
Bulletin of Mathematical Biology (2020) 82:22
https://doi.org/10.1007/s11538-020-00698-y

METHODS AND SOFTWARE

Additional Analytical Support for a NewMethod to
Compute the Likelihood of Diversification Models

Giovanni Laudanno1 · Bart Haegeman2 · Rampal S. Etienne1

Received: 4 July 2019 / Accepted: 2 December 2019 / Published online: 22 January 2020
© The Author(s) 2020

Abstract
Molecular phylogenies have been increasingly recognized as an important source
of information on species diversification. For many models of macroevolution, ana-
lytical likelihood formulas have been derived to infer macroevolutionary parameters
from phylogenies. A few years ago, a general framework to numerically compute such
likelihood formulas was proposed, which accommodates models that allow speciation
and/or extinction rates to depend on diversity. This framework calculates the likelihood
as the probability of the diversification process being consistent with the phylogeny
from the root to the tips. However, while some readers found the framework presented
in Etienne et al. (ProcRSocLondBBiol Sci 279(1732):1300–1309, 2012) convincing,
others still questioned it (personal communication), despite numerical evidence that
for special cases the framework yields the same (i.e., within double precision) numer-
ical value for the likelihood as analytical formulas do that were independently derived
for these special cases. Herewe prove analytically that the likelihoods calculated in the
new framework are correct for all special cases with known analytical likelihood for-
mula. Our results thus add substantial mathematical support for the overall coherence
of the general framework.
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1 Introduction

One of the major challenges in the field of macroevolution is understanding the mech-
anisms underlying patterns of diversity and diversification. A very fruitful approach
has been to model macroevolution as a birth–death process which reduces the prob-
lem to the specification of macroevolutionary events (i.e., speciation and extinction).
However, providing likelihood expressions for these models given empirical data on
speciation and extinction events is quite challenging, for the following reason. While
such a likelihood is very easy to derive when full information is available for all events,
typically the data involve phylogenetic trees constructed with molecular data collected
from extant species alone. Hence, no extinction events and speciation events leading
to extinct species are recorded in such phylogenetic trees. For a variety of models, this
problem can be overcome by considering a reconstructed process, whereby the phy-
logeny of extant species can be regarded as a pure-birth process with time-dependent
speciation rate (Nee et al. 1994). But this approach is not generally valid.

Thus, themethods employed to derive likelihood expressions are usually applicable
to a limited set of models. They do not apply to models that assume that speciation and
extinction rates depend on the number of species in the system. Hence, potential feed-
back of diversity itself on diversification rates, due to interspecific competition or niche
filling, is completely ignored. The first to incorporate such feedbacks were Rabosky
and Lovette (2008), who made rates dependent on the number of species present at
every given moment in time, analogously to logistic growth models used in population
biology. However, their model had to assume that there is no extinction for mathemat-
ical tractability, which stands in stark contrast to the empirical data: the fossil record
provides us with many examples of extinct species.

Etienne et al. (2012) presented a framework to compute the likelihood of phy-
logenetic branching times under a diversity-dependent diversification process that
explicitly accounts for the influence of species that are not in the phylogeny, because
they have become extinct. We note that diversity dependence as implemented in the
approach of Etienne et al. (2012) does not need to start at the crown of a branching
process: It can already act earlier. This feature has already been used in applications
to island biogeography (Valente et al. 2015). Some of our colleagues have doubts
that this framework contains a formal argument that the solution of the set of ordinary
differential equations that together constitute the framework gives the likelihood of
the model for a given phylogenetic tree. Instead, only numerical evidence for a small
set of parameter combinations has been provided that the method yields, in the appro-
priate limit, the known likelihood for the standard diversity-independent (i.e., using
constant rates) birth–death model. This likelihood was first provided by Nee et al.
(1994), using a breaking-the-tree approach. Later, Lambert and Stadler (2013) used
coalescent point process theory to provide an approach to obtain likelihood formulas
for a wider set of models. These models did not include diversity dependence. For
example, Lambert et al. (2015) applied their framework to the protracted birth–death
model (Etienne et al. 2014), which is a generalization of the diversity-independent
model where speciation is no longer an instantaneous event (Etienne and Rosindell
2011). For this model, they provided an explicit likelihood expression.
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Here we provide an analytical proof that the likelihood of Etienne et al. (2012)
reduces to the likelihood of Lambert et al. (2015)—and hence to that of Nee et al.
(1994)—for the case of diversity-independent diversification.

The extant species belonging to a clade are often not all available for sequencing,
because some species are difficult to obtain tissue from (either because they are dif-
ficult to find/catch, or because they are endangered, or because they have recently
become extinct due to anthropogenic rather than natural causes) or because it is diffi-
cult to extract their DNA. This means that our data consist of a phylogenetic tree
of an incomplete sample of species, and thus of an incomplete set of speciation
events, even for those that lead to the species that we observe today. This incom-
plete sampling has been described by two different random models. The first model
assumes that a fixed number of extant species are not represented in the phylogeny.
This model might be appropriate for well-described taxonomic groups, such as birds,
where we have a good idea of the species that are evolutionarily related, but we
are simply missing some data points for the reasons mentioned above. This sam-
pling model is called n-sampling (Lambert et al. 2015). The second model assumes
that extant species are represented in the phylogeny with a fixed probability ρ. This
sampling scheme is called ρ-sampling (Lambert et al. 2015), but is also referred to
as f -sampling (Nee et al. 1994). The framework of Etienne et al. (2012) assumes
n-sampling, but in this paper, we show that it can also be extended to incorporate
ρ-sampling.

