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INTRODUCTION

Ecological communities comprise vast networks of in-
teracting species, which vary greatly in their richness 
and connectivity (Agrawal,  2001; Brown et  al.,  2001; 
Montoya et al., 2006; Pimm, 1984). To understand and 
predict their behaviour it is tempting to take a reduc-
tionist approach, breaking- down complex communities 

into small parts (predator–prey pairs, competitors 
within a same niche, etc.). The effectiveness of this ap-
proach depends on how accurately knowledge about 
individual pieces can be scaled up to understand fea-
tures of the whole. For instance we might hope that, 
to understand a population's dynamical response to 
environmental change, it suffices to consider the spe-
cies' response traits (Lavorel & Garnier, 2002), and to 
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integrates existing approaches to complexity, interaction structure and indirect 
interactions. Our work thus provides an original perspective on the question of 
to what degree communities are more than loose collections of species or simple 
interaction motifs and explains when pragmatic reductionist approaches ought to 
suffice or fail when applied to ecological communities.
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a lesser extent the traits of species with which it has 
strong direct interactions. Given sufficient knowledge 
and resources, one might also try to consider indirectly 
connected species at an additional degree of separa-
tion. Such an approach would rely on the validity of 
incremental causality, as we gradually build up a chain 
of causal links between various interacting units. But 
a radically different, holistic perspective would be 
to view a species' response to environmental change 
as the manifestation of a collective response of the 
whole ecosystem in which that species is embedded 
(Patten, 1982).

Explicitly or implicitly, ecologists have argued for de-
cades whether reductionist or holistic perspectives are 
most appropriate (Loreau,  2020). This debate is often 
traced back to the opposition, made in regard to plant 
communities, between the holistic view of Clements and 
the parsimonious individualistic perspective of Gleason 
(Lefkaditou, 2012). Clements argued that plant associa-
tions should be understood as high- level biological en-
tities, comparable to actual organisms, so that species 
are best understood through their functions within a 
whole (Clements, 1916). Gleason claimed that plant com-
munities are mere collections of individual species and 
gave little importance to the interactions between them 
(Gleason,  1926). This dichotomy has carried on, with 
notable ideas such as Lovelock's Gaia theory proposing 
that the biosphere should be viewed as a super- organism 
(Lovelock & Margulis, 1974) in profound contrast with 
the ideas underlying the use of Species Distribution 
Models that aim to predict species ranges with few key 
environmental variables (Soberón, 2007).

But there also exists a middle path that simultane-
ously embraces both reductionist and holistic aspects 
of ecological communities (Lefkaditou, 2012): to model 
them as high- dimensional dynamical systems, where 
variables represent species abundances whose dynamics 
are coupled by interaction terms. Those interactions are 
encoded in a matrix so that ecological communities are 
mapped to a rich class of mathematical objects whose 
properties can reveal emergent features of the system—
that in turn influence the behaviour of its parts (Levins 
& Lewontin, 1982). Robert May famously showed, using 
random matrix theory, that stability was virtually im-
possible past a complexity threshold (May,  1972). This 
thought- provoking result, contradicting heuristic ideas 
of their time, opened up a fruitful line of research: look-
ing for interaction structures that allow complex com-
munities to persist (Allesina & Tang,  2015), and thus 
asking questions about ecological structure and dynam-
ics in terms of matrix features (Novak et  al.,  2016). In 
particular, the eigenvalues of an interaction matrix (its 
spectrum) reveal the dominant modes by which biotic 
interactions influence population dynamics (Trefethen 
& Embree, 2020). Whereas eigenvalues of Jacobian ma-
trices determine local stability (Allesina & Tang, 2012; 
Neubert & Caswell,  1997; Tang & Allesina,  2014), the 

spectral radius of adjacency matrices reflects the nested-
ness of bipartite networks (Staniczenko et al., 2013), and 
from the singular value decomposition of interaction 
matrices, the likelihood of species coexistence can be de-
rived (Grilli et al., 2017; Rohr et al., 2014). Here, by using 
such mathematical objects and techniques, we address 
the reductionist/holistic opposition and show that it can 
be considered a continuous axis (Liautaud et al.,  2019) 
along which different communities position themselves 
depending on their complexity and structure (Allesina 
& Pascual, 2008). We will explain what this positioning 
tells us about their observable behaviour (e.g. response 
to perturbations), and discuss how this could be assessed 
empirically. To do so, we revisit a classic notion of com-
munity ecology that may seem unrelated at first: indirect 
interactions between species (Bender et al., 1984).

The existence of indirect interactions between species 
indeed challenges the reductionist/individualistic ap-
proach to ecological communities (Abrams et al., 1996; 
Menge,  1995). These interactions are mediated via one 
or more intermediate populations (Wootton, 1994) and 
can form long, and numerous, pathways across the com-
munity (Puccia & Levins, 2013), generating a multitude 
of confounding causal pathways between its constituent 
species. One may think of the feeding chains that cou-
ple fungi, bacteria and invertebrates in soil food webs 
(Neutel et al., 2002) or the indirect interactions between 
fish and plants via dragonflies whose larvae are eaten by 
fish and whose adults prey on plant pollinators (Knight 
et al., 2005). Indirect interactions can couple biomes, de-
termine the loops that control the stability of food webs 
and impair our capacity to predict a species’ response 
to a given perturbation (Schmitz,  1997; Yodzis,  1988). 
Indirect interactions thus generate intricate interconnec-
tions, leading to emergent community behaviour that is 
fundamentally different from a collection of populations 
or isolated interaction motifs (Loreau, 2020).

