation

not accounted for by the modelled covariates. Variance partitioning

therefore allows us to assess the explanatory power of the hierarchi-

cal data structure, and measured covariates including “hidden”

factors, and how influential each of them are in structuring the

host-associated microbiota (Ovaskainen et al., 2017).

We now discuss in more detail how we partition the explained

variance into components attributed to the row effects (ai) for Model

1 and the factor loadings (kqj) together with the linear predictor (Lij)

for Model 2. Let Vtotal denote the total variance of the ai, while Vsam-

ple, Vecotype, Vsite and Vphylo denote the variances for the sample, host

ecotype, host collection site and host phylogeny, respectively. Then

for Case Study 1 we have,

Vtotal ¼ Vsample þ Vecotype þ Vsites þ Vphylo; where

Vsample ¼ r2ðsampleÞ
Vecotype ¼ r2ðecotypeÞ

Vsite ¼ r2ðsiteÞ
Vphylo ¼ h2phylo;

and for Case Study 2 we have,

Vtotal ¼ Vlinpred þ Vresidual þ Vsample þ Vnon-phylo

þ Vphylo;where;

Vlinpredj
¼ varðDieti � bj1Þ þ varðStomachContentsi � bj2Þ
þ varðSexi � bj3Þ þ varðElevationi � bj4Þ þ varðSitei � bj5Þ

Vresidual ¼ diagðXÞ
Vsample ¼ r2ðsampleÞ

Vnon-phylo ¼ r2ðnon-phyloÞ
Vphylo ¼ r2ðphyloÞ

In the second partitioning, the quantity Vlinpred represents the

variance explained by the linear predictor Lij, the Vresidual represents

the residual variance not accounted for by the modelled predictor

variables, that is, as explained by the diagonal elements of the resid-

ual covariance matrix Ω, and finally, the Vsample, Vnon-phylo and Vphylo

to variance attributed to the hierarchy present on the row effects ai.

3 | RESULTS

Below, we present the main results of each case study. We used the

95% highest density interval (HDI) as a measure of statistical signifi-

cance; that is, if a parameter or a pairwise parameter comparison

excludes zero, then we conclude that the posterior probability of the

difference being significantly different from zero exceeds 95%.

3.1 | Case study 1

We applied Model 1 to data on sponge host-associated microbiota

(Easson & Thacker, 2014). The fitted model revealed that more than

86% of the variation in relative abundance among samples could be

attributed to processes operating on the host species level (Table 1;

Figure 2). More specifically, 57% of this variation was explained by

host phylogenetic relatedness, even though the 95% HDI for the

phylogenetic effects did not exclude zero for any of the host spe-

cies. While this suggests the presence of a phylogenetic signal in

2718 | BJ €ORK ET AL.



one or more host traits affecting microbial abundance and/or occur-

rence, it also indicates that no particular host species or host species

clade have a stronger signal than the rest. Easson & Thacker, 2014

used the Bloomberg’s K statistic and found a significant signal of the

host phylogeny on the inverse Simpson’s index. This index measures

the diversity of a community, but is strongly influenced by the rela-

tive abundance of its most common species (Haegeman, Sen, Godon,

& Hamelin, 2014). The authors specifically noted that host species

Aiolochroia crassa, Aplysina cauliformis and Aplysina fulva from the

order Verongida, along with host Erylus formosus from the order

Astrophorida, had higher values of this index compared to the rest

of the host species. In a similar manner, we found that the same four

hosts harboured more abundant (Figure 2) and distinctively different

microbiotas than the other host species (Figure 3). Pairwise compar-

isons of these four hosts showed that A. crassa harboured markedly

different microbial composition compared to its two closest relatives

A. cauliformis and A. fulva (Supporting Information Tables S1 and S2).

These three hosts were nonetheless collected at the same site. The

two species from the genus Aplysina, on the other hand, harboured

very similar microbiota composition to that of host E. formosus even

if they were collected some 17,000 km apart.