In the next section, we summarize the framework of Etienne et al. (2012), and
we provide the likelihood formula analytically derived by Lambert et al. (2015) for
the special case of diversity-independent but time-dependent diversification with n-
sampling. Then we proceed by showing that the probability generating functions of
these two likelihoods are identical. We end with a discussion where we point out
how the framework of Etienne et al. (2012) can be extended to include ρ-sampling
and how it relates to the likelihood formula of Rabosky and Lovette (2008) for the
diversity-dependent birth–death model without extinction.

2 The Diversity-Dependent DiversificationModel

Diversification models are birth–death processes in which “birth” and “death” cor-
respond to speciation and extinction events, respectively. In the simplest case, the
per-species speciation rate λ and the per-species extinction rate μ are constants. Here
we consider diversification models in which the per-species speciation and extinction
rates depend on the number of species n present at time t , i.e., diversity-dependent,
which we denote by λn and μn . We also allow the speciation and extinction rates to
depend on time t , i.e., λn(t) and μn(t), although the latter dependence is often not
explicit in our notation.

We assume that the diversification process starts at time tc from a crown, i.e., from
two ancestor species. Assuming that at a later time t > tc, the process has n species,
the transition probabilities in the infinitesimal time interval [t, t + dt] are
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from n to n + 1 species with probability nλn(t) dt

from n to n − 1 species with probability nμn(t) dt

number of species n unchanged with probability 1 − nλn(t) dt − nμn(t) dt .

The diversification process runs until the present time tp.
We denote by Pn(t) the probability that the process has n species at time t . This

probability satisfies the following ordinary differential equation [ODE, called master
equation or forward Kolmogorov equation (Bailey 1990)],

dPn(t)

dt
= μn+1 (n + 1)Pn+1(t) + λn−1 (n − 1)Pn−1(t) − (λn + μn) nPn(t),

(1)

where we omit in the notation the time dependence of the speciation and extinction
rates.

2.1 SamplingModels

At the present time tp, a subset of the n extant species are observed and sampled. This
sampling process can been modeled in two different ways (see introduction). The first
model assumes that a fixed number of species is unsampled, which corresponds to
the n-sampling scheme of Ref. Lambert et al. (2015). That is, the number of extant
species at tp that are not sampled, a number we denote by mp, is a model parameter.
The second model assumes that each extant species at the present time is sampled
with a given probability, which has been called f -sampling (Nee et al. 1994) or ρ-
sampling (Lambert et al. 2015). In this case, the number of unsampled species mp is a
random variable, and the probability with which extant species are sampled is a model
parameter, which we denote by fp.

2.2 Reconstructed Tree

A realization of the diversification process from tc to tp can be represented graphically
as a tree; see Fig. 1. The complete tree shows all the species that have originated in the
process (Fig. 1a). However, in practice, we have only access to the reconstructed tree,
i.e., the complete tree fromwhich we remove all the species that became extinct before
the present or that were not sampled (Fig. 1b). While it would be straightforward to
infer information about the diversification process based on the complete tree, this
task is much more challenging when only the reconstructed tree is available.

This paper deals with likelihood formulas for a reconstructed phylogenetic tree.
The number of tips equals the number of sampled extant species kp. We assume that
also the number of unsampled extant species is known, a number we denote by mp.
The information contained in a phylogenetic tree consists of a topology and a set
of branching times. For a large set of diversification models, including the diversity-
dependent one, all trees having the same branching times but different topologies
are equally probable (Lambert and Stadler 2013). Hence, rather than computing the
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(a)

(b)

(c)

Fig. 1 a Full tree where missing species are plotted as red dashed lines: the ones ending in a cross become
extinct before the present, whereas the ones ending with a red dot are unsampled species at the present;
b Corresponding reconstructed tree in which only extant species are present. This is the type of tree we
usually work with because actual phylogenetic trees are usually obtained from molecular data taken from
extant species; c Lineages-through-time plot: The green line represents the number of lineages leading to
extant species (k), the red line represents lineages leading to extinct or unsampled species (m), and the blue
line represents the total number of lineages (n = k + m)

likelihood of a specific topology, we present formulas for the likelihood of the vector
of branching times.We denote the vector of branching times by t = (t2, t3, . . . , tkp−1),
where tk is the branching time at which the phylogenetic tree changes from k to k + 1
branches. It will be convenient to set t0 = t1 = tc and tkp = tp.
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2.3 Likelihood Conditioning

It is common practice to condition the likelihood on the survival of both ancestor
lineages to the present time (Nee et al. 1994). Indeed, we would only do an analysis
on trees that have actually survived to the present. To incorporate this fact, we need
to divide the unconditioned likelihood by the probability for each of the ancestor
species at the crown age to have sampled extant descendants. This probability would
necessarily depend on the way extant species were sampled, i.e., using either the n-
sampling or the f -sampling model. However, for the sake of simplicity, here we apply
the same conditioning as presented in the original paper (Etienne et al. 2012), where it
is required that the descendants survive to the present, but not that they are sampled. In
this way, the conditioning becomes independent of the choice of the sampling scheme.

3 The Framework of Etienne et al.

Etienne et al. (2012) presented an approach to compute the likelihood of a phylogeny
for the diversity-dependent model. It is based on a new variable, Qk

m(t), which they
described as “the probability that a realization of the diversification process is consis-
tent with the phylogeny up to time t , and has n = m+k species at time t” (Ref. Etienne
et al. 2012, Box 1), where k lineages are represented in the phylogenetic tree (because
they are ancestral to one of the kp species extant and sampled at present) and m addi-
tional species are present but unobserved (Fig. 1c). These species might not be in
the phylogenetic tree because they became extinct before the present or because they
are either not discovered or not sampled yet (see introduction). From hereon, we will
refer to these species denoted bym as missing species.We cannot ignore thesemissing
species, because in a diversity-dependent speciation process, they can influence the
speciation and extinction rates.