Here we relate the importance of indirect interaction 
pathways to the spectral radius of interaction matrices 
(their largest eigenvalue modulus). Taking a dynamical 
systems perspective, we compare direct interactions be-
tween species pairs to their long- term net interactions 
(Montoya et al., 2009; Novak et al., 2016; Schmitz, 1997) 
and then explain how the latter integrates all indirect in-
teraction pathways between them. We demonstrate that 
the spectral radius of the interaction matrix (once prop-
erly normalized by self- regulating forces) determines the 
length of indirect pathways that contribute to net inter-
actions and thus to long- term community dynamics and 
patterns. We call this length the “interaction horizon”, a 
notion which mirrors the “environ” concept proposed by 
Patten (1982) from the era of theoretical ecosystem ecol-
ogy. As we will see, when interaction horizon diverges, 
this does not imply unstable behaviour, but the break-
down of incremental causal thinking.

Using simulated communities we illustrate that this 
interaction spectral radius explains the occurrence of 
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intuitive signatures of collective community behaviour, 
such as the depth of a perturbation's reach, the degree of 
temporal unpredictability of a community's response to 
environmental change or the contribution of biotic pro-
cesses to realized species niches. We therefore propose 
the interaction spectral radius as a measure of the degree 
of collectivity within a community. From spectral radius 
bounds, in which May's complexity measure plays a cen-
tral role, we show how to quantify the dynamical role 
of interaction structures. For instance, in cascade food 
web models (Pimm et al., 1991), we show that trophic ef-
ficiency increases collectivity and so does the nestedness 
of bipartite (e.g. plant- pollinator) networks (Staniczenko 
et al., 2013). Our measure of collectivity thus embraces 
the somewhat disconnected existing approaches to com-
munity complexity, interaction structure and indirect 
interactions.

Overall, our work clarifies when pragmatic reduc-
tionist perspectives, focusing on particular species, and 
small interaction motifs can, at least in principle, be re-
liably scaled up to the community level, or on the con-
trary, when there are fundamental obstacles facing such 
approaches (Bergelson et al., 2021; Orr et al., 2021).

COLLECTIVITY A N D TH E 
INTERACTION HORIZON

Here we provide an intuitive introduction to our collec-
tivity parameter, while in Box 1 we give a more formal 
and general derivation. We then apply those ideas on a 
simple resource- consumer model.

Our starting point is a community interaction matrix 
A =

(
Aij

)
, with Aii ≡ 0. Aij is a non- dimensional number 

that quantifies the direct interaction of species j on 
species i. It is crucial to see Aij as a relative interaction 
strength: the ratio of inter- specific to intra- specific in-
teractions. We emphasize this seemingly technical de-
tail because it is key for properly defining a notion of 
indirect interactions. If interactions had units, indirect 
interactions of different orders would themselves have 
different units, making them incomparable. Studying 
interaction matrices that have a constant diagonal is 
commonplace in theoretical ecology, yet it is rarely 
actually justified (Allesina & Tang,  2012; Jacquet 
et al., 2016; May, 1972). This property arises naturally 
when considering relative interaction strength, which 
for us is a fundamental prerequisite (see Box 1 and ex-
ample of Equation 6 below).

Following Puccia and Levins  (1991) and Neutel 
et al. (2002), the second- order indirect interaction between 
species j and i through a third species k is Aik ×Akj , the 
product of the direct interaction of species j on species k 
with the direct interaction of species k on species i . More 
generally, an interaction pathway of length n between spe-
cies i and j is Aikn−1

× … ×Ak2k1
×Ak1j

, where the inter-
mediate species k1, … , kn need not all be different (loops 
are possible). Importantly, the sum over all such interac-
tion pathways coincides with the element of An:

If all the numbers Aij are strictly smaller than one, the 
magnitude of indirect interactions will decay exponen-
tially as n grows. Conversely, if the interaction network 
is sufficiently connected, the number of interaction path-
ways between species i and j (the number of terms in the 
sum) will also increase exponentially. It is therefore not 
clear if the sum of all indirect interactions will necessar-
ily vanish as their order grows, even if direct interactions 
are individually weak.

To see why Equation  (1) will appear in community 
models, consider the steady- state condition of a Lotka- 
Volterra system (see Box 1 for a general case):

Here Ki—the carrying capacity of species i—has units 
of biomass and encodes the environmental conditions 
perceived by that species on its own. If we introduce the 
vectors K =

(
Ki

)
 and N =

(
Ni

)
, Equation (2) can be writ-

ten in compact form as

Thus the species' intra- specific features Ki intertwine 
via the matrix (�−A)−1 to determine the actual species 
abundances in the community context. For instance, a 
favourable environment (a large Ki) will not imply a large 
abundance if the environment is also favourable to a 
competitor. The matrix (�−A)−1 encodes all such effects, 
that is, all net interactions between species. If we had in-
stead repeatedly applied Equation (2) on itself we would 
have written a series highlighting the contribution of in-
direct interaction pathways, as defined in Equation (1):

(1)(An)ij =
∑

k1,… ,kn−1

Aikn−1
× … ×Ak2k1

×Ak1j

(2)Ni = Ki +

S∑

j=1

AijNj ; i = 1, … ,S

(3)N = K +AN⇔ N = (�−A)−1K

Ni =Ki+
∑

j

AijKj

⏟⏞⏟⏞⏟

order 1

+
∑

j,k

Aik×AkjKj

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

order 2

+ … +
∑

j,k1,…kn−1

Aikn−1
× … ×Ak1 j

Kj+ …

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

order n



4 of 14 |   A COMMUNITY'S DEGREE OF COLLECTIVITY

BOX 1 Direct, net and indirect interactions in stable community models.