Host ecotype and collection site roughly explained two-thirds of

the remaining variation in relative abundance (Table 1). Furthermore,

the host species level explained 39% of the variation beyond differ-

ences in relative abundance, with the remaining variation explained

by the latent factors on the sample level. While samples did not

cluster based on ecotype or sites, samples belonging to HMA hosts

generally formed tighter clusters compared to samples from LMA

hosts (Supporting Information Figure S3). Note however that

because the sampling scheme in the original study confounded host

ecotype and collection site, it is impossible to fully disentangle the

two.

3.2 | Case study 2

Fitting Model 2 to the data on Neotropical bird gut-associated

microbiota (Hird et al., 2015) revealed that only 9% of the varia-

tion in species richness among samples could be explained by pro-

cesses acting on the host species level, including processes related

to the host phylogeny. The remaining 91% of this variation was

captured by processes operating on the sample level (Table 2; Fig-

ure 4). Of the total variance in species occurrence, variation in

species richness only accounted for, on average, about 17%. The

modelled predictor variables explained 69% of the total variance

and varied from a minimum of <0.01% to a maximum of 99.7%

across all OTUs (Figure 5). The predictor variable that had the lar-

gest average effect on microbiota composition was collection site

(21.33%; Table 2). However, none of the estimated regression

coefficients for the predictor variables excluded zero (Supporting

Information Figure S4). Furthermore, the ordination plots con-

structed from the first two latent factors did not reveal any obvi-

ous clustering by, for example, host taxonomy (at the order level),

collection site or diet (broad dietary specialization) (Figure 6, Sup-

porting Information Figures S5 and S6).

TABLE 1 Variation explained by the hierarchy present on ai

Phylogeny 57.09%

Ecotype 14.58%

Site 14.51%

Sample 13.82%
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We ran an edge betweenness community detection algorithm (Csardi

& Nepusz, 2006) on the correlation matrix computed from the loading

matrix k where links represent positive and negative co-occurrences with

at least 95% posterior probability. We coloured nodes by their bacterial

taxonomic affiliation at the phylum level. This revealed a large tightly knit

cluster with well-connected nodes in the centre and less-connected

nodes in the periphery of the cluster. The network displayed similar pro-

portions of positive and negative co-occurrences and with no apparent

clustering of OTUs belonging to certain phyla (Supporting Information

Figure S7). Caution should, however, be taken when interpreting statisti-

cal interactions: These are residual co-occurrences that can only be con-

sidered as hypotheses for ecological interactions, and without additional

biological information, it is impossible to definitively confirm or assess

their nature (Ovaskainen et al., 2016; Tikhonov, Abrego, Dunson, &

Ovaskainen, 2017; Zurell, Pollock, & Thuiller, 2018).

4 | DISCUSSION

In this paper, we have developed a joint species distribution model

(JSDM) aimed towards analysing host-associated microbiota data.

The present work builds upon and extends existing JSDMs by specif-

ically targeting the hierarchical structure implicit in host-associated

microbiota studies, while also including several other features that

are attractive for analysing such data. First, we have shown how

overdispersed counts and presence-absence data, two common fea-

tures of host–microbiota data can be modelled under a single frame-

work by implementing a negative binomial and a probit distribution

with the appropriate link function. Furthermore, we have utilized

recent progress in latent factor modelling in order to represent the

high-dimensional nature of host-microbiota data as a rank-reduced

covariance matrix, thus making the estimation of large microbe-to-

microbe covariance matrices computationally tractable. By doing so,

we have also demonstrated how latent factors, both alone or

together with measured covariates, can be used for variance

partitioning and further visualized as ordinations and co-occurrence

networks. At last, depending on the modelled response function, we

have illustrated that the variance partitioning of the hierarchy pre-

sent on the rows can be represented in terms of either relative

abundance or species richness.

We adapted our proposed model to make use of two published

data sets on host-associated microbiota. Although our goal was not

to compare the results from these two case studies, such a system-

atic comparison can be made using a model-based approach like

ours. In a broad manner, the data analysed here suggest that mark-

edly different processes are shaping the microbiota harboured by

these different host organisms. On an individual basis, the main

results from each of our two models were generally in agreement

with the results reported in their respective original study; for exam-

ple, Model 1 identified the same four host species reported by Eas-

son and Thacker (2014) to have more abundant and distinctively

different microbiotas compared to the other analysed hosts. Similar

to Hird et al. (2015), the ordinations produced by Model 2 did not

cluster by host diet, host taxonomy nor collection site. By partition-

ing variance among fixed and random effects, Model 2 further

showed that there was substantial variation across OTUs in terms of

which predictor variables explained the most variance.