We start by describing the computation of the variable Q
kp
mp(tp), which proceeds

from the crown age tc to the present time tp. It is convenient to arrange the values
Qk

m(t), with m = 0, 1, 2, . . ., into the vector Qk(t). The initial vector Qk=2(tc) is
transformed into the vectorQk(t) at a later time t as follows (Ref. Etienne et al. 2012,
Appendix S1, Eq. (S1)):

Qk(t) = Ak(tk−1, t)Bk−1(tk−1)Ak−1(tk−2, tk−1)

. . .A3(t2, t3)B2(t2)A2(tc, t2)Qk=2(tc),

with tk−1 ≤ t ≤ tk . The operators Ak and Bk are infinite-dimensional matrices that
operate along the tree, on branches, and nodes, respectively (Fig. 2). Continuing this
computation until the present time tp, we get

Qkp(tp) = Akp(tkp−1, tp)Bkp−1(tkp−1)Akc−1(tkp−2, tkp−1)

. . .A3(t2, t3)B2(t2)A2(tc, t2)Qk=2(tc). (2)

Note that Eq. (2) generalizes Eq. (S1) of Ref. Etienne et al. (2012) to the case in which
the rates are time-dependent.
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Fig. 2 An example of how to build a likelihood for a tree with kp = 4 tips. We start with a
vector Q2(tc) at the crown age. We use Ak (tk , tk−1) and Bk (tk ) to evolve the vector across the
entire tree (on branches and nodes, respectively) up to the present time tp according to Q4(t4) =
A4(t4, t3)B3(t3)A3(t3, t2)B2(t2)A2(t2, tc)Q2(tc). At the present time, the likelihood accounting for mp

missing species will be proportional to the mpth component of the vector L4,mp ∝ Q4
mp (tp)

We specify the different terms appearing in the right-hand side of Eq. (2):

– For the initial vector Qk=2(tc), we assume that there are no missing species at
crown age, that is, Qk=2

m (tc) = δm,0.
– Thematrix Ak corresponds to the dynamics of Qk

m(t) in the time interval [tk−1, tk],
during which the phylogenetic tree has k branches. Etienne et al. (2012) argued
that these dynamics are given by the following ODE system (Ref. Etienne et al.
2012, Box 1, Eq. (B2)):

dQk
m(t)

dt
= μk+m+1(m + 1)Qk

m+1(t) + λk+m−1(m − 1 + 2k)Qk
m−1(t)

− (λm+k + μm+k)(m + k)Qk
m(t), ∀m > 0,

dQk
0(t)

dt
= μk+1Q

k
1(t) − (λk + μk)kQ

k
0(t), if m = 0. (3)

The quantity Q
kp
m (tp) is proportional to the likelihood of the tree at the present

time with m unsampled extant species (see Claim 3.1 for the precise statement,
including the constant of proportionality).We can collect the coefficients of Qk

m(t)
on the right-hand side of the ODE system in a matrix Vk(t). If we do so, the system
can be rewritten as
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dQk(t)

dt
= Vk(t)Qk(t),

which has solution

Qk(t) = exp

( ∫ t

tk−1

Vk(s) ds

)
Qk(tk−1),

so that

Ak(tk−1, t) = exp

(∫ t

tk−1

Vk(s) ds

)
. (4)

– The matrix Bk transforms the solution of the ODE system ending at tk into the
initial condition of the ODE system starting at tk . It is a diagonal matrix with
components kλk+mdt , so that

Qk+1
m (tk) = (

Bk(tk)
)
m,mQ

k
m(tk) = kλk+mdt Q

k
m(tk). (5)

The multiplication by λk+mdt corresponds to the probability that a speciation
occurs in the time interval [tk, tk + dt]. We multiply by a factor k because we
do not specify which lineage speciates (recall that we compute the likelihood of
a vector of branching times rather than of a specific topology). In the likelihood
expressions, wewill omit the differential (a choice that is widely adopted across the
vast majority of this kind of models in the literature) as it is actually not essential
in parameter estimation. Therefore, we will work with a likelihood density, but for
simplicity, we will refer to it as a likelihood.

We are then ready to formulate the claim made by Etienne et al. (2012) (in particular,
from their Appendix S1, see Eqs. (S2) and (S6) to obtain Eq. 6 and Eqs. (S7–11) to
obtain Eq. 7).

Claim 3.1 Consider the diversity-dependent diversification model, given by speciation
rates λn(t) and extinction rates μn(t). The diversification process starts at crown age
tc with two ancestor species and ends at the present time tp, at which a fixed number of
species mp are not sampled. A phylogenetic tree is constructed for the sampled species.
Then, the likelihood that the phylogenetic tree has kp tips and vector of branching times
t = (t1, t2, . . . , tkp−1), conditional on the event that both crown lineages survive until
the present, is equal to

Lkp,t,mp = Q
kp
mp(tp)(kp+mp

mp

)
Pc(tc, tp)

. (6)

The term Q
kp
mp(tp) in the numerator of this expression is obtained from Eq. (2). The

term Pc(tc, tp) in the denominator, where the subscript c stands for conditioning, is
equal to
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Pc(tc, tp) =
∞∑

m=0

6

(m + 2)(m + 3)

∞∑
n=0

(
A2(tc, tp)

)
m,n Q

k=2
n (tc), (7)

where Qk=2
n (tc) = δn,0.

The structure of the likelihood expression (6) can be understood intuitively. It is

proportional to Q
kp
mp(tp), which in Etienne et al.’s interpretation is the probability that

the diversification process generates the phylogenetic tree with kp tips andmp missing
species at present time tp. The combinatorial factor

(kp+mp
mp

)
accounts for the number

of ways to select mp missing species out of a total pool of kp +mp species. The factor
Pc(tc, tp) is the probability that both ancestor species at crown age tc have descendant
species at the present time tp. Hence, this factor applies the likelihood conditioning.