Consider a model that specifies the growth rate gi of all species, as a function of their joint abundances 
N =

(
Ni

)
:

In Generalized Lotka- Volterra (GLV) models gi(N ) = ri +
∑

jaijNj, with a =
(
aij
)
 representing per- capita inter-

actions and r =
(
ri
)
 the vector of species intrinsic growth rates. We assume that the community is in a steady 

state N ∗, so that gi
(
N ∗

)
= 0. In that state, we want to define direct and net species interactions, relate them to 

one another and show in what sense net interactions emerge as a sum of indirect ones, a claim that we use to 
quantify the collective integration of the community.

Direct interactions reflect the sensitivity of the growth rate of one species, to a change in abundance of an-
other. In mathematical terms, this amounts to defining the matrix of partial derivatives

which for GLV models, coincides with the matrix a =
(
aij
)
.

Net interactions are the reciprocal of direct interactions: the long- term sensitivity of the abundance of a species, 
to a permanent shift in the growth rate of another (Montoya et al., 2009; Novak et al., 2016). In matrix form, 
net interactions can be written as

To clarify the meaning of Equation (15), imagine applying a small press perturbation �g on the species' growth 
rates. In contrast with the way direct interactions are defined, we now let community dynamics play out, ulti-
mately leading to a shift in equilibrium abundances �N ∗, so that

This expression can be inverted to show that the matrix of net interactions is indeed the inverse of the matrix 
of direct interactions:

In GLV models this matrix also determines the steady state N ∗ =
(
− a−1

)
⋅ r.

Indirect interactions and the collectivity parameter. Direct and net interactions have reciprocal units. 
Furthermore, if we multiply the direct interaction between species i and j, with the direct interaction between 
species j and k, this would change dimensions and define an indirect interaction between species i and k that 
cannot be compared to neither direct nor net interactions. However, by defining direct interactions relatively 
to self- regulation, defined for any species i as − �gi

�Ni

, we can revisit the connection between direct and net inter-

actions such that a coherent notion of indirect interaction emerges. Let direct, non- dimensional interactions be

In GLV models this corresponds to Aij ≔ aij∕
(
− aii

)
. If D is the diagonal matrix encoding species self- 

regulation, and � the identity matrix, direct interactions can be written as

(13)1

Ni

dNi

dt
= gi(N )

(14)
�g

�N
≔

(
�gi

�Nj

)

(15)
�N ∗

�g
≔

(
�N∗

i

�gj

)

(16)g
(
N ∗ + �N ∗

)
+ �g = 0⇔

�g

�N
⋅ �N ∗ + �g = 0

(17)�N ∗

�g
=

(
−

�g

�N

)−1

(18)
Aij ≔

�gi

�Nj

∕

(
−

�gi

�Ni

)
; i ≠ j;

(
Aii = 0

)

(19)
�g

�N
= D ⋅ ( − � +A)

⏟⏞⏞⏟⏞⏞⏟

non−dimensional direct interactions
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Since this last expression should be equivalent to 
Equation (3), and for all vectors K, we arrive at a clas-
sic matrix identity, known as Neumann's series (Reed 
et al., 1972),

This series converges only under some specific condi-
tions. When it does not converge, this means that we can-
not meaningfully decompose net interaction as a sum of 
indirect interaction pathways.

The criteria for convergence gives us both a measure 
of the importance of indirect interactions and a defini-
tion of collective integration. To derive this criteria, we 
first need to measure the magnitude of the various terms 
of the series, representing the overall strength of indi-
rect interactions of all orders. This amounts to defining a 
matrix norm for each term ‖An‖, and see how this norm 
changes with the order n. Consider

that is, the rate of growth of the norm ‖An‖ as n grows. If 
𝜙 < 1, as n grows, the overall contribution of indirect path-
ways will eventually decrease exponentially as �n. If 𝜙 > 1 , 
the sum over arbitrarily long pathways can be arbitrarily 
large (cf. Figure 1).

Remarkably, � does not depend on the particular 
choice of matrix norm. It is an intrinsic feature of the 
interaction matrix A: its spectral radius, the largest abso-
lute value of its eigenvalues (Trefethen & Embree, 2020).

Here we propose an ecological interpretation of the 
spectral radius � of a given interaction matrix. We call 
� the collectivity parameter because it determines the 
interaction horizon of species: the maximal length of 
interaction pathways that contribute to their net in-
teractions (see Figure 1). For systems for which 𝜙 > 1, 
the interaction horizon is infinite, signalling the break-
down of the reductionist method of decomposing net 
effects into indirect interaction pathways, which we see 
as a reflection of the highly collective integration of 
such communities.