While distance-based methods such as PERMANOVA still

remains one of the most widely used nonparametric methods to

analyse host-associated microbiota data, model-based approaches

are increasingly recognized to outperform such analyses (see, e.g.,

Grantham et al., 2017; Sohn & Li, 2017; Hui et al., 2015; Warton

et al., 2012), and we see our proposed model as making a strong

case for further empirical comparisons between distance-based and

model-based approaches to analysing microbiota data.

There are a number of extensions one could make to the pro-

posed model. Perhaps the most important of these stems from the

growing recognition that high-throughput DNA sequencing produces

compositional data, that is, non-negative counts with an arbitrary sum

imposed by the sequencing platform, which can produce spurious
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F IGURE 3 Plot (a) shows the ordination constructed from the latent factors on the host species level ZH, and plot (b) shows the
corresponding caterpillar for first latent factor ZH

i1. The quantiles correspond to the 95% (thin lines) and 68% (thick lines) credible intervals,
respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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correlations if not properly accounted for (see, e.g., Gloor, Macklaim,

Pawlowsky-Glahn, & Egozcue, 2017; Li, 2015; Tsilimigras & Fodor,

2016). Because of the log-link function used in Model 1, it is possible

to parameterize this model and regard it in terms of compositional

effects (see Warton & Guttorp, 2011 and also noting the fact that

the negative binomial distribution can itself be parameterized as a

hierarchical Poisson model with Gamma-distributed random effects),

although for ease of estimation and interpretation we chose to adopt

the standard negative binomial parameterization. This topic remains

an area of active research, and there are currently several model-

based methods (see, e.g., Fang, Huang, Zhao, & Deng, 2015; Friedman

& Alm, 2012; Kurtz et al., 2015; Schwager, Mallick, Ventz, & Hutten-

hower, 2017) to infer co-occurrence networks, each with its own set

of assumptions–it is not yet conclusive that any one of these methods

outperforms the rest.

Other model extensions and modifications can also be made to

answer specific ecological questions of interest. For example, whether

closely related host species harbour closely related microbes (i.e.,

host-microbiota phylogenetic congruence) or whether similarity

among host-associated microbiota decreases as a function of increas-

ing geographical distance or social connectance between hosts. Such

questions may be answered for instance, by incorporating an addi-

tional phylogenetic effect acting on the columns of the response

matrix, and by implementing a Gaussian process model that quantifies
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TABLE 2 Variation attributed to the linear predictor Lij, the
residual variation captured by the diagonal elements of the residual
covariance matrix X, and by the hierarchy present on the row
effects ai

Collection site 21.33%

Stomach contents 16.13%

Elevation 15.97%

Diet 13.59%

Sex 2.12%

Residuals 13.89%

Sample 15.5%

Nonphylogeny 0.65%

Phylogeny 0.82%
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the degree of spatial and/or social autocorrelation between hosts,

respectively. These two “flavours” of JSDMs and mixed models more

generally have previously been considered in community ecology,

both separately (Ives & Helmus, 2011; Ovaskainen, Roy, Fox, & Ander-

son, 2015; Thorson et al., 2015) and combined (Kaldhusdal et al.,

2015), although both computation and successful estimation and

inference of all the model parameters remain a major issue especially

with the high-dimensional nature of host-associated microbiota data.

In summary, while substantial methodological advances have been

made over the past few years in developing an extensive model

framework for community ecological data, to date there exists no

similar unifying framework for modelling host-associated microbiota

which is directly tailored to the hierarchical and correlation structures

present as well as questions of interest specific to such data. Our pro-

posed model, which explicitly accounts for the host’s effect in struc-

turing its microbiota, takes us closer to that goal.
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