Etienne et al. (2012) provided numerical evidence that Claim 3.1 is in agreement
with the likelihood provided by Nee et al. (1994) under the hypothesis of diversity-
independent speciation and extinction rates and no missing species at the present.
However, a rigorous analytical proof, even for this specific case, has not yet been
given. In this paper, we show that Claim 3.1 holds (1) for the diversity-independent
(but possibly time-dependent) case and (2) for the diversity-dependent case without
extinction (i.e., extinction rate μ = 0).

4 The Likelihood for the Diversity-Independent Case

Claim 3.1 proposes a likelihood expression for the case with a known number of
unsampled species at the present, i.e., it accounts for n-sampling. For the diversity-
independent case, i.e., λn(t) = λ(t) and μn(t) = μ(t), the likelihood is contained in a
more general result established by Lambert et al. (2015). In the following proposition,
we derive an explicit likelihood expression by restricting the result of Lambert et al.
to the diversity-independent case.

Proposition 4.1 Consider the diversity-independent diversification model, given by
speciation rates λ(t) and extinction rate μ(t). The diversification process starts at
crown age tc with two ancestor species, and ends at the present time tp, at which a
fixed number of species mp are not sampled. A phylogenetic tree is constructed for the
sampled species. Then, the likelihood that the phylogenetic tree has kp tips and vector
of branching times t = (t1, t2, . . . , tkp−1), conditional on the event that both crown
lineages survive until the present, is equal to

L(div-indep)
kp,t,mp

= (kp − 1)!(kp+mp
mp

) (1 − η(tc, tp))
2
kp−1∏
i=2

λ(ti )(1 − ξ(ti , tp))(1 − η(ti , tp))

×
∑
m|mp

kp−1∏
j=0

(m j + 1)(η(t j , tp))
m j , (8)
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where we used the convention t0 = t1 = tc. The components m j (with j =
0, 1, . . . , kp − 1) of the vectors m, in the sum on the second line, are nonnegative

integers satisfying
∑kp−1

j=0 m j = mp. The functions ξ(t, tp) and η(t, tp) are given by

ξ(t, tp) = 1 − 1

α(t, tp) + ∫ tp
t λ(s) α(t, s) ds

= 1 − 1

1 + ∫ tp
t μ(s) α(t, s) ds

(9)

η(t, tp) = 1 − α(t, tp)

α(t, tp) + ∫ tp
t λ(s) α(t, s) ds

= 1 − α(t, tp)

1 + ∫ tp
t μ(s) α(t, s) ds

, (10)

with

α(t, s) = exp
( ∫ s

t
(μ(s′) − λ(s′)) ds′).

The functions ξ(t, tp) and η(t, tp) are those appearing in Kendall’s solution of the
birth–death model [see Ref. Kendall 1948, Eqs. (10–12)], and are useful to describe
the process when time-dependent rates are involved. Given the probability Pn(t, tp)
of realizing a process starting with 1 species at time t and ending with n species at

time tp, we have that ξ(t, tp) = P0(t, tp) and η(t, tp) = Pn�+1(t,tp)
Pn� (t,tp)

for any n� > 0.

Proof The likelihood for n-sampling was originally provided by Ref. Lambert et al.
(2015), Eq. (7), but we start from the explicit version provided in Ref. Etienne et al.
(2014), Eq. (1); see corrigendum in Ref. Etienne (2017),

L (div-indep)
kp,t,mp

= (kp − 1)!(kp+mp
mp

) (g(tc, tp))
2
kp−1∏
i=2

f (ti , tp)
∑
m|mp

kp−1∏
j=0

(m j + 1)(1 − g(t j , tp))
m j .

(11)

Etienne et al. (2014), Lambert et al. (2015) specify the functions f (t, tp) and g(t, tp)
as the solution of a systemofODEs for the case of protracted speciation, amodelwhere
speciation does not take place instantaneously but is initiated and needs time to com-
plete. The standard diversification model is then obtained by taking the limit in which
the speciation-completion rate tends to infinity. In this limit, the four-dimensional sys-
tem of Etienne et al. (2014), Eq. (2), reduces to a two-dimensional system of ODEs,

f (t, tp) = dg(t, tp)

dt
= λ(t) (1 − q(t, tp)) g(t, tp)

dq(t, tp)

dt
= −μ(t) + (μ(t) + λ(t)) q(t, tp) − λ(t) q2(t, tp).
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Note that in this paper time t runs from past to present rather than from present to
past as in Etienne et al. (2014). The conditions at the present time tp are given by
g(tp, tp) = 1 and q(tp, tp) = 0.

The solution of this system of ODEs can be expressed in terms of η(t, tp) and
ξ(t, tp),

f (t, tp) = λ(t) (1 − ξ(t, tp)) (1 − η(t, tp))

g(t, tp) = 1 − η(t, tp)

q(t, tp) = ξ(t, tp),

which can be checked using the derivatives of the expressions 10 and 9

∂η(t, tp)

∂t
= −λ(t) (1 − ξ(t, tp)) (1 − η(t, tp))

∂ξ(t, tp)

∂t
= −(μ(t) − λ(t) ξ(t, tp)) (1 − ξ(t, tp)).

Substituting the functions f (t, tp) and g(t, tp) into the likelihood expression (11)
concludes the proof. ��

The functions ξ(t, tp) and η(t, tp) are directly related to the functions used by Nee
et al. (1994). In particular, the functions they denoted by P(t, tp) and ut correspond
in our notation to 1 − ξ(t, tp) and η(t, tp), respectively.