Example: We illustrate how the preceding ideas play 
out in a simple resource- consumer model (see Supporting 
Information S1 for a generalization). Let NC and NR be 
the abundance of consumer and resource, respectively, 
which are assumed to follow, as in Galiana et al. (2021):

Here dC,R represent intra- specific interactions, � is the 
attack rate and � is trophic efficiency, while m and r 
are intrinsic mortality and growth rate of both species. 
Following the general derivation of Box  1, the non- 
dimensional interaction matrix is

(4)� +A +A2 + … +An + … = (�−A)−1

(5)� = lim
n→ ∞

||An||1∕n,

1

NC

dNC

dt
= −dCNC +��NR−m

1

NR

dNR

dt
= −�NC −dRNR+r

(6)A =

(
0 �a

−a 0

)
; � = �dR ∕dC ; a = �∕dR

which indeed have the same units as D. From Equation (17), it follows that

If the elements of A are small, the non- dimensional net interaction matrix (�−A)−1 can then be written as a 
convergent infinite series

This series enables us to define indirect interactions of order k as the elements of Ak. Indeed 
(
Ak

)
ij
 is the sum 

of all non- dimensional interaction pathways of length k that lead from species j to i (allowing for loops), 
drawn in the interaction network. Those should not be confused with higher- order interactions (Battiston 
et  al.,  2021), which are defined as non- linear interaction terms in community models (see discussion in 
Supporting Information S4). It is in the precise sense of Equation (21) that net interactions emerge as a sum of 
indirect ones. Our measure of collectivity � is the spectral radius of A (Trefethen & Embree, 2020), namely:

which controls the rate of convergence of the series Equation (21) and thus the order of indirect interactions that 
contribute to net interactions.

(20)
�N ∗

�g
= (�−A)−1

⏟⏞⏟⏞⏟

non−dimensional net interactions

⋅D−1

(21)(�−A)−1 = � +A +A2 + …

(22)� =max{|�|; � ∈ spect(A)}

Box 1 (Continued)
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This matrix has purely imaginary eigenvalues ± ia
√
� 

so that the collectivity parameter is � = a
√
�, propor-

tional to the attack rate. Because eigenvalues are imagi-
nary, stable steady states exist1 for any values of �. The 
inverse matrix—which determines net interactions—can 
be written in terms of �:

The net interaction between resource and consumer is 
thus proportional to �∕

(
1 + �

2
)
. This non- monotonous 

function of � (and thus of attack rate) increases until 
� = 1 , before decreasing. We deduce that at high collec-
tivity, net and direct interactions become anti- correlated. 
This counter- intuitive phenomenon cannot be under-
stood when considering only a few, albeit long, indirect 
interaction pathways because such a decomposition 
would only converge in the phase where net and direct 
interactions go hand in hand.

TH REE SIGNATU RES OF 
COLLECTIVE INTEGRATION

We now introduce three signatures of collective inte-
gration, which could conceivably be observed empiri-
cally. Not all three would be indicative of collectivity 
in a given system, but taken together they apply to 
a broad spectrum of ecological scenarios. We look 
for those signatures on a set of Generalized Lotka- 
Volterra (GLV) model communities, taken in a steady 
state following community assembly from a random 
species pool.

In simulations we consider a gradient y of interac-
tion strength (and heterogeneity), with 50 different val-
ues of overall interaction strength between 0.02 and 
1 , each with 100 random communities, making 5000 
communities in total. Each starts from a pool of S = 50 
species, and we set 80% of interactions to zero to have 
sparse interaction networks. To parameterize interaction 
strength, we follow May (1972), Allesina and Tang (2012), 
Bunin  (2017) and Barbier et al.  (2018) and define three 
parameters of random interactions: std

�
Aij

�
= y∕

√
S; 

mean
(
Aij

)
= − y∕S; and corr

(
Aij,Aji

)
= − 1. This leads 

to anti- correlated interactions between species that are 
increasingly negative and varied. In this way we could 
generate communities with a collectivity parameter � 
ranging between 0 and ∼ 2, which we use to showcase 
generic aspects of low and high collective integration in 
species- rich communities.

 1 The Jacobian matrix that controls near- equilibrium dynamics reads 
J = DN ( − � +A), where DN is a diagonal matrix whose entries are dC,RN

∗
C,R

, 
and N∗

C,R
 are the species equilibrium values. Stability requires that eigenvalues 

of J have negative real part. Here we only know that eigenvalues of − � +A have 
negative real part, but we can always adjust the positive factor DN, by 
modifying r and m, so that it will not change the sign of eigenvalues.

(�−A)−1 =
1

1 + �
2

�
1 �

√
�

−�∕
√
� 1

�

F I G U R E  1  The interaction horizon is the maximal length of indirect interaction pathways that substantially contribute to net interactions 
(illustrated here in a hypothetical yeast- bacteria community). The horizon is directly determined by the collective parameter as log�∕ log�, 
where 𝜀 < 1 is an arbitrary threshold value. The horizon gives the lowest order of interactions for which the maximal contribution is negligible 
(i.e. smaller than �), and it diverges as � approaches 1. Beyond this point it no longer makes sense to decompose net interactions as a sum of 
indirect pathways.
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Details about simulations and an additional signa-
ture (that we call “growth of effective connectance”) are 
given in Supporting Information S5 and S6.

Perturbation depth

Collective integration means that species are interde-
pendent so that a perturbation targeted on a given spe-
cies will likely propagate deep into the community 
(Bender et al., 1984). Experimentally one could remove a 
species, and monitor the responses of others, as a func-
tion of their interaction distance d(i, j) from the removed 
species (d(i, j) = 1 if j interacts with i, d(i, j) = 2 if i and j 
are indirectly connected via a third species, etc.). 
Denoting Nj∖i the long- term abundance of species j after 
removal of species i, one can quantify perturbation depth 
as

which we can average over all species removal experiments 
in that community.