This correspondence allows us to get an intuitive understanding of the likelihood
expression (8). First consider the casewithoutmissing species. Settingmp = 0, we get

L (div-indep)
kp,t,0

= (kp − 1)! (1 − η(tc, tp))
2
kp−1∏
i=2

λ(ti )(1 − ξ(ti , tp))(1 − η(ti , tp)),

which is identical to the breaking-the-tree likelihood of Nee et al. (1994, Eq. (20)).
In the latter approach, the phylogenetic tree is broken into single branches: two for
the interval [tc, tp] and one for each interval [ti , tp] with i = 2, 3, . . . , kp − 1. Each
branch contributes a factor (1 − ξ(ti , tp))(1 − η(ti , tp)), equal to the probability that
the branch starting at ti has a single descendant species at tp. For the two branches
originating at tc, the factor (1 − ξ(ti , tp)), equal to the probability of having (one or
more) descendant species, drops due to the conditioning. For the other branches, there
is an additional factor λ(ti ) for the speciation events.

Next consider the case with missing species. Each of the branches resulting from
breaking the tree can contribute species to the pool of mp missing species. For the
branch over the interval [t j , tp], there are m j such species, each contributing a factor
η(t j , tp) to the likelihood. Indeed, (1 − ξ(t j , tp))(1 − η(t j , tp))(η(t j , tp))m j is equal
to probability of having exactly m j + 1 descendant species at the present time. One
of these species is represented in the phylogenetic tree, justifying the combinatorial
factor (m j + 1) in the second line of Eq. (8).

Finally, we recall the expressions for the functions ξ(t, tp) and η(t, tp) in the case
of constant rates, λ(t) = λ and μ(t) = μ,
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ξ(t, tp) = μ
(
1 − e−(λ−μ)(tp−t)

)
λ − μ e−(λ−μ)(tp−t)

η(t, tp) = λ
(
1 − e−(λ−μ)(tp−t)

)
λ − μ e−(λ−μ)(tp−t)

.

5 Equivalence for the Diversity-Independent Case

Likelihood formula (8) allows speciation and extinction rates to be arbitrary functions
of time, λ(t) and μ(t). Here we show that, for the diversity-independent case, we find
the same likelihood formula with the approach of Etienne et al. (2012). From now on,
we will use the short-hand notation ∂x for the partial derivative with respect to the
generic variable x .

Theorem 5.1 Claim 3.1 holds for the diversity-independent case.

Proof The proof relies heavily on generating functions. First, we introduce the gener-
ating function for the variables Qk

m(t),

Fk(z, t) =
∞∑

m=0

zmQk
m(t). (12)

The set of ODEs satisfied by Qk
m(t), Eq. (3), transforms into a partial differential

equation (PDE) for the generating function Fk(z, t),

∂t Fk(z, t) = (μ(t) − z λ(t))(1 − z)∂z Fk(z, t) + k(2z λ(t) − λ(t) − μ(t))Fk(z, t)

= c(z, t)∂z Fk(z, t) + k∂zc(z, t)Fk(z, t), (13)

with

c(z, t) = (μ(t) − zλ(t))(1 − z).

Note that the number of branches k changes at each branching time, so that the PDE
for Fk(z, t) is valid only for tk−1 ≤ t ≤ tk (corresponding to the operator Ak). At
branching time tk , the solution Fk(z, tk) has to be transformed to provide the initial
condition for the PDE for Fk+1(z, t) at time tk (corresponding to the operator Bk).
Using Eq. (5) and dropping the differential, we get

Fk+1(z, tk) = kλ(tk) Fk(z, tk). (14)

The initial condition at crown age is F2(z, tc) = 1 because Qk=2
m (tc) = δm,0.

Next, we define Pn(s, t) as the probability that the birth–death process that started
with one species at time s has n species at time t . The corresponding generating
function is defined as,
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G(z, s, t) =
∞∑
n=0

zn Pn(s, t). (15)

The set of ODEs satisfied by Pn(s, t), Eq. (1), transforms into a PDE,

∂tG(z, s, t) = c(z, t)∂zG(z, s, t). (16)

Its solution was given by Kendall (1948, Eq. (9)),

G(z, s, t) = ξ(s, t) + (1 − ξ(s, t) − η(s, t))z

1 − zη(s, t)
, (17)

where ξ(s, t) and η(s, t) are given in Eqs. (9) and (10).
The generating function Fk(z, t) can be expressed in terms of the generating func-

tion G(z, s, t), as shown in the following lemma.

Lemma 5.1 The generating function Fk(z, t) of the variables Qk
m(t) is given by

Fk(z, t) = H2(z, tc, t)
k−1∏
j=2

jλ j (t j )H(z, t j , t) (18)

with

H(z, s, t) = ∂zG(z, s, t) = (1 − ξ(s, t)) (1 − η(s, t))

(1 − z η(s, t))2
. (19)

To prove the lemma, let us suppose that the solution of Eq. (13) is of the form,

Fk(z, t) = Ck(t)
k−1∏
j=0

∂zG(z, t j , t) (20)

where we used the convention t0 = t1 = tc and Ck(t) is a constant depending on the
branching times. This expression can be rewritten as:

Fk(z, t) = Ck(t)
1

k

k−1∑
i=0

∂zG(z, ti , t)
k−1∏

j 	=i, j=0

∂zG(z, t j , t).

The partial derivatives of Fk can now be computed,

∂z Fk = Ck(t)
k−1∑
i=0

∂2z G(z, ti , t)
k−1∏

j 	=i, j=0

∂zG(z, t j , t)

∂t Fk = Ck(t)
k−1∑
i=0

∂t∂zG(z, ti , t)
k−1∏

j 	=i, j=0

∂zG(z, t j , t).
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We substitute these expressions into the PDE, Eq. (13),

k−1∑
i=0

∂t∂zG(z, ti , t)
k−1∏

j 	=i, j=0

∂zG(z, t j , t)

= c(z, t)
k−1∑
i=0

∂2z G(z, ti , t)
k−1∏

j 	=i, j=0

∂zG(z, t j , t)

+ k ∂zc(z, t)
1

k

k−1∑
i=0

∂zG(z, ti , t)
k−1∏

j 	=i, j=0

∂zG(z, t j , t).

This equation is satisfied if the following equation is satisfied for every i = 0, 1, . . . , k,

∂t∂zG(z, ti , t)
k−1∏

j 	=i, j=0

∂zG(z, t j , t)

= c(z, t) ∂2z G(z, ti , t)
k−1∏

j 	=i, j=0

∂zG(z, t j , t)

+ ∂zc(z, t) ∂zG(z, ti , t)
k−1∏

j 	=i, j=0

∂zG(z, t j , t).

This is the case if

∂t∂zG(z, ti , t) = c(z, t) ∂2z G(z, ti , t) + ∂zc(z, t) ∂zG(z, ti , t),

or, equivalently, if

∂z
[
∂tG(z, ti , t)

] = ∂z
[
c(z, t) ∂zG(z, ti , t)

]
.

This is an identity because G(z, ti , t) satisfies Eq. (16).
Next, we verify that the constants Ck(t) can be determined such that initial condi-

tions (14) are satisfied. This is indeed the case if we take

Ck(t) =
k−1∏
j=2

jλ(t j ).

Introducing the function H(z, s, t) and using t0 = t1 = tc complete the proof of the
lemma.

Next, we use Eq. (18) to derive an explicit expression for the likelihood (6) of
Claim 3.1. It will be useful to have explicit expressions for derivatives of the function
H(z, s, t). It follows from Eq. (19) that
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1

a!∂
a
z

[
Hb(z, t j , t)

] =
(
a + 2b − 1

a

)
Hb(z, t j , t)

(
η(t j , t)

1 − z η(t j , t)

)a

, (21)

where a and b are positive integers.

To evaluate the numerator of Eq. (6), we have to extract Q
kp
mp (tp) from the generating

function Fkp(z, tp). Using Leibniz’ rule,

Q
kp
mp(tp) = 1

mp!∂
mp
z

[
Fkp(z, tp)

]
z=0

= Ckp(t)

mp! ∂
mp
z

⎡
⎣
kp−1∏
j=0

H(z, t j , tp)

⎤
⎦
z=0

= Ckp(t)

mp!
∑
m|mp

(
mp

m0,m1, . . . ,mkp−1

) kp−1∏
j=0

∂
m j
z

[
H(z, t j , tp)

]
z=0

= Ckp(t)

mp!
∑
m|mp

mp!∏
i mi !

kp−1∏
j=0

(m j + 1)!

×
[
H(z, t j , tp)

(
η(t j , tp)

1 − z η(t j , tp)

)m j
]
z=0

= Ckp(t)
kp−1∏
j=0

H(0, t j , tp)
∑
m|mp

1∏kp−1
i=0 mi !

kp−1∏
j=0

(m j + 1)! ηm j (t j , tp)

=
kp−1∏
j=2

jλ(t j )

kp−1∏
j=0

(1 − ξ(t j , tp))(1 − η(t j , tp))

×
∑
m|mp

kp−1∏
j=0

(m j + 1) ηm j (t j , tp)

= (kp − 1)!(1 − ξ(tc, tp))
2(1 − η(tc, tp))

2

×
kp−1∏
j=2

λ(t j ) (1 − ξ(t j , tp))(1 − η(t j , tp))

×
∑
m|mp

kp−1∏
j=0

(m j + 1) ηm j (t j , tp). (22)

To evaluate the denominator of Eq. (6), we have to extract Qk=2
m (tp) from the

generating function,

Qk=2
m (tp) = 1

m!∂
m
z

[
F2(z, tp)

]
z=0 = 1

m!∂
m
z

[
H2(z, tc, tp)

]
z=0.
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Substituting into Eq. (7) and using Eq. (21), we get

Pc(tc, tp) =
∞∑

m=0

6

(m + 2)(m + 3)

1

m!∂
m
z

[
H2(z, tc, tp)

]
z=0

= H2(0, tc, tp)
∞∑

m=0

(m + 1) ηm(tc, tp)

= (1 − ξ(tc, tp))
2. (23)

Finally, substituting Eqs. (22) and (23) into the likelihood formula (6) of Claim 3.1,

Lkp,t,mp = (kp − 1)!(kp+mp
mp

) (1 − η(t1, tp))
2
kp−1∏
j=2

λ(t j )(1 − ξ(t j , tp))(1 − η(t j , tp))

×
∑
m|mp

kp−1∏
j=0

(m j + 1) ηm j (t j , tp), (24)

which is identical to likelihood formula (8). This concludes the proof of the theorem.
��

6 A Note on Sampling a Fraction of Extant Species

Nee et al. (1994) noted that one way to model the sampling of extant species is equiv-
alent to a mass extinction just before the present. This sampling model corresponds to
sampling each extant species with a given probability fp, which has also been called
ρ-sampling (Lambert et al. 2015). We use the link with mass extinction to extend the
previous formula for n-sampling to the case of ρ-sampling.

First, we formulate the ρ-sampling version of Claim 3.1.

Claim 6.1 Consider the diversity-dependent diversification model, given by speciation
rates λn(t) and extinction rates μn(t). The diversification process starts at crown age
tc with two ancestor species and ends at the present time tp, at which extant species
are sampled with probability fp. Then, the likelihood of a phylogenetic tree with kp
tips and branching times t, conditional on the event that both crown lineages survive
until the present, is equal to

Lkp,t = Ps(tc, t, tp, fp)

Pc(tc, tp)
. (25)

The term Ps(tc, t, tp, fp) in the numerator, where the subscript s stands for sampling,
is equal to
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Ps(tc, t, tp, fp) =
∞∑

m=0

f
kp
p (1 − fp)

m Q
kp
m (tp), (26)

where Q
kp
m (tp) is obtained from Eq. (2). The term Pc(tc, tp) in the denominator, where

the subscript c stands for conditioning, is equal to

Pc(tc, tp) =
∞∑

m=0

6

(m + 2)(m + 3)
Qk=2

m (tp), (27)

where Qk=2
m (tp) is again obtained from Eq. (2).