In Figure  2a we demonstrate a good agreement be-
tween this observable signature of collective integration 
and the collectivity parameter �. As collectivity grows, 
the brunt of the perturbation effect is shared with more 
distant species, and not only supported by those di-
rectly in contact with the removed node (Figure 2b). An 

obvious caveat of perturbation depth is that it only ap-
plies to sufficiently sparse networks – if all species are 
connected, this notion is not well defined. We show in 
Supporting Information  S6.2.1 how this limitation can 
be overcome, by defining a distance function d(i, j) that 
is based on the quantitative values of interaction.

Temporal unpredictability

Indirect interactions between species require time to take 
effect. Thus, collective integration is expected to leave a 
signature in the relationship between short-  and long- term 
responses to a perturbation. Following a persistent change 
in abiotic conditions, a given species' population will first 
react to the induced change in its intrinsic growth rate. 
Later, direct interactions between species will take effect, 
followed by longer interaction pathways. However, if the 
strength of indirect interactions rapidly decays with their 
length, the latter will not substantially change the popu-
lation dynamics; the long- term outcome could have been 
extrapolated from the short- term response. Therefore, the 
more collectively integrated the community, the less pre-
dictable the long- term response of a species should be.

We test this idea by randomly perturbing the intrin-
sic growth rates of all species of a community at equi-
librium. We then measure the correlation between a 
vector of short- term response extrapolation RS and a 
vector of the actual long- term response RL (Supporting 
Information S6.3) and define temporal unpredictability 
as the complement of that correlation:

(7)PD =

∑
j

d(i, j)
���N

∗
j�i

−N∗
j

���
∑
j

���N
∗
j�i

−N∗
j

���

(8)TU = 1 − corr
(
RS ,RL

)

F I G U R E  2  Perturbation depth and collectivity. For various communities, the effect of removing a single species is seen across the 
community. Panel (a) shows the perturbation depth, a measure of how deep into the network of species interactions does the perturbation 
reach. Panel (b) shows the average effect on the species in the community (all except the one species removed), partitioned into three groups: 
black for species directly interacting with removed species, dark grey for species directly interacting with the species in the black group, 
light grey for all other species. As collectivity increases the average effect on a given species becomes equal, regardless of its grouping (i.e. its 
position in the community structure), and therefore the perturbation depth increases (i.e. the effect of the perturbation if felt throughout the 
community). Details about simulation procedure can be found in Supporting Information S5.
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In Figure 3 we see temporal unpredictability increasing 
steadily with collectivity �, meaning that trajectories can 
change tendencies through time, as indirect interactions 
come into play (right panel). Here too there is a caveat. If 
direct interactions are mediated by slow latent variables, 
such as unobserved species or modified environmental 
variables, time and length of interaction pathways need 
not be related. Collectivity thus leaves an unambiguous 
signature in temporal trends only if a separation of time 
scales exists between the factors that mediate direct inter-
actions and the actual population dynamics.

Biotic contribution to the realized niche

If species do not interact, only the abiotic environment 
(i.e. what cannot be attributed to the rest of the com-
munity) determines the species' growth and abundance. 
In general, however, species change the environmental 
conditions perceived by other species. Intuitively, we 
expect stronger collective integration when this biotic 
contribution is more important and intricate (Levine 
et al., 2017).

To quantify this collective contribution, we start from 
the relative yield of a given species, �i = Ni ∕Ki. This 
amounts to comparing mono- cultures to polycultures 
(second column of Figure 4). The absolute difference be-
tween relative yield and unity is a measure of the net ef-
fect, on species i, of the biotic environment. We measure 
this effect integrated over the community, and to make 

the result comparable across communities, we normal-
ize by the sum of relative yields. This defines a measure 
of the biotic contribution to species realized niches:

which is similar to the relative Euclidean distance 
‖N −K ‖ ∕ ‖N ‖ between the realized community state 
N  (expressing the realized niche) and what it would 
have been without interactions, K  (the fundamental 
niche).

We can also characterize the raw contribution of the 
biotic environment by comparing the realized abun-
dance of species to those achieved if species had the 
same carrying capacity (third column of Figure  4). In 
fact, this amounts to asking how much a species abun-
dance is explained by its centrality in the interaction net-
work (Sharkey, 2017).

In the first panel of Figure 4, we see that the collec-
tivity parameter and the strength of the biotic niche 
Equation (9) closely follow one another. For communi-
ties with collectivity parameter close to or larger than 1, 
species abundances are not at all explained by the abiotic 
environment, but instead are almost entirely controlled 
by the biotic environment set by the whole community. 
The caveat here is the requirement of a notion of car-
rying capacity, which makes sense for, say, plants but is 
ill- defined when considering consumer species.

(9)BC =

∑
i

�
�i−1

�2

∑
i

�
2
i

F I G U R E  3  Temporal unpredictability between short- term and long- term responses to perturbation. For various communities, the ability 
to predict the long- term response of a community to a perturbation from its short- term response is evaluated and shown. Panel (a) shows 
temporal unpredictability, which gives a score of 0 for a perfect correspondence between short- term and long- term responses. Black circles 
show the collectivity and temporal unpredictability for two communities, with the corresponding dynamics shown in the right panels (b) and 
(c). Right panels show the change in abundance for six species in each community, where the dashed lines show the extrapolated dynamics 
based on the short- term fit (using the first 0 to 0.5 time units), whereas the solid lines show the actual dynamics. With higher collectivity the 
long- term behaviour becomes less predictable. Details about simulation procedure can be found in Supporting Information S5 and S6.
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COLLECTIVITY, COM PLEXITY 
A N D STA BILITY

In this section we relate collectivity to the complexity meas-
ure of May (1973), which we then use to assess the role of 
network structure and discuss the sensitivity of collectiv-
ity to uncertain knowledge of biotic interactions. We will 
also clarify similarities and differences between collectiv-
ity and the widely studied notion of asymptotic stability.