Next, we establish as a reference the likelihood formula for ρ-sampling in the
diversity-independent case.

Proposition 6.1 Consider the diversity-independent diversification model, given by
speciation rates λ(t) and extinction rates μ(t). The diversification process starts at
crown age tc with two ancestor species, and ends at the present time tp, at which extant
species are sampled with probability fp. Then, the likelihood of a phylogenetic tree
with kp tips and branching times t, conditional on the event that both crown lineages
survive until the present, is equal to

L(div-indep)
kp,t

= (kp − 1)! (1 − η̃(tc, tp))
2
kp−1∏
i=2

λ(ti )(1 − ξ̃ (ti , tp))(1 − η̃(ti , tp)). (28)

The functions ξ̃ (t, tp) and η̃(t, tp) are given by

ξ̃ (t, tp) = 1 − fp

α(t, tp) + fp
∫ tp
t λ(s) α(t, s) ds

= 1 − fp

fp + (1 − fp) α(t, tp) + fp
∫ tp
t μ(s) α(t, s) ds

(29)

η̃(t, tp) = 1 − α(t, tp)

α(t, tp) + fp
∫ tp
t λ(s) α(t, s) ds

= 1 − α(t, tp)

fp + (1 − fp) α(t, tp) + fp
∫ tp
t μ(s) α(t, s) ds

, (30)

with

α(t, s) = exp
( ∫ s

t
(μ(s′) − λ(s′)) ds′).

Proof Weuse the equivalence between ρ-sampling and amass extinction, see Ref. Nee
et al. (1994), Eq. (31). We introduce a modified extinction rate μ(t) containing a delta
function just before the present,
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μ̃(t) = μ(t) − ln fp δ(t − tp). (31)

The likelihood formula is then obtained by setting mp = 0 in Eq. (8), while evaluat-
ing the functions ξ(t, tp) and η(t, tp) with the modified extinction rate μ̃(t, tp). This
establishes Eq. (28); it remains to be proven that the modified functions ξ̃ (t, tp) and
μ̃(t, tp) are given by Eqs. (29) and (30). This follows by noting that the modified
version α̃(t, tp) of the function α(t, tp) appearing in Eqs. (9) and (10) satisfies

α̃(t, tp) = exp
( ∫ tp

t
(μ̃(s) − λ(s)) ds

)

= 1

fp
exp

( ∫ tp

t
(μ(s) − λ(s)) ds

)
= 1

fp
α(t, tp),

while α̃(t, s) = α(t, s) if s < tp. ��
We are then ready to establish the following result.

Theorem 6.1 Claim 6.1 holds for the diversity-independent case.

Proof We use again the equivalence between ρ-sampling and a mass extinction; see
Eq. (31). Due to Theorem 5.1, likelihood formula (6) is valid for the diversity-
independent case. Hence, we can derive the corresponding likelihood formula for
ρ-sampling by introducing the modified extinction rate μ̃(t), and setting mp = 0 in
the likelihood formula for n-sampling.

The introduction of the modified extinction rate μ̃(t, tp) corresponds to applying an
additional operator to the vectorQkp(tp) at the present time. In particular, the modified
vector Q̃kp(tp) is given by

Q̃kp(tp) = C( fp)Qkp(tp), (32)

where the operator C( fp) corresponds to the following ODE, acting in a small time
interval [tp − ε, tp] before the present,

d Q̃
kp
m (t)

dt
= (

μ − 1

ε
ln fp

)
(m + 1)Q̃

kp
m+1(t) + λ(m − 1 + 2kp)Q̃

kp
m−1(t)

− (
λ + (

μ − 1

ε
ln fp

))
(m + kp)Q̃

kp
m (t),

where we added a delta peak to the extinction rate, Eq. (31), in the ODE satisfied by
Qk(t), Eq. (3). In the limit ε → 0, the terms in 1

ε
dominate, so that

d Q̃
kp
m (t)

dt
= −1

ε
ln fp (m + 1)Q̃

kp
m+1(t) + 1

ε
ln fp (m + kp)Q̃

kp
m (t).

This can be rewritten in matrix form as

dQ̃kp(t)

dt
= 1

ε
W( fp) Q̃kp ,
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where the operator W( fp) is an infinite-dimensional matrix with components

Wm,n( fp) =

⎧⎪⎨
⎪⎩
ln fp (m + kp) if m = n

− ln fp (m + 1) if m = n − 1

0 otherwise.

Hence, the operator C( fp), which is also an infinite-dimensional matrix, is equal to

C( fp) = exp

( ∫ tp

tp−ε

1

ε
W( fp) ds

)
= exp

(
W( fp)

)
.

We need the row m = 0 to evaluate the likelihood, which is equal to

Cm=0,n( fp) = f
kp
p (1 − fp)

n .

We are then ready to evaluate likelihood formula (6) with the modified extinction
rate. Setting mp = 0, we get

Lkp,t = Q̃
kp
0 (tp)

Pc(tc, tp)
.