We first invoke known properties of the spectral ra-
dius to deduce useful bounds on collectivity. By defi-
nition, � ≤ ‖A‖, where ‖A‖ is the spectral norm of A, 
the maximal amplification of vectors' length that this 
matrix can achieve (Reed et  al.,  1972; Trefethen & 
Embree, 2020). The spectral norm is related to a sim-
pler norm, via the following general equivalence rela-
tion (Reed et al., 1972):

where ‖A‖F is the Frobenius norm of A: the square root of 
the sum of squared elements of A. Thus, 

√
1∕S‖A‖F is re-

ally 
√
S
⟨
A2
ij

⟩
, with 

⟨
A2
ij

⟩
 the mean of squared interactions 

(accounting for the trivial diagonal terms Aii ≡ 0). We can 
develop this term a little more by introducing the network's 
connectance 0 ≤ p ≤ 1 (i.e. the proportion of realized links) 
and �2 the second moment of interactions between con-
nected species, so that

in which we recognize , the complexity measure intro-
duced by May  (1972) in his seminal work on Random 
Matrix Theory and the complexity- stability debate 
(McCann, 2000).

Finally, given that Aii ≡ 0, we can transform the 
general equivalence relationship Equation  (10) to de-
duce a similar relationship between complexity and 
the spectral radius of interaction matrices (Supporting 
Information S1):

The upper bound �up is sharp2 while the lower bound �up 
is an approximation (only sharp for normal matrices). 
Because they do not depend on the way interactions are 
actually distributed across species, those bounds can be 
used to quantify the role of structure. Rescaling � as (
� − �low

)
∕
(
�up − �low

)
 defines a measure of relative col-

lectivity for which a value of 1 means that the upper 
bound is reached, indicating that structure maximizes 
collectivity, while a value of 0 implies that � is unaffected 
by randomizing interaction terms. In Supporting 
Information  S1 and S2 we provide examples of struc-
tures, from competitive networks to food- web models, 
that greatly affect collectivity, allowing to move from 
one bound to the other.

The lower bound �low in Equation  (12) should be 
seen as the collectivity that “comes for free” if the 

(10)
√
1∕S‖A‖F ≤ ‖A‖ ≤ ‖A‖F

(11)
√
1∕S‖A‖F =

�
S
�
A2
ij

�
=

�
p(S − 1)�2 ≡ ,

(12) = 𝜙low ≲ 𝜙 ≤ 𝜙up = 

√
S − 1

 2 For instance, � is equal to the upper bound in a competitive network where 
competition strength is uniform across species (Supporting Information S1).

F I G U R E  4  Biotic contribution to species realized niches. The determinants of the community's species abundance at equilibrium are 
evaluated. (a) The biotic contribution to the realized niche (Equation 9), with black circles highlighting several communities that are considered 
in the right panels. (b)–(d) Species equilibrium abundance for different communities (corresponding to black circles in panel a), compared 
with its carrying capacity (left in blue), or by contrast, with its abundance if all species had the same carrying capacities so that differences 
in abundances are caused by species interactions only (on the right in red). Dashed black line shows the 1:1 line. Details about simulation 
procedure can be found in Supporting Information S5 and S6.
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matrix was random, but non- random structure can re-
duce collectivity far below this baseline. Furthermore, 
this baseline expectation can be refined to account 
for additional statistical features of interactions, such 
as their mean and variance. In fact, the spectral de-
scription of large random matrices given by Allesina 
and Tang  (2012) directly gives a random matrix pre-
diction for � that accounts for interaction mean, 
variance and also pairwise correlation (Supporting 
Information  S2.1). The accuracy of this prediction, 
which we test in Figure S3, demonstrates that, in the 
absence of a clear structure, collectivity can be reliably 
estimated using only summary statistics of interac-
tions. In Supporting Information S2.2 we test this claim 
by estimating collectivity from incomplete knowledge 
of interactions. Concretely, we assume accurate knowl-
edge of only a fraction of interactions, while the rest 
are inferred from the statistics of the measured ones. In 
the absence of structure this procedure generates good 
predictions for �. In fact, any method that can infer 
interaction statistics, without necessarily providing 
any reliable information about individual interaction 
terms, would still give an accurate approximation of 
collectivity. However, if an underlying structure exists 
in the network, so that collectivity is far from the base-
line, random, expectation, basic statistics of interaction 
strength are insufficient. They must be combined with 
knowledge of structural features (Asllani et al., 2018). 
In Supporting Information S2.2 we illustrate this idea 
using a cascade food- web model (Pimm et  al.,  1991), 
where predators feed on smaller species. The trophic 
structure generates a substantial departure from the 
random baseline. However, given basic features of this 
structure, only summary statistics of attack rate and 

trophic efficiency are required to accurately predict 
the food web's degree of collectivity.

Finally, if � is associated with May's complexity mea-
sure, should it not be directly related to stability, at least 
sensu May (1972)? The linear stability criterion is that all 
eigenvalues of the Jacobian matrix at the steady state 
must have a negative real part (Lyapunov, 1892). This is 
essentially3 equivalent to all eigenvalues of A having a 
real part smaller than 1 (Gibbs et al., 2018). Collectivity � 
is instead the largest eigenvalue modulus. As is made 
clear once represented graphically (see middle inset of 
Figure 5), if the system is unstable, � is necessarily larger 
than 1. However, even if � is large, the real part of the 
associated eigenvalue can still be arbitrarily small (this is 
the case in the consumer- resource model of equation 6). 
So instability implies a high degree of collective integra-
tion but the converse is not true. Large collective integra-
tion does not necessarily imply instability (right panel of 
Figure 5).

DISCUSSION

In this theoretical piece, we have addressed two inter-
linked issues, which are both of conceptual and practi-
cal importance: (i) how to bridge between reductionist 
and holistic conceptions of ecological communities, 

 3 The Jacobian matrix can be written as J = D
N (− � + A), the product of a 

positive diagonal matrix DN that contains species abundances at steady state 
and their intra- specific interaction strength, times our non- dimensional 
interaction matrix. In general J  and − � +A will not have the same 
eigenvalues, but because DN is diagonal and positive, it is unlikely (although 
not impossible) that some eigenvalues' real parts become positive when going 
from − � +A to J  (Gibbs et al., 2018).

F I G U R E  5  Left: May's complexity  sets the bounds of collectivity, illustrated here for 242 random stable matrices (out of 1000 generated) 
of size 5 × 5 to 15 × 15, representing interaction matrices A of various connectance, interaction strength, variance and pairwise symmetry 
(notice the log–log scales). In purple the sharp upper bound 

√
S − 1 where S is the size of the community (purple points are always above 

the one:one line in black). In blue is the approximate lower bound  (blue points mostly remain below the one:one line). Middle inset: Stability 
is here a distance to instability 1 −maxℜ{�} , where maxℜ{�} is the maximal real part over all eigenvalues � ∈ ℂ of the interaction matrix. If 
this real part attains 1, the community is unlikely to be stable—shaded region is the instability domain. Collectivity is instead the radius of 
the smallest disc centred on 0 that contains all eigenvalues. Right: collectivity and (in)stability are not equivalent. Same matrices as on the left 
panel. We see that large values of collectivity are allowed even if we restrict to stable systems. The edge of the grey region represents y = 1 − x 
which is what would be expected if collectivity and stability were associated with the same eigenvalue.



   | 11 of 14ZELNIK et al.

with a well- defined quantitative axis, and (ii) how to 
better understand and quantify the dynamical role of 
interaction structure. These two points go back to two 
classic dichotomies of ecology: reductionist versus ho-
listic views and dynamics versus structure. They are 
also practical. Point (i) clarifies when we can hope to 
predict behaviour using incremental causality. Point (ii) 
helps us understand community dynamics even with 
limited data.

The premise of our work is that, in nature, dynam-
ical inter- dependency between species occurs not only 
through direct interactions, via predation, facilitation or 
competition, but through potentially much longer indi-
rect interaction pathways (Wootton,  1994). When long 
indirect pathways significantly contribute, over relevant 
time scales, to population dynamics, the state of a spe-
cies can depend on many—if not all—other species in 
the community. We hypothesized that in such instances, 
the incremental causal thinking that characterizes in-
dividualistic approaches would become misleading 
(Levins, 1974). We also expected that when contributing 
interaction pathways are long, perturbations propagate 
further; that short- term and long- term responses of spe-
cies become uncorrelated; and that in such collectively 
integrated communities, it is the biotic environment (and 
not the abiotic one) that dominantly shapes abundance 
distribution patterns.

Taking a dynamical systems perspective on ecological 
communities led us to study the spectral radius � of a 
community's interaction matrix (Novak et al., 2016), de-
fined as its largest eigenvalue modulus (Reed et al., 1972). 
Indeed, we showed that in dynamical models, it is this 
precise feature of the set of interactions that determines 
the length of non- negligible indirect interactions (cf. 
Box 1). Moreover, we explained that when the spectral 
radius � is greater or equal to 1, arbitrarily long interac-
tion pathways can have, over large time scales, as much 
importance as short ones. It then becomes impossible to 
decompose long- term effects as a sum of dominant di-
rect or indirect interaction pathways. In this sense, incre-
mental causality breaks down.

We proposed to see � as a measure of collective in-
tegration, as it drives empirically relevant collective 
behaviour. On simulated ecological communities, we 
demonstrated that � drives Perturbation depth, defined 
as the network distance covered by perturbations ini-
tially affecting only a single species. We also showed 
that � increases Temporal unpredictability, defined as 
the discrepancy between species’ long- term behaviour 
after a change in environmental conditions and the ex-
trapolation of their dynamics based on their short- term 
response. We finally related the value of the collectivity 
parameter with a measure of Biotic contribution to spe-
cies realized niches, defined to quantify the degree to 
which abundances of species grown in monocultures fail 
to predict the abundances of those same species when 
grown together.

We then showed that our measure of collectivity 
parameter is controlled by the complexity measure 
of May  (1972), a summary statistic of absolute inter-
action strength between species. Complexity, together 
with species richness, determines both an upper bound 
on collectivity and a baseline expectation. Thus com-
plexity sets the baseline for collectivity, while the 
interaction structure determines how much it will de-
part from the baseline, either reducing collectivity or 
increasing it towards the upper bound. We identified 
structures that push towards maximal collectivity, 
such as evenly distributing interactions or increasing 
pairwise symmetry. By contrast, triangular (i.e. hi-
erarchical) structures, because they buffer feedback 
(Tilman,  1994), drastically reduce collectivity. In 
Supporting Information  S2.2 we consider a cascade 
food web model (Pimm et al., 1991), to show that tro-
phic efficiency, which determines how predators uti-
lize prey biomass, is a major structural driver, making 
food webs go from low collectivity when efficiency is 
low to near- maximal values for high efficiency.