Recall that the conditioning probability Pc(tc, tp) is not affected by the process of
sampling extant species. We get

Lkp,t =
(
C( fp)Qkp(tp)

)
m=0

Pc(tc, tp)

=
∑∞

n=0 Cm=0,n( fp) Q
kp
n (tp)

Pc(tc, tp)

=
∑∞

n=0 f
kp
p (1 − fp)n Q

kp
n (tp)

Pc(tc, tp)

= Ps(tc, t, tp, fp)

Pc(tc, tp)
,

which is identical to Eq. (28). This ends the proof. ��

Note that Eq. 26 is equal to f
kp
p Fkp(1− fp, tp) which provides an alternative route

to prove Claim 6.1 (Manceau et al. 2019).
Finally, we give the expressions for the functions ξ̃ (t, tp) and η̃(t, tp) in the case of

constant rates, λ(t) = λ and μ(t) = μ,

ξ̃ (t, tp) = fp μ + ((1 − fp)λ − μ) e−(λ−μ)(tp−t)

fp λ + ((1 − fp)λ − μ) e−(λ−μ)(tp−t)
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η̃(t, tp) = fp λ
(
1 − e−(λ−μ)(tp−t)

)
fp λ + ((1 − fp)λ − μ) e−(λ−μ)(tp−t)

,

which are identical to Eqs. (4) and (5) in the paper by Stadler (2013).

7 The Diversity-Dependent CaseWithout Extinction

Rabosky and Lovette (2008) derived the likelihood for a particular instance of the
diversity-dependent diversification model, namely, when there is no extinction. This
is the only case for which a diversity-dependent likelihood formula is available. Here
we show that this case is dealt with correctly in the approach of Etienne et al. (2012).

We start by reformulating the result of Rabosky and Lovette (2008) in our notation.

Proposition 7.1 Consider the diversity-dependent model without extinction, given by
speciation rates λn(t). The diversification process starts at crown age tc with two
ancestor species, and ends at the present time tp, at which all extant species are
sampled. Then, the likelihood of a phylogenetic tree with kp tips and branching times
t is equal to

L(no−extinct)
kp,t,0

= (kp − 1)!
kp−1∏
i=2

λi (ti )

kp∏
j=2

exp

(
− j

∫ t j

t j−1

λ j (s) ds

)
, (33)

where we used the convention t1 = tc and tkp = tp.

Proof Equation (33) follows from Eqs. (2.4) and (2.5) in Ref. Rabosky and Lovette
(2008), by noting that ξi in their notation corresponds to

exp

(
−

kp∑
j=i

∫ t j

t j−1

λ j (s) ds

)

in our notation. ��
Note that in the case without extinction likelihood conditioning has no effect.

Theorem 7.1 Claim 3.1 holds for the diversity-dependent case without extinction.

Proof To evaluate likelihood expression (6), we have to solve the ODE for Qk
m(t),

Eq. (3). Because species cannot become extinct and because all extant species are
sampled, every species created during the process is represented in the phylogeny, i.e.,
there are no missing species. Hence, only the m = 0 component of Qk(t) is different
from zero. The ODE simplifies to

dQk
0(t)

dt
= −kλk(t) Q

k
0(t),

where t belongs to [tk−1, tk]. Note that in this time interval there are exactly k species.
Given the initial condition Qk

0(tk−1) at tk−1 , the solution is
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Qk
0(t) = Qk

0(tk−1) exp

(
−k

∫ t

tk−1

λk(s) ds

)
.

At branching time tk , variable Qk
0(tk) is transformed into variable Qk+1

0 (tk),

Qk+1
0 (tk) = kλk(tk) Q

k
0(tk).

Using the initial condition at crown age tc, Qk=2
0 (tc) = 1, we get

Q
kp
0 (tp) =

kp−1∏
i=2

iλi (ti )

kp∏
j=2

exp

(
− j

∫ t j

t j−1

λ j (s) ds

)
.

Substituting into Eq. (6) yields the desired result. ��

8 Concluding Remarks

We have shown here that for the diversity-independent, but time-dependent birth–
death model with n-sampling, the framework of Etienne et al. (2012) yields the same
likelihood derived by Lambert et al. (2015) (also presented in a more explicit form
in Etienne 2017 and Etienne et al. 2014). This provides strong support for the correct-
ness of this framework, but does not prove that it is also correct for the case of diversity
dependence. We have thus far not been able to provide alternative evidence for this
framework, apart from the fact that parameter estimations on simulations of this model
provide reasonable, although sometimes biased, estimates (Etienne et al. 2012). We
hope that our analysis here will suggest directions for a further substantiating of the
framework. The approach taken byManceau et al. (2019) may be promising, as it also
provides numerical evidence for the correctness of the framework in the diversity-
dependent case.

Most existing macroevolutionary models rely on the hypothesis that the subcompo-
nents of trees do not interact (and one can thus apply a breaking-the-tree approach, as
in Nee et al. 1994, p. 308), therefore letting the likelihood be a factorization of terms
that comes independently from the tree’s edges and nodes. However, such a hypothesis
is not always valid. The diversification process likely also depends on properties of
other lineages than the lineage under consideration. The analytical treatment of Etienne
et al. (2012) arguments presented in this work suggests a direction toward deriving the
likelihood for much more complicated models with “interacting branches,” with the
arguably simplest case being diversity dependence, i.e., dependence only on the total
number of lineages present at any time. Our work, showing analytically that Etienne
et al.’s model agrees with existing formulas for likelihoods of simple diversification
models, suggests that future models that aim to deal with interacting branches should
consider such a structure as a reference point, in the same fashion as models dealing
with “breakable” trees often refer to Nee et al. (1994) paradigm.

In this article, we have proved that the framework to compute a likelihood for
diversity-dependent processes by Etienne et al. (2012) agrees with analytical results
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obtained for diversity-independent diversification models. This suggests that the
framework is valid for more general models that take into account the effect of diver-
sity of speciation and extinction rates while still being able to deal with unsampled
species in the phylogeny, when this number is known. Our results can thus improve the
understanding of the general architecture of macroevolutionary diversification models
providing useful tools for the development of new models.
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