In a similar vein, Staniczenko et  al.  (2013) used the 
spectral radius of adjacency matrices to quantify the 
nestedness of bipartite interaction networks,4 where one 
group of species interacts with another group (e.g. plants 
and pollinators). In their work, links can be weighted 
and not just binary (using frequency of insect visit per 
plants for instance). However, the spectral radius of such 
weighted adjacency matrices should not be seen as a 
measure of collectivity, as the latter depends on the ratio 
of inter- specific to intra- specific interactions (in the pre-
cise sense given in Box 1). Nonetheless, we can still com-
pare the spectral radius with the random baseline and its 
upper bound (Chung, 1997), to see which structures fa-
vour collective behaviour, those that have no effects, and 
those that ought to reduce it. Given that Staniczenko 
et  al.  (2013) find that nestedness is associated with a 
higher than expected spectral radius, we may say that, 
ceteris paribus, nestedness favours collective behaviour 
in bipartite communities.

Overall, our work provides a novel perspective on 
ecological network structure: instead of asking whether 
biotic structures tend to make communities more or 
less stable (May, 1972), we can now ask whether those 
structures tend to make communities more or less col-
lectively integrated than if they had been randomly 
assembled.

Long indirect pathways between species, whose im-
portance unfolds over variable time scales, do not fa-
vour predictive power. As previously shown (Barabás 
et al., 2014; Schmitz, 1997; Yodzis, 1988, 2000), this is 
certainly true if one tries to predict the effect that a 
perturbation will have, in the long term, on a given 
species when the latter is embedded in a complex 

 4Plant- pollinator networks are often nested: specialist insects typically 
pollinate a subset of the plants pollinated by generalist species.
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ecosystem. But this typical sensitivity of individual 
variables need not imply that all properties of a com-
munity or ecosystem are sensitive and/or unpredictable 
(Daugaard et  al.,  2022). We know, in particular, that 
many aggregate features of complex models are ro-
bust to uncertainty in parameters (Barbier et al., 2018). 
Our work can help identify cases in which long indi-
rect interaction pathways cannot be ignored or even 
simply added up. In such instances we must change 
perspective and focus our efforts towards robust eco-
system or community- level properties of the natural 
system under study (Bergelson et  al.,  2021; Goldford 
et al., 2018; Sanchez et al., 2023).

Perspectives

Contrary to the dynamical community models we stud-
ied, real communities are open to migration, struc-
tured spatially and neither deterministic nor stable 
(Hastings, 2004). It is not obvious how to translate our 
analysis of ecological collectivity to transient, far from 
equilibrium dynamics or draw conclusions on the role 
played by spatial structure and scale in determining the 
degree of collective integration of ecological systems. 
For the latter, this relates to the meta- community con-
cept (Holyoak et al., 2005) and the quest to better un-
derstand the spatial scaling of ecological interactions 
(Galiana et al., 2018, 2022; Gravel et al., 2016). This is 
a promising direction that could help better formulate 
the scale transitions of ecological patterns, as it is com-
monly thought that at large scales, ecological systems 
are mostly determined by abiotic drivers, thus suggest-
ing a negative collectivity- scale relationship. On the 
issue of considering transient states, powerful dynami-
cal techniques do exist to tackle transients in complex 
systems (Roy et al., 2019). But even without abandoning 
the notions of stationarity or equilibria, we could ex-
pand our formalism to address the time- scale depend-
ency of collectivity. A way forward may be the study 
of power spectra of ecological time series: decompos-
ing the temporal f luctuations of populations over vari-
ous time scales to infer the interaction structures that 
generate such signals (Krumbeck et al., 2021). Here we 
suspect that variations over longer time scales reflect 
the collective nature of communities more than those 
at much shorter time scales, as the latter would not 
allow for indirect interactions to manifest, as seen in 
Figure 3.

Finally, can we measure the degree of collective in-
tegration in empirical data? The fact that collectiv-
ity is controlled by aggregate interaction statistics (see 
Figure 5) means that we need not precisely measure all 
species interactions to estimate collectivity bounds. In 
fact, basic interaction statistics entirely determine collec-
tivity in the absence of structure (Allesina & Tang, 2012), 
which can allow its estimation from incomplete or noisy 

interaction strength data (Supporting Information S2.1). 
But more generally, we can expect that there will often 
exist a combination of basic aggregate features of struc-
ture and interaction strength that drive our measure 
of collectivity. For instance, in the food- web model ex-
ample shown in Supporting Information  S2.2, basic 
topological structure, mean attack rate and trophic ef-
ficiency are the main drivers. This is reassuring as any 
theoretical notion that is sensitive to fine scale details 
is guaranteed to be irrelevant. That being said, can we 
reliably estimate collectivity from, say, time- series anal-
ysis (Sugihara et  al.,  2012) or residual correlations in 
species distributions (Ovaskainen & Abrego,  2020)? In 
Supporting Information S2.3, we give a proof of concept 
for the latter, showing that in unstructured competitive 
communities, collectivity is surprisingly well estimated 
from the correlation between species abundances across 
environments. Developing such ideas could be a realistic 
way forward towards quantifying the dynamical impor-
tance of biotic interactions in complex communities.
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